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Abstract

We define an effect system, based upon visibly push-
down languages (VPLs), for a programming language
that processes streams of tokens with parenthesis-like
matching, as found in XML documents or s-expressions.
The effect analysis ensures that programs read and
write words in which tokens match, despite the fact that
tokens are read and written individually. In particular,
the novel treatment of input provides a compositional
description of the behaviour of programs with looka-
head.

We introduce visibly pushdown expressions (VPEs),
corresponding to the class of VPLs, as the effects. VPEs
generalize regular expression types by incorporating in-
tersection, unmatched tokens, and overlapped concate-
nation (used in the analysis of operations with looka-
head). Hosoya, Vouillon, and Pierce’s decision proce-
dure for language inclusion between regular expression
types, via a translation to non-deterministic tree au-
tomata, does not apply to VPEs. Instead we obtain a
decision procedure via a translation of VPEs to Alur
and Madhusudan’s monadic second order logic with
matching relation MSOµ.

1 Introduction

Large data streams are often processed in a single-pass
to avoid construction of an in-memory representation of
the data. Hand-written parsers or transducers that op-
erate directly upon input and output streams are prone
to errors, but there are at least two strategies for pre-
venting some of those errors. The first is to compile
a high-level language into an automaton or transducer,
and the second is to use static analysis. In this paper
we provide the latter, in the form of an effect system
based upon visibly pushdown languages [3].

Several groups of researchers have investigated space-
efficient query evaluations on large data streams. For
example, the Hancock language [6, 8] assists program-
mers implementing queries by automating lazy con-
struction of data structures from data in the input
stream, amongst other ways. XML [7] data streams
have provoked separate lines of research, in particular
on the problem of evaluating multiple queries simul-
taneously upon a stream. The XFilter [2] and YFil-
ter [9] systems compile queries on trees to automata
over words. In this case, the queries are fragments of
the W3C’s XPath 1.0 language [37], and the result is
whether or not one of the queries succeeded. Subse-
quently, it has been shown that significant performance
improvements can be achieved by lazily constructing
either finite-state automata [14] or a variation of push-
down automata for XPath queries with predicates [15].
An efficient, caching implementation for queries written
in a larger fragment of XPath, that includes the parent
and ancestor axes, is given in [4]. The parent axis al-
lows a query to reference the parent of a node that it is
examining which, for a streaming implementation, re-
quires either multiple passes or caching of previously
seen data.

Despite the success of domain-specific languages for effi-
ciently querying streams carrying XML documents, de-
velopers continue to use APIs that provide direct access
to streams of tokens, such as the Simple API for XML
(SAX) [31], the XML Pull API [36], or the Streaming
API for XML (StAX) [33]. Typically actions to read
from a stream will be interleaved with code to populate
data structures, write to a database, or write to another
stream. Although low-level, if we have a substantial
body of code that operates on existing data structures,
it is often easier to populate existing data structures by
manipulating streams directly than it is to rewrite the
existing code as a query or to fit a serialization format.

This raises the question of whether it is possible to ana-
lyze a program manipulating streams, to determine the
input that it will accept, and the output that it can



produce. One starting point is the notion of session
type introduced by Honda et al [18, 35, 19] to describe
the interaction that takes place on session channels in
a concurrent programming language. In particular, the
type of messages (or tokens) communicated on a chan-
nel may change as each message is sent, according to
the session type. Gay and Hole [11, 12] have shown
how to add subtyping for session types in the context
of the π-calculus.

Gay et al [13] presented a λ-calculus with a type and ef-
fect system incorporating session types. If channels are
restricted to unidirectional communication, their ses-
sion types allow one to read or write regular languages
(upon words) on channels. Their system does not in-
clude subtyping at present, and does not allow pro-
grams to perform non-destructive reads on input chan-
nels. The latter is useful when writing parsers.

In related work, Tabuchi et al [34] proposed a λ-calculus
with a type and effect system based upon regular lan-
guages (upon words). Stream manipulation is limited to
output, so effects describe the language written to an
output stream. Subtyping and subeffecting are based
upon language inclusion. Instead of an operation to
read from an input stream, the authors consider a pat-
tern matching operation over words, and those words
are first-class citizens.

Neither λ-calculus incorporates lookahead with input
streams. Compositional descriptions of the input be-
haviour of such programs are more complex than those
for output behaviour. To see this, consider a program
M that reads as many a tokens as possible from an in-
put stream and a program N that reads exactly one a
token from the same input stream. If we sequentially
compose these programs as M ;N we obtain a program
that always fails when it reaches N because no a tokens
are left by M . In contrast, the program N ;M will suc-
ceed whenever the input stream contains at least one a
token.

Moreover, neither λ-calculus is sufficient for stream-
based processing of XML because their effects are reg-
ular languages upon words (see [32] for a characteriza-
tion of the DTDs that do determine regular languages).
However, the usual constraints placed on XML docu-
ments, such as RELAX-NG Schema, XML Schema, or
DTDs, define, to a first approximation, regular tree lan-
guages after a suitable encoding of XML documents as
binary trees [30]. LL(1) grammars [29] would also be
sufficient to encode many constraints on XML docu-
ments, but subtyping and subeffecting based on lan-
guage inclusion would not be possible, because testing
inclusion between LL(k) grammars is undecidable [10].

Hosoya et al [23, 20, 25, 22, 24] proposed regular ex-

pression types, a clear, concise notation for regular
tree languages, as the types of their programming lan-
guage XDuce that manipulates XML documents as
trees. Subtyping in XDuce is based on language in-
clusion between regular expression types. Hosoya et al
show that this inclusion is decidable by translation to
top-down non-deterministic tree automata. Although
XDuce provides a very different programming model, it
is certainly appealing to reuse regular expression types
in the stream processing model that we present. This
is not immediately possible because stream processing
programs operate on individual tokens that cannot be
represented as trees.

Alur and Madhusudan [3] have recently proposed the
class of visibly pushdown languages (VPLs) as a tool for
program analyses that involve nested, matching pairs
of symbols, such as the sequence of calls and returns
in a thread, or the start and end tags in an XML doc-
ument. They show that the class of VPLs is closed
under concatenation, union, intersection, complementa-
tion, and Kleene-*. This is achieved by distinguishing
between symbols of a VPL used for calls (start tags)
and those used for returns (end tags). Unlike balanced
grammars [5], the class of VPLs includes words with un-
matched symbols, facilitating the use of VPLs as effects
for stream processing programs.

In this paper we define visibly pushdown expressions
(VPEs), prove that they correspond to the class of
VPLs, and use them as the basis of a type and effect
system for a programming language λstr. The regu-
lar expression type constructor a[R] corresponds to the
VPE constructor a1

a2
[T ] that constrains the call symbol

a1 and the return symbol a2 to match in a word a1.α.a2

(implying that the call and return symbols in α match
correctly).

The effects for λstr programs are maps from streams to
VPEs. For output streams, this is unsurprising because
we need only represent a postcondition (the output).
For example, the following program outputs a start tag,
a string, and an end tag on stream s, and has type unit
and effect s!<name></name>[string]. We write:

` s!<name>; s!"Fred"; s!</name> : unit; s!<name></name>[string]

To model existing streaming APIs for XML, we must
have both destructive and non-destructive read opera-
tions on input streams. The latter forces us to encode
a precondition (tokens present before execution) and a
postcondition (tokens present after execution) for input
streams. Fortunately, with a fixed lookahead of one to-
ken, we can use the convention that a VPE effect for
an input stream always describes one more token than
it reads destructively. For example, the program s?a
that destructively reads the token a has effect s?(a.∼),
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meaning that the input stream must have two tokens
before execution, the first token must be a, and noth-
ing is known about the current token after execution
(∼ is the wildcard for tokens). In contrast, the pro-
gram if (s� a) then ∗ else fail s, non-destructively checks
that the current token is a and fails if it finds another
token. This program has effect s?a, meaning that the
input stream must have one token a before execution,
no input is consumed, and the current token is a after
execution.

When composing programs, we must check that post-
conditions on input streams for the first program are
consistent with preconditions on input streams for the
second program. We show that it suffices to define
an overlapped concatenation operator ⊕ on languages.
The overlapped concatenation insists that the last sym-
bol of the first string is the same as the first symbol of
the second string. For example, a ⊕ (a.∼) denotes the
same language as a.∼, but a⊕ (b.∼) denotes the empty
language. This leads to a simple effect assignment for
the sequential composition of terms M and N . If the
VPEs S1 and S′1 describe the input behaviour of M
and N respectively, then the input behaviour of their
sequential composition is the overlapped concatenation
S1⊕S′1. This results in the empty language ∅ when none
of the final symbols (postcondition) of S1 overlap with
the initial symbols (precondition) of S′1. A program
with an input effect s?∅ is not guaranteed to read any
language. To combine the output behaviour of M and
N , we need only concatenate their output languages.

Γ `M : σ; s?S1, t!S2 Γ, x : σ ` N : τ ; s?S′1, t!S
′
2

Γ ` let x = M in N : τ ; s?(S1 ⊕ S′1), t!(S2.S′2)

The decidability of inclusion testing between VPEs,
hence of subtyping and subeffecting, is obtained via a
compositional translation to Alur and Madhusudan’s
monadic second order logic with matching relation
MSOµ [3]. This translation handles an intersection op-
erator in the surface language (VPEs), which is not
directly possible with the translation for regular ex-
pression types used in [23, 20]. A similar translation
would be possible for regular expression types extended
with intersection via the monadic second order logic of
trees. The expressiveness of VPEs and regular expres-
sion types is unchanged by the addition of intersection,
but intersection does permit more concise descriptions
of some languages.

1.1 Outline of Paper

Sections 2 and 3 briefly describe regular expression
types, visibly pushdown languages, and the monadic

second order logic MSOµ. Section 4 introduces visibly
pushdown expressions, and section 5 proves that lan-
guage inclusion between VPEs is decidable. Section 6
contains the syntax and operational semantics of λstr,
and section 7 describes the type and effect system, and
the subject reduction theorem. Section 8 concludes.

2 Regular Expression Types

Regular expression types [23, 24] were introduced to
describe trees constructed from XML documents. As-
suming a countable set of labels, ranged over by l, for
the XML names in start tags and end tags, define label
classes by the following grammar:

L ::= l atom
| ∼ wildcard
| L |L union
| L \ L difference

Label classes denote the finite and cofinite subsets of the
set of all labels, where l denotes the singleton set {l},
∼ denotes the set of all labels, L1 |L2 is set-theoretic
union, and L1 \ L2 is set-theoretic difference.

Assuming a set of variables, ranged over by A, the gram-
mar for regular expression types is1:

R ::= () empty sequence
| L[R] element
| R.R concatenation
| R|R union
| A variable
| R∗ repetition

The regular expression type L[R] denotes (the binary
tree for) a word such as <l>.α.</l>, where l is a label in
the denotation of the label class L.

Type definitions bind variables to regular expression
types. We let E range over such maps from variables
to regular expression types where recursive uses of vari-
ables are guarded by element occurrences (this condi-
tion is formalized for VPEs in the sequel). For exam-
ple, E(A1) = l[].A1.l[] is not allowed, but E(A2) =
l[].l[A2].l[] does meet the condition. With a map that
binds the appropriate variables, a regular expression
type denotes a set of trees, or a set of words consist-
ing of start tags and end tags.

To test inclusion between the languages denoted by two
regular expressions, regular expression types are trans-
lated into top-down non-deterministic tree automata.

1Earlier presentations of XDuce encoded repetition using re-
cursion in tail positions, see the comments in [21]. We also write
R1.R2 instead of R1, R2 for concatenation.

3



As with the conversion of regular expressions (on words)
directly to deterministic finite-state automata [1], con-
catenation and Kleene-* require some care. Hosoya [20]
proves termination of a translation procedure that grad-
ually exposes smaller terms at the head of a regular ex-
pression type, e.g., rewriting (R1.R2).R3 to R1.(R2.R3),
and (R1 |R2).R3 to (R1.R3) | (R2.R3).

Non-deterministic tree automata are closed under com-
plementation and intersection, and emptiness testing
is decidable, so there is a decision procedure for inclu-
sion testing between tree automata, which can be pulled
back to the original regular expression types.

3 Visibly Pushdown Automata

Visibly pushdown automata (VPA) [3] operate on push-
down alphabets of the form Σ̃ = (Σc,Σr,Σint), where
Σc, Σr, Σint are disjoint, finite sets of call, return, and
internal symbols respectively. For a pushdown alpha-
bet Σ̃, we define Σ = Σc ∪ Σr ∪ Σint. Transitions for
call symbols are required to push onto the stack, tran-
sitions for return symbols must pop from the stack, and
transitions for internal symbols must not use the stack.

Definition 3.1 A visibly pushdown automa-
ton (VPA) on finite words over Σ̃ is a tuple
(Q,Qin,Γ, δc, δr, δint, QF ) where Q is a finite set
of states, Qin ⊆ Q is a set of initial states, Γ is a
finite stack alphabet that contains a special symbol
⊥ that appears at the bottom of the stack, and
δc ⊆ Q × Σc × Q × (Γ \ {⊥}), δr ⊆ Q × Σr × Γ × Q,
δint ⊆ Q × Σint × Q, and QF ⊆ Q is a set of final
states. 2

Configurations of a VPA have the form (q, σ), where
q ∈ Q is a state and σ ∈ (Γ\{⊥})∗. {⊥} is a stack with⊥
at the bottom. A pre-run of a VPA on a word a1 . . . an

is a sequence of configurations (q1, σ1), . . . , (qn+1, σn+1)
such that for all 1 ≤ i ≤ n:

• If ai ∈ Σc, then ∃γ such that (qi, ai, qi+1, γ) ∈ δc
and σi+1 = γ.σi.

• If ai ∈ Σr, then ∃γ such that (qi, ai, γ, qi+1) ∈ δr
and either γ = σi+1 = σi = ⊥ or γ 6= ⊥ and
γ.σi+1 = σi.

• If ai ∈ Σint, then (qi, ai, qi+1) ∈ δint and σi+1 = σi.

A pre-run (q1, σ1), . . . , (qn+1, σn+1) on a1, . . . , an is a
run if q1 ∈ Qin and σ1 = ⊥. A run is accepting if
qn+1 ∈ QF , and a word α ∈ Σ∗ is accepted by a VPA
if there is an accepting run. The language of a VPA
consists of the set of words that have accepting runs.

A language is a visibly pushdown language if it is the
language of some VPA.

For words where call and return symbols are matched,
the stack will be ⊥ in the final configuration. For words
where there are unmatched call symbols, the stack will
be larger than ⊥ in the final configuration. When there
are unmatched return symbols, the stack will be ⊥ in
the final configuration, and there will have been δr tran-
sitions with γ = ⊥.

Example 3.2 The language L = {<l>n.</l>n |n ≥ 1}
is visibly pushdown when Σc = {<l>}, Σr = {</l>},
and Σint = ∅. We might also describe L using the
regular expression type l[A] where E(A) = () | l[A]. A
suitable VPA has states Q = {q0, q1, q2, q3}, final states
QF = {q3}, stack alphabet Γ =

{
l, l,⊥

}
, and transition

relations:

δc =
{
(q0, <l>, q1, l), (q1, <l>, q1, l)

}
δr = {(q1, </l>, l, q2), (q2, </l>, l, q2),

(q1, </l>, l, q3), (q2, </l>, l, q3)}
δint = ∅

The second stack symbol l is used to identify the
</l> that matches the original <l>. In contrast, if
Q′ = {q′0, q′1}, Q′

F = {q′1}, Γ′ = {l,⊥}, and δ′c =
{(q′0, <l>, q′0, l)}, δ′r = {(q′0, </l>, l, q′1), (q′1, </l>, l, q′1)},
then we obtain a VPA that accepts the language
{<l>m.</l>n |m ≥ n ≥ 1}. 2

Alur and Madhusudan prove that the class of VPLs are
closed under concatenation, union, intersection, com-
plementation, and Kleene-*. Intersection relies on the
fact that the actions of VPA on their stacks are con-
strained by their input, unlike normal pushdown au-
tomata. Concatenation is an interesting operation be-
cause the concept of matching between call and return
symbols is based only on the symbols that lie in be-
tween them. For example, the concatenation of {<l1>}
and {</l2>} is the language {<l1>.</l2>}.
As usual, the closure properties and the decidability
of emptiness testing lead to a decision procedure for
inclusion between the languages of VPA.

3.1 Monadic Second Order Logic

Alur and Madhusudan define a monadic second order
logic MSOµ that is interpreted over finite words of a
pushdown alphabet. MSOµ extends the usual monadic
second order logic with a matching relation µ. Formulae
are defined by the following grammar:

φ ::= Qa(x) |x ∈ X |x ≤ y |µ(x, y) |¬φ |φ∨φ |∃x.φ |∃X.φ
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First order variables x are interpreted as positions (nat-
ural numbers) within the finite word, and second order
variables X are interpreted as sets of positions. The
formula Qa(x) is satisfied if the symbol a is at the po-
sition (that is, the interpretation of) x. The formula
µ(x, y) is satisfied if the symbols at positions x and y
are matching call and return symbols respectively.

The class of VPLs is precisely the class of languages sat-
isfied by MSOµ formulae, which leads to a decision pro-
cedure for MSOµ satisfiability [3]. In the sequel, MSOµ

is used to provide a compact proof of the decidability
of language inclusion between the visibly pushdown ex-
pressions introduced in the next section.

4 Visibly Pushdown Expressions

In this section we introduce visibly pushdown expres-
sions (VPEs) as a generalization of regular expression
types that can represent words with unmatched call or
return symbols. In addition, we add intersection, and,
as shown in the next section, we can still achieve decid-
ability of inclusion testing.

Symbol patterns correspond to the label classes used for
regular expression types. For now we allow the sets Σc,
Σr, Σint of a pushdown alphabet Σ̃ = (Σc,Σr,Σint) to
be countably infinite. The grammar for symbol patterns
is:

p ::= a symbol, a ∈ Σ
| p | p union
| ¬p complement
| ∼c wildcard for Σc

| ∼r wildcard for Σr

| ∼int wildcard for Σint

The denotation JpKΣ̃ ⊆ Σ of a symbol pattern p in Σ̃ is
defined by:

JaKΣ̃
def= {a} J∼cKΣ̃

def= Σc

Jp1|p2KΣ̃
def= Jp1KΣ̃ ∪ Jp2KΣ̃ J∼rKΣ̃

def= Σr

J¬pKΣ̃
def= Σ \ JpKΣ̃ J∼intKΣ̃

def= Σint

We use the abbreviations p1&p2
def= ¬(¬p1|¬p2) and

∼ def= ∼c|∼r|∼int. In addition, Pc is defined to be
the set of symbol patterns of the form ∼c&p. The
sets Pr and Pint are defined similarly. For example,
if L is a set of XML names, such that foo, bar ∈
L and Σr = {</l>|l ∈ L}, then the symbol pat-
tern ∼r&¬(</foo>|</bar>) ∈ Pr denotes the set
{</l>|l ∈ L \ {foo, bar}} ⊆ Σr.

The visibly pushdown expressions (VPEs) are defined
in two syntactic categories. The first syntactic category,

the matched VPEs, are very similar to regular expres-
sion types, except that elements have two patterns: one
for the call (start tag) and one for the return (end tag).
Assuming a collection of variables, ranged over by A,
the matched VPEs are defined by the following gram-
mar:

T ::= ∅ empty set
| () empty sequence
| p symbol pattern, p ∈ Pint

| p1
p2

[T ] element, p1 ∈ Pc, p2 ∈ Pr

| T.T concatenation
| T |T union
| T&T intersection
| A VPE variable
| T+ repetition

And the VPEs are defined by:

S ::= T regular expression type
| p symbol pattern
| S.S concatenation
| S ⊕ S overlapped concatenation
| S|S union
| S&S intersection
| S+ repetition

We omit the empty sequence inside an element, i.e., we
write p1

p2
[] instead of p1

p2
[()]. If <l> ∈ Σc and </l> ∈ Σr,

then we use the abbreviation l[T ] = <l>
</l>[T ].

Call and return symbols will match in words in the
denotation of a matched VPE, i.e., the words repre-
sent trees. VPEs in general allow call and return sym-
bols to appear unmatched using symbol patterns. The
overlapped concatenation operator is not permitted on
matched VPEs because it could generate unmatched
call or return symbols.

VPE variables are bound to matched VPEs (not VPEs)
by an environment, ranged over by E. As with regular
expression types, we impose a constraint that prevents
recursive uses of variables unless they are guarded by
an element. We formalize the constraint as an induc-
tively defined rewriting relation S1 ⇓ S2 that recursively
expands variables in S1, stopping when it reaches an el-
ement. The result S2 denotes the same language, which
we exploit in a later normalization result (lemma 5.2).
The constraint on bindings is that, for each variable A,
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there is a matched VPE T such that A ⇓ T .

() ⇓ () ` p ⇓ p ` p1
p2 [T ] ⇓ p1

p2 [T ]

S1 ⇓ S′1 S2 ⇓ S′2
S1.S2 ⇓ S′1.S′2

S1 ⇓ S′1 S2 ⇓ S′2
S1 ⊕ S2 ⇓ S′1 ⊕ S′2

S1 ⇓ S′1 S2 ⇓ S′2
S1|S2 ⇓ S′1|S′2

S1 ⇓ S′1 S2 ⇓ S′2
S1&S2 ⇓ S′1&S′2

E(A) ⇓ S
A ⇓ S

S ⇓ S′

S+ ⇓ S′+

A VPE S and a binding E denote a set of words over Σ.
Membership of a word in the denotation of S is defined
inductively by:

` () : ()
a ∈ JpKΣ̃
` a : p

a1 ∈ Jp1KΣ̃ a2 ∈ Jp2KΣ̃ ` α : T
` a1.α.a2 : p1

p2 [T ]

` α1 : S1 ` α2 : S2

` α1.α2 : S1.S2

` α1.a : S1 ` a.α2 : S2

` α1.a.α2 : S1 ⊕ S2

` α : S1

` α : S1|S2

` α : S2

` α : S1|S2

` α : S1 ` α : S2

` α : S1&S2

` α : E(A)
` α : A

` α : S
` α : S+

α1 6= () ` α1 : S ` α2 : S+
` α1.α2 : S+

Note that a1
a2

[T ] and a1.T.a2 denote the same languages.
In section 7, we will see that this ability to fold and un-
fold elements is important when typechecking recursive
programs with VPE effects.

When we wish to emphasise the set of symbols Σ̃ or the
bindings E used, we write Σ̃, E ` α : S.

If the language defined by a VPE S1 is a subset of the
language defined by a VPE S2, i.e., ` α : S1 implies
` α : S2, then we say that S1 is a subtype of S2 and
write Σ̃, E ` S1 <: S2 or simply ` S1 <: S2.

At the start of this section, we allowed the component
alphabets of a pushdown alphabet to be countably infi-
nite. In fact, finite alphabets suffice for testing inclusion
as the next lemma shows.

Lemma 4.1 Consider VPEs S1, S2 and binding E
over a pushdown alphabet Σ̃ with one or more infinite
component alphabets. Then there exists a pushdown
alphabet Σ̃′ with finite component alphabets such that
Σ̃, E ` S1 <: S2 iff Σ̃′, E ` S1 <: S2.

We now show that the class of languages defined by
VPEs includes the class of VPLs by translating VPAs

to VPEs. The proof resembles the proof that VPLs can
be represented as tree automata in [3]. We first define
a VPE using bindings with unguarded variables in tail
positions. Such unguarded variables can be eliminated
in place of repetition using standard techniques.

Definition 4.2 For a VPA, define bindings for the
variables Aq1,q2 , Bq1 , Cq2 for all q1, q2 ∈ Q by initially
setting each of E(Aq1,q2), E(Bq1), and E(Cq2) to ∅, then
adding (where we identify {S1, . . . , Sn} with S1| . . . |Sn):

• () ∈ E(Aq,q).

• If q ∈ QF , then () ∈ E(Bq).

• Bq ∈ E(Cq)

• If (q1, a1, q2, γ) ∈ δc and (q3, a2, γ, q4) ∈ δr, then
a1
a2

[Aq2,q3 ].Aq4,q5 ∈ E(Aq1,q5).

• If q2 ∈ Q, then Aq1,q2 .Bq2 ∈ E(Bq1) and
Aq1,q2 .Cq2 ∈ E(Cq1).

• If (q1, a, q2, γ) ∈ δc, then a.Bq2 ∈ E(Bq1).

• If (q1,⊥, γ, q2) ∈ δr, then a.Cq2 ∈ E(Cq1).

• If (q1, a, q2) ∈ δint, then a.Aq2,q3 ∈ E(Aq1,q3) and
a.Bq2 ∈ E(Bq1) and a.Cq2 ∈ E(Cq1).

2

Each variable Aq1,q2 represents the matched sequences
of tokens that can be “accepted” between the states
q1 and q2. On the other hand, variables of the form
Bq represent sequences formed from calls interspersed
with words consisting of matched calls and returns that
can be “accepted” between q and a final state from
QF . Finally, each variable Cq represents sequences
formed from returns interspersed with words consist-
ing of matched calls and returns, followed by sequences
formed from calls interspersed with words consisting of
matched calls and returns that can be “accepted” be-
tween q and a final state from QF .

For σ1, σ2 ∈ (Γ \ {⊥}) ∗ . {⊥}, we write σ1 w σ2 when
σ2 is a suffix of σ1, i.e., there exists σ3 such that σ1 =
σ3.σ2.

Theorem 4.3 Consider a VPA and a sequence
a1, . . . , an:

1. ` a1, . . . , an : Aq1,qn+1 iff there exists a pre-run
(q1, σ1), . . . , (qn+1, σn+1) on a1, . . . , an such that
σ1 = σn and, for all 1 ≤ i ≤ n, σi w σ1 and
ai ∈ Σint whenever σi = σi+1 = ⊥.
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2. ` a1, . . . , an : Bq1 iff there exists a pre-run
(q1, σ1), . . . , (qn+1, σn+1) on a1, . . . , an such that
qn+1 ∈ QF and, for all 1 ≤ i ≤ n, σi w σ1 and
ai ∈ Σint whenever σi = σi+1 = ⊥.

3. ` a1, . . . , an : Cq1 iff there exists a pre-run
(q1, σ1), . . . , (qn+1, σn+1) on a1, . . . , an such that
qn+1 ∈ QF and σ1 = ⊥.

Corollary 4.4 Any VPL can be expressed as a VPE.

5 From VPEs to MSOµ

In this section we show that VPEs can be translated
to MSOµ formulae. The decidability of language inclu-
sion between VPEs is an immediate consequence of the
translation and the decidability of MSOµ satisfaction.
The translation acts upon VPEs and bindings over a
pushdown alphabet Σ̃ with finite component alphabets.
The bindings must be in a normal form which ties to-
gether elements and variable occurrences.

Definition 5.1 A VPE S and binding E are in normal
form if every occurrence of an element or a variable in
S or the image of E is of the form p1

p2
[A]. 2

A normal form for bindings can be found by introducing
a fresh variable to replace S in an element occurrence
p1
p2

[S] when S is not a variable, and then using the re-
lation ⇓ to expand variables occurrences that are not
inside elements.

Lemma 5.2 For all VPEs S and bindings E, there ex-
ists a new VPE S′ and binding E′ in normal form, such
that Σ̃, E ` α : S iff Σ̃, E′ ` α : S′.

Figure 1 defines the translation of a VPE S to a for-
mula JSKXx,y with free first-order variables x and y, and
a vector of free second-order variables X, indexed by
a call symbol, a return symbol, and a variable. The
first-order variables x and y represent the start and end
positions (inclusive) of the part of a non-empty word
that matches S.

When the inductively defined translation of JSKXx,y

reaches an element and variable occurrence a1
a2

[A] it
checks that the positions x and y match using the µ re-
lation and that x is a member of the setXa1,a2,A (drawn
from the vector of free second-order variables X). Mem-
bership of a position x in Xa1,a2,A means that the po-
sition should be a call symbol a1 that has a matching
return symbol a2 at position y and the word in between
x and y should match E(A). This can be expressed by
universal quantification over the set Xa1,a2,A in tandem

with the µ relation. Critically, the µ relation is used to
get around the lack of quantification of sets of pairs of
positions in monadic second order logic.

Empty words are a special case for the translation, be-
cause x and y describe the start and end positions of a
word inclusively, so the word has length 1 when x = y.
To identify the special case in the translation, we make
use of a propositional formula empty(S), for each VPE
S, defined by:

empty(S) =

{
> if ` () : S
⊥ otherwise

An entirely empty word is described using the formula
∃x.⊥, which means that no positions exist. The for-
mulae min(x) and max(y) assert that x and y are the
minimal and maximal positions respectively.

Theorem 5.3 Consider a VPE S0 and binding E for
the variables A1 . . . Am, over a pushdown alphabet Σ̃
with finite component alphabets, in normal form. Then,
for all words α ∈ Σ∗, ` α : S0 iff α |= ψS0 , where ψS0

is defined in figure 1.

Corollary 5.4 Testing language inclusion between
VPEs is decidable.

6 Syntax and Semantics

In this section we present the syntax and operational se-
mantics for λstr, a λ-calculus with operations for read-
ing tokens from input streams and writing tokens to
output streams. Programs can examine the current to-
ken on an input stream without consuming it, providing
a lookahead of one token, but they do not have random
access to streams’ contents.

We assume disjoint sets of input streams In and out-
put streams Out, and use s to range over In ∪ Out.
For each stream, there must be a pushdown alphabet
Σ̃s = (Σs

c,Σ
s
r,Σ

s
int) with string ∈ Σs

int. The pushdown
alphabets need not be disjoint for different streams.
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Terms and values are defined by the grammars:

L,M,N ::= term
∗ singleton

| w string literal
| x variable
| fun(f)(x)M abstraction
| M N application
| let x = M in N sequencing
| s?∼ read token on s ∈ In
| val s read string from s ∈ In
| s!a write a ∈ Σ̃s to s ∈ Out
| s!M write string to s ∈ Out
| fail s fail on s ∈ In
| if (s� p) thenM elseN test token on s ∈ In

V ::= value
∗ singleton

| w string literal
| fun(f)(x)M abstraction

The program s?∼ destructively reads the current token
from input stream s, regardless of whether it is a call,
return, or internal token. In contrast, if (s�p)thenMelse
N non-destructively tests the current token against a
symbol pattern p over Σ̃s, and val s non-destructively
reads, and evaluates to, the current token which must
be a string. The program fail s is used to express the fact
that a test has failed and that an input stream cannot
be accepted. Finally, s!a and s!M write the token a
and the string literal resulting from evaluating M to
the output stream s.

The reduction semantics relates pairs of terms and
stream configurations, the latter representing the input
remaining on input streams and the output that has
taken place on output streams. Stream configurations
are defined by the grammar:

C ::= ∅
| s?α (s ∈ In)
| s!α (s ∈ Out)
| C,C

Words in configurations contain string literals instead
of the token string. We consider stream configurations
modulo identity, associativity, and commutativity, and
do not use stream configurations that mention a stream
more than once. When convenient, we regard stream
configurations as partial functions from In ∪ Out to
words, and write C(s) = α when there exists C ′ such
that C = C ′, s?α or C = C ′, s!α.

The one-step reduction of a term M1 and a stream con-
figuration C1 toM2 and C2 is writtenM1;C1 _ M2;C2.
The reduction relation is defined in figure 2, where
M{N/x} denotes the capture-free substitution of N for
x in M . Note that fail s is neither a value nor reducible.

Later examples use the following abbreviations, where
x and f are fresh variables:

M ;N def= let x = M in N

s?string
def= let x = val s in s?∼;x

s?p def= if (s� p) then s?∼ else fail s

if (s� p) thenM
def= if (s� p) thenM else ∗

while (s� p)M def=
(fun(f)(x)if (s� p) thenM ; f(∗) else ∗)(∗)

In contrast to s?∼, which destructively reads the cur-
rent token, the program s?p destructively reads the cur-
rent token only if it matches the symbol pattern p, oth-
erwise it reduces to fail s. The special case for s?string
also returns the string itself.

Example 6.1 For any token a ∈ Σ̃s, the program
while (s � a)s?∼ destructively reads all of the a tokens
at the start of stream s. After running this program,
the current token on stream s cannot be an a token, so
the following program will always fail when it executes
s?a:

(while (s� a)s?∼); s?a

Example 7.1 demonstrates how the type and effect sys-
tem identifies the error in the above program by track-
ing the possible values of the current token for each
input stream, in addition to the tokens that have been
destructively read. 2

When <l> ∈ Σs
c and </l> ∈ Σs

r we also use the abbrevi-
ations:

s?l[M ] def= s?<l>; let x = M in s?</l>;x

s!l[M ] def= s!<l>; let x = M in s!</l>;x

However, these abbreviations can be misleading. For
example, s!l[s!</l>; s!<l>] is a legitimate program.

Example 6.2 illustrates the use of abbreviations for
reading and writing elements and their interaction with
the pattern-matching construct that operates on tokens.

Example 6.2 Suppose that customer records have
names and optional addresses, and are stored as
customers[(name[T1], address[T2]?)∗]. The following
program wraps a customer element around each name
and address, if present, assuming the existence of pro-
grams M and N that copy names and addresses respec-
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J∅KXx,y
def= ⊥

J()KXx,y
def= ⊥

JaKXx,y
def= x = y ∧ x ∈ Qa

q
a1
a2

[A]
yX

x,y

def= µ(x, y) ∧ x ∈ Xa1,a2,A

JS1.S2K
X
x,y

def=
(
empty(S1) ∧ JS2K

X
x,y

)
∨

(
JS1K

X
x,y ∧ empty(S2)

)
∨

(
∃z.x ≤ z < y ∧ JS1K

X
x,z ∧ JS2K

X
z+1,y

)
JS1 ⊕ S2K

X
x,y

def= ∃z.x ≤ z ≤ y ∧ JS1K
X
x,z ∧ JS2K

X
z,y

JS1|S2K
X
x,y

def= JS1K
X
x,y ∨ JS2K

X
x,y

JS1&S2K
X
x,y

def= JS1K
X
x,y ∧ JS2K

X
x,y

JS+KXx,y
def= ∃Z.

(
∀x′, y′.(x′ ∈ Z ∧ y′ + 1 ∈ Z ∧ JSKXx′,y′) =⇒ ∃z. JSKXy′+1,z ∧ (z = y ∨ z + 1 ∈ Z)

)
∧ x ∈ Z ∧ ∃z.

(
JSKXx,z ∧ (z = y ∨ z + 1 ∈ Z)

)
φX

a1,a2,A
def= ∀x ∈ Xa1,a2,A.∃y.µ(x, y) ∧ x ∈ Qa1 ∧ y ∈ Qa2 ∧

(
(empty(E(A)) ∧ x+ 1 = y) ∨

(
JE(A)KXx+1,y−1

))
ψS

def= (empty(S) ∧ ∃x.⊥) ∨ ∃X.∃x, y.min(x) ∧max(y) ∧ JSKXx,y ∧
∧

a1∈Σc
a2∈Σr
1≤i≤m

φX
a1,a2,Ai

Figure 1: Translation from VPEs to Formulae

tively:

s?customers[
t!customers[

while (s� <name>)
t!customer[
M ;
if (s� <address>) thenN

]
]

]

2

Example 6.3 illustrates the need for primitives that read
and write tokens individually, rather than taking s?l[M ]
and t!l[M ] as the primitives.

Example 6.3 Suppose that paragraphs consist of bold
and italic elements p[(b[]|i[])∗]∗ and we wish to copy the
bold and italic elements in their original order and to
group them into new paragraphs, so that the output is
(p[b[]∗]|p[i[]∗]) ∗. For example, we translate:

<p></p>
<p>
<i></i>
<b></b>

</p>
<p>
<b></b>
<i></i>

</p>

to

<p>
<i></i>

</p>
<p>
<b></b>
<b></b>

</p>
<p>
<i></i>

</p>

There is no correspondence between the original
paragraphs and the new paragraphs that would
allow programs of the form s?p[. . . t!p[. . .] . . .] or
t!p[. . . s?p[. . .] . . .] to work. It would be possible to read
one paragraph at a time, storing data in an interme-
diate data structure (extending λstr if necessary), and
then check whether to write a new paragraph in its en-
tirety at the end of each original paragraph. However,
this is contrary to the goal of minimizing space require-
ments. The solution is to write new paragraph end and
start tags whenever a transition between bold and italic

9



(fun(f)(x)M) V ;C _ M{fun(f)(x)M,V /f, x};C let x = V in N ;C _ N{V/x};C
s?∼;C, s?a.α _ ∗;C, s?α val s;C, s?w.α _ w;C, s?w.α

s!a;C, s!α _ ∗;C, s!α.a s!w;C, s!α _ ∗;C, s!α.w
if (s� p) thenM elseN ;C, s?a.α _ M ;C, s?a.α if a ∈ JpKΣ̃s

if (s� p) thenM elseN ;C, s?a.α _ N ;C, s?a.α if a 6∈ JpKΣ̃s

M1;C1 _ M2;C2

M1 N ;C1 _ M2 N ;C2

N1;C1 _ N2;C2

V N1;C1 _ V N2;C2

M1;C1 _ M2;C2

let x = M1 in N ;C1 _ let x = M2 in N ;C2

M1;C1 _ M2;C2

c!M1;C1 _ c!M2;C2

Figure 2: Reduction Semantics

elements is found:

f(x) def=while (s� <p>)
s?∼;
if (s� <b>) then t!<p>; g(∗)
else if (s� <i>) then t!<p>;h(∗)
else s?</p>

g(x) def= if (s� <b>) then s?b[t!b[∗]]; g(∗)
else if (s� <i>) then t!</p>; t!<p>;h(∗)
else s?</p>; if (s� <p>) then s?∼; g(∗) else t!</p>

h(x) def= if (s� <b>) then t!</p>; t!<p>; g(∗)
else if (s� <i>) then s?i[t!i[∗]];h(∗)
else s?</p>; if (s� <p>) then s?∼;h(∗) else t!</p>

When the function g is called, both the input stream
and output stream should be inside paragraph elements,
and the output stream’s current paragraph should only
contain bold elements. Similarly for h and italic ele-
ments. 2

7 Type and Effect System

In this section we present a type and effect system for
λstr, where the effects assign VPEs to each input and
output stream, and the subeffecting relation is defined
in terms of language inclusion. We conclude with a
subject reduction and progression result.

Effects are defined by the following grammar:

ε ::= ∅ empty effect
| s?S read S on s ∈ In
| s!S write S on s ∈ Out
| ε, ε

If an effect s?S1, t!S2 is assigned to a program, then the
program will consume all but the final token on input
stream s matching the VPE S1 and write output to
stream t that matches the VPE S2 (assuming that the

program does not diverge). The empty effect ∅ means
that the program does not perform any input or output.

As with configurations, we consider effects modulo iden-
tity, associativity, and commutativity, and do not use
effects that mention a stream more than once. When
convenient, we regard effects as partial functions from
In ∪Out to VPEs, and write ε(s) = S when ε = ε′, s?S
or ε = ε′, s!S.

The subeffecting relation is a preorder defined by:

` ε <: ε
` ε1 <: ε2 ` ε2 <: ε3

` ε1 <: ε3

` ε1 <: ε2
` ε1 <: s?∼, ε2

` ε1 <: ε2
` ε1 <: s!(), ε2

` S2 <: S1 ` ε1 <: ε2
` s?S1, ε1 <: s?S2, ε2

` S1 <: S2 ` ε1 <: ε2
` s!S1, ε1 <: s!S2, ε2

The subeffecting relation is decidable because of the
decision procedure for inclusion between VPEs sketched
in section 5.

Note that if effect ε1 does not contain stream s, then
` ε1 <: s?S, ε2 implies that S <: ∼, and ` ε1 <: s!S, ε2
implies that () <: S. The reason for using ` ε1 <:
s?∼, ε2 instead of ` ε1 <: s?(), ε2 is that input streams
will normally have a current token that is not read de-
structively, possibly representing the end of the stream.
When a program terminates, it may know something
about the current token because it has performed a non-
destructive read. In this case, a value can be assigned
the effect s?∼, which means that nothing is known
about the current token on the input stream s.

Types are simply:

σ, τ ::= unit | string | σ ε→ τ
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The subtyping relation is defined by:

` σ <: σ
` σ1 <: σ2 ` σ2 <: σ3

` σ1 <: σ3

` σ2 <: σ1 ` τ1 <: τ2 ` ε1 <: ε2
` σ1

ε1→ τ1 <: σ2
ε2→ τ2

As discussed in the introduction, the type assignment
rules for sequential composition and function applica-
tion combine input and output effects using ⊕ (over-
lapped concatenation) and . (concatenation) respec-
tively. To specify this more concisely, we define the
� operator on effects with the same domains by:

∅ � ∅ def= ∅

(s?S1, ε1)� (s?S2, ε2)
def= s?(S1 ⊕ S2), (ε1 � ε2)

(s!S1, ε1)� (s!S2, ε2)
def= s!(S1.S2), (ε1 � ε2)

Type assignment judgements have the form Γ `M :σ; ε
and are defined in figure 3.

Perhaps the most surprising rule is the axiom Γ `
s?∼ : unit; s?∼.∼. This means that the program con-
sumes one token (the first instance of ∼), which leaves
us knowing nothing about the next token (the second
instance of ∼).

As mentioned above, the sequential composition and
function application rules make use of the overlapped
concatenation operator of VPEs to ensure that the post-
condition of one program matches part of the precon-
dition of the next program. In addition, the rules for
matching are able to use overlapped concatenation to
restrict S1 and S2 in such a way that the program is
guaranteed to accept the union of the two resulting lan-
guages on input stream s.

The following type assignment rule can be derived for
while loops:

Γ `M : unit; s?S1, t!S2 S′1 <: (p⊕ S1 ⊕ S′1) | ¬p
Γ ` while (s� p)M : unit; s?S′1, t!S2∗

Example 7.1 The programs in example 6.1 are as-
signed types and effects:

` while (s� a)s?∼ : unit; s?a∗.¬a
` s?a : unit; s?a.∼

The lookahead token for the first program, ¬a, causes
the composition of the two programs to fail, because:

` (while (s� a)s?∼); s?a : unit; s?(a∗.¬a)⊕ (a.∼)

And (a∗.¬a)⊕ (a.∼) = a∗.∅.∼ = ∅, so:

` (while (s� a)s?∼); s?a : unit; s?∅

Although there is a derivation, it is a failure in the
sense that input stream s has been assigned the empty
language as its effect, and the subject reduction the-
orem (theorem 7.7) makes no guarantees about such
programs. 2

Example 7.2 demonstrates that programs can have ef-
fects that are VPLs but not regular languages (on words
rather than trees).

Example 7.2 If A = l[A]∗ and ε = s?A.¬<l>, t!A then:

` fun(f)(x)if (s� <l>) then s?l[t!l[f(∗)]]; f(∗)

: unit
ε→ unit; ∅

2

Example 7.3 The customers program of example 6.2
has the effect s?S, t!S′ where the VPEs are:

S = customers[(name[T1], address[T2]?)∗].∼
S′ = customers[customer[name[T ′1], address[T

′
2]?]∗]

When we assume derivations of:

`M : unit; s?name[T1].∼, t!name[T ′1]
` N : unit; s?address[T2].∼, t!address[T ′2]

2

Example 7.4 Recall the paragraph splitting programs
of example 6.3. It is possible to assign the types f :
unit

εf→ unit, g : unit
εg→ unit, and h : unit

εh→ unit, where
εf = s?Sf , t!S′f , εg = s?Sg, t!S′g, and εh = s?Sh, t!S′h.
The VPEs are:

Sf = p[(b[]|i[])∗]∗.¬<p> S′f = (p[b[]∗]|p[i[]∗]) ∗
Sg = (b[]|i[])∗.</p>.Sf S′g = b[]∗.</p>.S′f
Sh = (b[]|i[])∗.</p>.Sf S′h = i[]∗.</p>.S′f

Thus, despite the complexity of the original program,
we can provide, and verify, a concise description of its
behaviour in terms of the languages Sf and S′f . 2

Example 7.5 Hosoya and Pierce’s XDuce address
book example from [24] can be translated easily to λstr.
The program reads address book entries with optional
telephone numbers, but only writes address book en-
tries for those with telephone numbers, whilst removing
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Γ `M : σ; ε1 ` σ <: τ ` ε1 <: ε2
Γ `M : τ ; ε2 Γ ` ∗ : unit; ∅ Γ ` w : string; ∅

Γ(x) = σ

Γ ` x : σ; ∅

Γ, f : σ ε→ τ, x : σ `M : τ ; ε

Γ ` fun(f)(x)M : σ ε→ τ ; ∅
Γ `M : σ ε3→ τ ; ε1 Γ ` N : σ; ε2

Γ `M N : τ ; ε1 � ε2 � ε3

Γ `M : σ; ε1 Γ, x : σ ` N : τ ; ε2
Γ ` let x = M in N : τ ; ε1 � ε2

Γ `M : σ; ε, s?S1 Γ ` N : σ; ε, s?S2

Γ ` if (s� p) thenM elseN : σ; ε, s?(p⊕ S1)|(¬p⊕ S2)

Γ ` s?∼ : unit; s?∼.∼ Γ ` val s : string; s?string

a 6= string

Γ ` s!a : unit; s!a
Γ `M : string; ε, s!S

Γ ` s!M : unit; ε, s!S.string Γ ` fail s : σ; ε, s?∅

Figure 3: Type Assignment

email addresses:

while (s� <person>)
s?person[

letx = s?name[s?string] in
while (s� <email>)s?email[s?∼];
if (s� <tel>)then
t!person[
t!name[x];
t!tel[t!(s?tel[s?string])]

]
]

This program can be assigned the following VPEs for
the input and output effects respectively:

person[name[string].email[string]∗.tel[string]?]∗.¬<person>

person[name[string].tel[string]]∗
2

Subject Reduction and Progression

The subject reduction proof depends upon the following
substitution lemma that allows values to be substituted
into other terms. The value may have an effect ε1 other
than ∅, but it can be shown that ` ∅ <: ε1 whenever
Γ ` V : σ; ε1, so ε1 does not appear in the final effect
for the substitution.

Lemma 7.6 (Substitution) If Γ ` V : σ; ε1 and
Γ, x : σ ` N : τ ; ε2, then Γ ` N{V/x} : τ ; ε2.

Theorem 7.7 provides both a subject reduction and
progression result simultaneously because reduction be-
tween configurations is deterministic. In the statement
of the theorem we regard a word as a VPE and implic-
itly map string literals to the token string, allowing us
to write, for example, C2(s).ε3(s) <: C1(s).ε1(s).

Theorem 7.7 (Subject Reduction and Progression)
If ` M : σ; ε1 is not a value, C1 is a stream configu-
ration such that Dom(ε1) ⊆ Dom(C1), and ε2 is an
effect such that Dom(ε1) ∩ In ⊆ Dom(ε2) and, for
all s ∈ Dom(ε1) ∩ In, ` C1(s) : ε1(s) ⊕ ε2(s), then
there exists a term N and a stream configuration C2

such that M ;C1 _ N ;C2. In addition, there is an
effect ε3 such that ` N : σ; ε3, Dom(ε1) = Dom(ε3),
Dom(C1) = Dom(C2), and:

1. For all s ∈ Dom(ε3) ∩ In, ` C2(s) : ε3(s)⊕ ε2(s).

2. For all s ∈ Dom(ε3) ∩Out, C2(s) · ε3(s) <: C1(s) ·
ε1(s).

3. For all s ∈ Dom(C2) \Dom(ε3), C1(s) = C2(s).

Now we can show that every well-typed program, start-
ing with input streams matching the effects, either di-
verges or converges to a value after reading all of its
input apart from one token on each input stream, and
writing output that matches the corresponding effect
for each output stream.

Corollary 7.8 Consider ` M : σ; ε and C1 satisfying
Dom(ε) ⊆ Dom(C1). If ` C1(s) : ε(s), whenever s ∈
Dom(ε) ∩ In, and ` C1(s) : (), whenever s ∈ Dom(ε) ∩
Out, then either M ;C1 diverges or there exists a value
V such that M ;C1 _∗ V ;C2 where ` V : σ; ∅ and:

1. For all s ∈ Dom(ε) ∩ In, ` C2(s) : ∼.

2. For all s ∈ Dom(ε) ∩Out, ` C2(s) : ε(s).

8 Conclusions

We have identified a new notation, visibly pushdown
expressions (VPEs), for visibly pushdown languages.
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VPEs generalize the well-known regular expression
types, often used for XML, in two ways that make them
useful for describing the behaviour of stream-based pro-
cessors: VPEs can describe unmatched start tag or end
tag tokens, and they support an overlapped concatena-
tion operation. In addition, the technique that we use to
prove decidability of inclusion testing between VPEs is
sufficiently general that it handles an intersection oper-
ation in the VPE syntax with ease. We have illustrated
the use of VPEs for analyzing stream-based processors
via a type and effect system for λstr, which includes a
concise coding of preconditions and postconditions for
input streams in the presence of non-destructive reads
using the overlapped concatenation operation on VPEs.

The most pressing future work is to develop implemen-
tations of the decision procedure for inclusion testing
that are efficient in practice. We plan to investigate
how implementation techniques identified in the MONA
project [16, 26, 27, 28] carry over to MSOµ.

We also intend to investigate extensions to the program-
ming language and effect system that will assign a useful
type and effect to the identity transformation copying
from an input stream to an output stream. The most
relevant work in this area appears to be Hole and Gay’s
bounded polymorphism in session types [17].
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