
Games for Controls

Krishnendu Chatterjee
EECS, UC Berkeley.

Radha Jagadeesan∗
School of CTI, DePaul University.

Corin Pitcher
School of CTI, DePaul University.

Abstract

We argue that games are expressive enough to encom-
pass (history-based) access control, (resource) usage con-
trol (e.g., dynamic adaptive access control of reputation sys-
tems), accountability based controls (e.g., insurance), con-
trols derived from rationality assumptions on participants
(e.g., network mechanisms), and their composition. Build-
ing on the extensive research into games, we demonstrate
that this expressive power coexists with a formal analysis
framework comparable to that available for access control.

1. Introduction

We advocate two player turn-based games (perhaps with
quantitative and probabilistic information) as a framework
to describe policies on shared resources. The two play-
ers in question are the System (the owner of the resource)
and the Player (the entity requesting access). Games permit
the incorporation of a broad spectrum of assumptions about
Player models (ranging from an adversarial model to more
cooperative viewpoints modelling behavior in rational self-
interest) and System objectives (ranging from exact controls
for absolute correctness to risk management approaches that
bound the utility lost to undesirable usage). Games also en-
able a uniform description of controls that differ in when
checks are done (such as prior to granting access, or ongo-
ing regulations while the resource is being used or obliga-
tions discharged after the fact).

We substantiate this argument by examining existing
mechanisms for controls from a game viewpoint.

In (stack [47, 46] or history-based [5]) access control,
most interesting moves, such as the initial request and the
moves recorded in the examined history, are made by the
Player. The only move made by the System is a grant/deny
move at the end of the interaction. In the parlance of game
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theory, this access control model is a “1-player game”, aka
transition system. Thus, the operational model for (history-
based) access control is (finite state) automata (e.g., [41]),
algebraic declarative models for access control are based on
regular expressions (e.g., [4]) and logic-based declarative
approaches are usually in some fragment of many-sorted
first-order predicate logic with sorts for roles and time [24]).
The compositional approaches to access control policy lan-
guages (e.g., [12, 48, 11, 16] to name but a few), reflect this
viewpoint.

The above analysis ceases to hold when we move to
more flexible and dynamic derivatives of access control,
such as the (resource) usage control model [37, 36]. In this
view, a complete usage process consists of three phases:
before-usage, ongoing-usage, and after-usage, with Sys-
tem and Player actions permitted in all three phases. Thus
the (resource) usage control model is fundamentally of
ongoing interaction between the Player and the System.
Consequently, the design and analysis of such mecha-
nisms includes situations in which Player (resp. System)
want to respond to strategic behavior by System (resp.
Player). Consider adaptive access control based on repu-
tation (e.g., [28]).

EXAMPLE 1. The following policies are reproduced verba-
tim from eBay.

• Acceptable payment methods include Credit Cards or
Bank Transfers via PayPal or US Postal Money Or-
der (Bank Money Orders will delay shipment). If your
feedback rating is 50 or higher with no negative com-
ments, we will consider accepting a personal or busi-
ness check and holding shipment until the check clears.

• Please contact me before bidding if you have more
than one negative feedback within the last six months
or if your feedback or identity is hidden. I reserve the
option to not accept your bids otherwise.
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The game, as described informally in the above example,
specifies the policy. System moves include changes to fu-
ture player reputation, and providing a suite of payment
alternatives that depend on the current Player reputation.
Since the System cannot control Player moves, and vice
versa, the key issue in this context is “controllability”. For
example, does the Player have a strategy to ensure that
she can always ensure that her bid is always accepted? In
such reasoning, the Player has to reason against all possi-
ble moves permissible for the System, using existing Player
moves to achieve her objective.

Such mixed quantifier reasoning — universal on the
moves of one participant and existential on the moves of
the other participant —- is not supported directly by exist-
ing (linear-time) temporal logic based approaches [49] to
usage control.

Games also open up the possibility of applying quanti-
tative methods to controls. This permits specification and
analysis that is difficult to formulate in the purely (boolean)
0/1 world of traditional access/usage control, such as de-
signs incorporating rationality assumptions on protagonist
behavior. While not universally applicable, such assump-
tions, when they hold, can simplify the design of access
control. The following policy captures some of the ingre-
dients of the class of protocols exemplified by bankable
postage for network services [3].

EXAMPLE 2. The following policy enforced at a local gro-
cery store aims to encourage customers to return the carts
to a predetermined location in the store.

Patrons rent a cart at a nominal charge, e.g., 25¢, from
a location inside the store. Every cart is equipped with a
device that has two connected slots. This device is long
enough to accommodate one quarter. A chain with a coin-
sized flat piece of metal is also attached to the cart. Free
carts are lined up, where the chain from one cart goes into
the device slot of the next cart.

When a customer arrives, she deposits a coin into the
slot. The coin nudges out the chain coming in from the
previous cart, thus detaching the first cart from the chain of
carts. When the customer returns the cart to this location,
the process is reversed: the chain from the previous cart is
inserted into the slot, pushing out the coin. The customer
gets back her coin and the returned cart becomes part of the
chain of carts.

This system works: almost always, there are no carts left
in the parking lot.

This example motivates the use of quantitative cost informa-
tion on transitions in games: the initial player move costs
the Player 25¢ and the return move pays back 25¢ to the
Player. How to analyze such a system? Worst case adver-
sarial assumptions are not useful to justify the success of
this access mechanism, since the customer is not forced to

return the cart in the right spot. Rather, what is being em-
ployed is a gentle appeal to the rationality of the customer.
25¢ seems to suffice to convince the customers to indulge in
behavior that results in maximum utility for both the store
and the customer.

More generally, quantitative approaches apply to scenar-
ios where active and complete policy enforcement is infea-
sible, inconvenient or too costly in practice. In such exam-
ples, access is granted when resources are requested, with
auditing used later to establish accountability and check
whether the requestor had the required privileges [17]—
[14, 39] delineate criteria on the systems that can use such
policies. Insurance is a classical example where auditing is
used to enforce accountability.

EXAMPLE 3. [http://www.bls.gov/oco/ocos125.htm] Indi-
viduals purchase insurance policies to protect against mon-
etary losses from incidents such as fire. As part of the in-
surance application, information about number and place-
ment of fire detection systems is requested. This informa-
tion is usually not checked but recorded. In the event of
a loss, policyholders submit claims seeking compensation
for their loss. Claims examiners and insurance investigators
verify the policy-holder’s statements about the fire detection
equipment before settling the claims upon the policy.

In such games, in addition to normal System access-control
moves that grant or deny policies upfront, there are also
System auditing moves to demand evidence, and grant or
deny claims. The auditing moves are perforce best mod-
elled probabilistically to quantify the success of the audit-
ing process with costs on appropriate edges to indicate the
payout/penalty to Player and System. As in the previous ex-
ample, the Player can violate policy at risk of being traced,
so the iron-clad guarantees of access/usage control are usu-
ally not achieved here. Instead, what the System is attempt-
ing to do is risk management, i.e. analyze and control the
expected worst case loss.

To go along with expressiveness, we now argue that
games support effective reasoning and analysis principles
analogous to those of access control alluded to earlier.

• Games provide a direct operational specification of
policies, including those with history and quantita-
tive information. We demonstrate that our definitions
support the existence of equilibria required to reason
about rational behavior. Our proofs are constructive
and yield strategies for the participants to enforce equi-
libria behavior on the opponents.

• We show that policy specifications (aka games) can be
compositionally constructed using an algebra of oper-
ators. These include game interpretations of propo-
sitional operators, such as conjunction and disjunc-
tion; of temporal operators, such as sequencing and
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iteration; and spatial conjunction operators to combine
policies on multiple resources.

• We provide a logic to reason about properties of indi-
vidual games.

The quantitative information in these games, such as
costs and probabilities, are usually inspired by empiri-
cal data. Thus, these numbers are to be viewed as com-
ing with an error estimate. This motivates the idea that
the analysis should vary smoothly with perturbations
in the numerical values.

We delineate an approximate reasoning approach
based on (metric) distances between states. For games
without quantitative information, the metric approach
specializes down to usual exact equational reasoning,
e.g., 0-distance coincides with bisimilarity.

We show that closeby states have closeby quantitative
properties, for both worst case and rational assump-
tions on the protagonists. We also show that most
of the game combinators preserve closeness, e.g., if
games P1,Q1 (resp. P2,Q2) are closeby, then the prod-
uct games P1 ×P2 and Q1 ×Q2 are closeby.

When restricted to transition systems, these formal tech-
niques yield the usual ones for access control: e.g., metrics
for games reduce to bisimulation for transition systems.

1.1. Related work

Games provide a basic model for interaction, perhaps
with quantitative elements — so, it is unsurprising that they
have been used in a wide variety of contexts, from eco-
nomics [45] to optimal control [22].

In the context of security, there is a growing interest in
the economic aspects of information security, e.g., see [10]
for a broad overview of research in this general area. Exam-
ples 2 and 3 of the introduction, echo the themes underlying
such research. However, our focus is intentionally narrow
and limited to the general area of controls, and reflects our
attempt to formalize the first half of [29].

Mean-payoff games. Perfect-information (turn-based)
stochastic games have been widely studied in stochastic
game theory [40]. [30] studied zero-sum mean-payoff
games and established existence of values in such games
and characterized existence of simple optimal strategies.
[42, 43] prove existence of equilibrium in nonzero-sum
mean-payoff games by an application of threat strategies.

Cost-based frameworks for analysis of denial of ser-
vice [33] can be viewed as games with quantitative infor-
mation (albeit without stochastic information) in the form
of more general cost functions than we permit in this paper.

In this work we extend the construction of threat strate-
gies to obtain a useful class of Nash equilibria.

Logics. The logics to enable specification of open or
multiagent systems where the different agents may repre-
sent different components of the system and the environ-
ment have been developed in two different traditions. On
the one hand, there is Alternating Temporal Logic (ATL) [8]
developed as a game-based extension of temporal logic in
research into computer aided verification and control. There
are also the coalition/game logics — see [38] that includes a
historical survey — developed in investigations into multi-
agent systems based on epistemic logic. Alternating tem-
poral logics have already been used in the specification and
verification of a variety of protocols, e.g., [32, 27].

In this paper, we enhance alternating temporal logics by
combining them with the logics developed for probabilistic
systems [13, 20].

Game algebras. Game algebras have been investigated
in [34, 35], albeit under the nomenclature of “game log-
ics” 1 — see [44] for a detailed presentation in course notes.
Game constructors have been explored in the context of
semantics of Linear logic [15, 6] and programming lan-
guages [25, 7]. None of this prior work was meant to ad-
dress costs and probabilities2.

In this paper, we select operators, guided by relevance to
the application of interest, accounting for the extra features
of costs and probabilities in our formal development. For
each operator, we examine compositional reasoning to con-
struct strategies in the composite game from those for the
component games.

Approximate reasoning. The arguments for approxi-
mate reasoning and an “approximate” notion of equality of
processes are by now well-known [26, 31]. These remarks
were made for probabilistic systems, but the same remarks
apply, mutis mutandis, to costs as well. In the probabilistic
context, both these papers propose that the correct formula-
tion of the “nearness” notion for approximate reasoning is
via a metric. Prior research in this area includes our inves-
tigations into metrics for Markov processes [21], the subse-
quent study of metrics for probabilistic games [19] and the
study for generalized semi-Markov processes [23].

In this paper, we adapt [19] to address games with costs.
In addition we demonstrate that closeby games have closeby
strategies, both for adversarial and rational situations. We
also show that the operators are robust for perturbations of
numerical values.

1In this paper, we reserve the term “ game logic” for logics that talk
about the properties of individual games, and use “game algebra” for meth-
ods to construct composite games from simpler ones.

2Game studies of probabilities in programming languages [18] incor-
porate probabilities in strategies, not in the game perse.
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1.2. Rest of the paper

In section 2, we review the basic definitions for the
games that we use in this paper. In section 3 we sketch
the foundations for the reasoning methods. It is possible to
skim this section initially and read in detail in a demand-
driven fashion as the following section is read. In section 4,
we describe the game algebra.

The rest of the paper is punctuated with examples to
make the ideas concrete and reinforce the idea that games
permit mixtures of a varieties of controls.

In the interests of space and exposition, the main sections
of the paper focus on the novel features. We elide most
proofs in this extended abstract.

2. Background

Notation. For i ∈ {1,2}, we use ī for i mod 2 + 1.
We write D(U) for the set of probability distributions
over the state space U . We use � for disjoint sum of
sets/relations/probability distributions. In the formal devel-
opment, we treat the Player and System symmetrically for
conciseness — so, we just talk of player- 1 and player- 2
symmetrically.

2.1. Turn-based probabilistic games

DEFINITION 4. Let L be a set of labels. A turn-based
probabilistic game graph (21/2-player game graph) G =
((S,E),(S1,S2,S1©,S2©),δ) consists of a directed graph
(S,E), a partition (S1,S2,S1©,S2©) of the finite set S of
states, such that E ⊆ ∪iSi ×L × Si© and δ: Si© → D(Sī)
yields a probability distribution at each state in ∪iSi©.

A rooted game graph is a turn-based probabilistic game
graph with a specified start state s ∈ S1 ∪S2.

An evolution in such a game graph proceeds as follows. The
states in S1 are the player-1 states, where player 1 decides
the successor state, which is a state in S1© by definition. At
an S1© state, the successor is chosen as per the prescribed
probability distribution — this successor state is a state from
S2 by definition. Evolution at such a probabilistic state is
totally autonomous without input from either player. Sym-
metrically for states in S2 that are the player-2 states, where
player 2 decides the successor state.

In contrast to standard presentations, we do not require
every state to have a successor state: this extra bit of gener-
ality is useful to indicate termination of a policy. We some-
times call a state without successors a blocking state. We
include labels on edges to facilitate compositions of games.

The above definition incorporates rigid alternation re-
quirements to lighten the notation in the technical devel-
opment. The essential technical restriction is that every

state has an uniquely identified player determining succes-
sor states. The other constraints — e.g., the strict alternation
between S1,S1© (resp. S2,S2©) — are inessential. Indeed,
when describing actual examples, we will tend to be loose
wrt the strict alternation.

EXAMPLE 5. An approach to a simplified version of exam-
ple 1 is the game specification of the seller policy in figure 1.
In this specification, the bidder’s reputation is good iff they
paid on their last transaction or the seller chose to accept a
new bidder as good for their first transaction. In this figure,
the trailing GOOD (resp. BAD) at the right hand end of the
figure are intended as loops back to P GOOD (resp. BAD
P) at the left of the figure.
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Figure 1. Auction

In order to minimize the clutter in the diagram, we have
elided intermediate states that do not play a significant role.
In a specification that is in complete conformance with def-
inition 4, we would have to introduce intermediate states to
enforce strict alternation. For example, the bid transition
from P GOOD is missing an intermediate probabilistic state
with a probability 1 transition to the System state.

Let s∈ Si©,U ⊆ Sī we write δ(s)(U) for the (probability)
measure of U , i.e. δ(s)(U) = ∑δ(s)(t) | t ∈ U . Let S© =
S1©∪ S2©. For s ∈ S© and t ∈ S, we write E(s) to denote
the set of possible successors of s, i.e. the set of all t to
which s has an edge with non-zero probability.

The turn-based deterministic game graphs (2-player
game graphs) are the special case of the 21/2-player game
graphs such that for all s ∈ S© with have |E(s)| = 1. The
Markov decision processes (11/2-player game graphs) are
the special case of the 21/2-player game graphs such that
for all states s ∈ S2 we have |{t | (s, l, t) ∈ E}| = 1.

Plays. A path in the game graph is a finite or infinite se-
quence ω = 〈s0, l0,s1, l1,s2, . . .〉 of states and labels such
that (sk, lk,sk+1) ∈ E. A play, of the game graph G is ei-
ther an infinite path of states or a finite terminated path, i.e.
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a sequence 〈s0, l0,s1, ln . . . ,sn〉 such that sn has no outgoing
edges. We write Ω for the set of all plays, and for a state
s ∈ S, we write Ωs ⊆ Ω for the set of plays that start from
the state s.

Strategies. A strategy for a player is a recipe to extend
a play, i.e., given a finite sequence of states, representing
the history of the play, a strategy for a player chooses the
successor state to extend the play. In this paper, we will be
concerned only with pure strategies, i.e. the action taken
by a player yields a unique successor state. In the rest of
this paper, we will just use “strategy” for “pure strategy”3.

Let M be a set called memory that encodes the infor-
mation about the history of the play. A player-1 strat-
egy can be described as a pair of functions: a memory-
update function σu: S× M → M and a next-move function
σm: S1 × M → S1© ×L . A strategy must prescribe only
available moves, i.e., for all s ∈ S1, for all m ∈ M, and for all
t ∈ S1©, if σ(s,m) = (t, l), then (s, l, t) ∈ E. We denote by
Σ the set of strategies for player 1. Analogously we define
the corresponding strategy family Π for player 2.

The strategy (σu,σm) is finite-memory if the memory M
is finite. We denote by ΣF the set of (pure) finite-memory
strategies for player 1. The strategy (σu,σm) is memoryless
if |M| = 1; that is, the next move does not depend on the
history of the play but only on the current state. A memo-
ryless strategy for player 1 can be represented as a function
σ: S1 → S1©×L .

Interaction of strategies. Player 1 follows the strategy σ
if in each player-1 move, she chooses the next state accord-
ing to σ. Once a starting state s ∈ S and strategies σ ∈ Σ and
π∈Π for the two players are fixed, the outcome of the game
is a random walk ωσ,π

s for which the probabilities of events
are uniquely defined, where an event A ⊆ Ω is a measurable
set of paths.

EXAMPLE 6. In the game of figure 1, the buyer has a strat-
egy to ensure that a bid is accepted, e.g., by always choosing
the pay move. Similarly, the System has a strategy to en-
sure that it has the option of rejecting the next bid if the
bidder did not pay the prior successful one, e.g., by choos-
ing resp. BAD P in case the Player has not paid. Since the
game records the Player reputation in the state, the System
has a memoryless strategy to achieve this objective.

The interaction of these two strategies leads to a path in
the bottom half of the game tree that always ends in a P
GOOD.

3A strategy that is not necessarily pure, i.e. uses randomization, is
called randomized. We do not consider randomized strategies in this paper.

2.2. Mean-payoff Games

DEFINITION 7 (MEAN-PAYOFF GAME.). A mean-payoff
game G = (G,r1,r2) consists of a 21/2-player game graph
G, and two reward functions r1 : E → R and r2 : E → R,
where E is the set of edges in G.

Both players win the “long-run average” of the correspond-
ing rewards of a play. Formally, given a finite play of even
length ω = 〈s0, l0,s1, . . . ,s2n〉 the value for player 1:

valpath1(ω) =
1

2n

2n−1

∑
i=0

r1((si, li,si+1))

where (si, li,si+1) denotes the edge labeled li from si to si+1.
Similarly for player 2 using r2 instead of r1. For an infinite
play ω = 〈s0, l0,s1, l1,s2, . . .〉, both players win the “long-
run average” of the corresponding rewards of a play, i.e.

valpath1(ω) = lim inf
n→∞

1
2n

2n−1

∑
i=0

r1((si, li,si+1))

and similarly for valpath2(ω).
A zero-sum game is the special case when the gain r1(e)

for player 1 is the loss of player 2.

DEFINITION 8. A zero-sum mean payoff game is a mean-
payoff game in which r1(e) = −r2(e) for all edges e ∈ E.

P

deposit
return
cart

charge
deposit replace

cart
steal
cart

cart
acquire

�

�
�
��� P P

S

S

S

return

Figure 2. Grocery Cart

EXAMPLE 9. The game for example 2 of the intro-
duction is described in figure 2. In this game, the
charge-deposit has cost 25c (resp. gain 25c) for the
Player (resp. System) and the edge return-deposit re-
verses the payments. The replacecart transition has a
large cost (order of dollars) for the System.

There is only one System strategy since there are no
choices in System moves.

EXAMPLE 10. Illinois uses a system known as I-PASS to
collect payments on toll roads. Drivers with an I-PASS
account and a transponder in their car may drive through
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Figure 3. I-PASS

specially-marked fastlanes where traffic need not, and must
not, stop. In this case, the toll payment is debited from their
I-PASS account. Failure to detect a transponder in an I-
PASS lane causes an attempt to punish the owner of the car
by tracing the license plate.

Figure 3 presents a game describing the policy for such
a fastlane. Initially, the system tries to detect a transpon-
der. The cost (resp. gain) on the debit edge reflects the
payment from (resp. to) the Player (resp. System). The
probabilistic state (represented by a circle in figure 3) is in-
tended to model the image recognition techniques that are
claimed to be used if a transponder is not detected.

Values and optimal strategies. The values for the players
are the maximal payoff that each player can guarantee.

Recall that the the result of the interaction of strategies
σ,π is a random walk ωσ,π

s for which the probabilities of
all measurable sets of paths are uniquely defined. Since
each path has a player reward as defined above, the objec-
tives achieved by each players at a state s for such an inter-
action is the expected value induced by this random walk
over the set of paths: we denote these by Eσ,π

s [valpath1] and
Eσ,π

s [valpath2].
Finally, for a state s, the values for the player i at state

s is defined by considering all player i strategies against all
strategies of the opposing player. Formally, these are given
by functions val1 : S → R and val2 : S → R defined as fol-
lows: val1(s) = supσ∈Σ infπ∈Π Eσ,π

s [valpath1] and val2(s) is
defined similarly.

A strategy σ for player 1 is optimal for a state s, if
we have val1(s) = infπ∈Π Eσ,π

s [valpath1], i.e., the strategy
ensures player 1 the payoff of at least val1(s) against all
player 2 strategies. The definition for optimal strategies for
player 2 is analogous.

EXAMPLE 11. The optimal strategy for Player in the gro-
cery game of figure 2 is the strategy that returns the cart —
it has value 0.

The sole strategy for System has a negative value cor-
responding to the cost of replacing the cart: this value is

realized while interacting with Player strategy that does not
return the cart.

EXAMPLE 12. The optimal strategy for Player in the
IPASS game of figure 2 depends on the relationship be-
tween two numbers: (a) the expected cost of being caught
cheating (i.e. probability of the license identified times the
cost on punish in the figure) and (b) the cost of the charge
debited in the debit transitions. If (a) > (b), then the
Player is best served by having a transponder.

In this example, a good analysis of System strategies
requires a (probabilistic?) modelling of the soundness
of transponder detection that is not done in our model.
Note however, that the optimal strategy for Player pro-
tects against the System deciding to go with a very faulty
transponder detection system.

2.3. Nash equilibrium.

A notion of rational behavior in nonzero-sum game is
captured by the notion of Nash equilibrium.

In a nonzero-sum mean-payoff game, a strategy profile
(σ∗,π∗) is a Nash equilibrium if none of the players gain by
unilateral deviation. Formally, (σ∗,π∗) is a Nash equilib-
rium if and only if the following conditions hold:

∀σ ∈ Σ. Eσ∗,π∗
s [valpath1] ≥ Eσ,π∗

s [valpath1]

∀π ∈ Π. Eσ∗,π∗
s [valpath2] ≥ Eσ∗,π

s [valpath2].

In this case, we call (Eσ∗,π∗
s [valpath1],E

σ∗,π∗
s [valpath2]) an

equilibrium value profile.

EXAMPLE 13. In figure 2 the Player strategy that returns
the grocery cart and the uniquely determined System strat-
egy are in a Nash equilibrium yielding value 0 for both. In-
deed, this is a Pareto equilibrium that maximizes value for
both participants.

Contrast against example 11 to see the benefits of ratio-
nality assumption for the System.

3. Reasoning

We discuss three issues in this section: concrete con-
struction of Nash equilibria, a logic for specifying proper-
ties and an approximate metric bisimulation reasoning prin-
ciple.

3.1. Constructing Nash equilibria

Our approach is based on the explicit construction of threat
strategies in repeated games. The concrete operational con-
tent of the proof is relevant to the implementation of system-
level strategies.

Recall a basic result for zero-sum mean-payoff games.
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THEOREM 14 ([30]). For all zero-sum mean-payoff
games, for all states s we have val1(s)+ val2(s) = 0. Pure
memoryless optimal strategies exist for both players in
mean-payoff games.

Given a nonzero-sum mean-payoff game G = (G,r1,r2)
consider two zero-sum mean-payoff games:

• G1 = (G,r1,r1) where r1(e) = −r1(e) for all edges e.

• G2 = (G,r2,r2) where r2(e) = −r2(e) for all edges e.

Let σ1, π1 be any pure optimal strategies for player 1 and
player 2, respectively, in G1 (such optimal strategies exist by
Theorem 14). Let σ2, π2 be any pure optimal strategies for
player 1 and player 2, respectively, in G2. The strategies π1

and σ2 are threat strategies for player 2 and player 1, respec-
tively. Consider strategy (σ∗,π∗) = (σ1 + σ2,π2 + π1) de-
scribed as follows: (a) player 1 follows strategy σ1 as long
as player 2 follows the strategy π2, and as soon as player 2
deviates from π2 player 1 switches to the threat strategy σ2;
(a) player 2 follows strategy π2 as long as player 1 follows
the strategy σ1, and as soon as player 1 deviates from σ1

player 2 switches to the threat strategy π1. We argue the
strategy (σ∗,π∗) is a Nash equilibrium. Observe that since
the strategies σ1 and π2 are pure, any deviation of the strate-
gies can be immediately observed by the other player. Con-
sider any strategy for player 1: if player 1 follows σ1, then
she is guaranteed at least the value of the zero-sum game
G1 for all positions of the play (by optimality of σ1), and if
player 1 deviates then the threat strategy of player 2 ensures
that player 1 gets no more than the value of zero-sum game
G1 from the point of deviation in the play. Hence player 1
has no incentive for unilateral deviation. Similar argument
holds for player 2. This establishes that (σ∗,π∗) is a Nash
equilibrium. Also (σ∗,π∗) have low-memory requirements:
O(n) for games with n states. Formally we have the follow-
ing theorem.

THEOREM 15. Given a nonzero-sum mean-payoff game
G = (G,r1,r2) consider two zero-sum games as follows:

• G1 = (G,r1,r1) where r1(e) = −r1(e) for all edges e.

• G2 = (G,r2,r2) where r2(e) = −r2(e) for all edges e.

Let σ1, π1 be any pure optimal strategies for player 1 and
player 2, respectively, in G1. Let σ2, π2 be any pure optimal
strategies for player 1 and player 2, respectively, in G2. The
strategy (σ∗,π∗) = (σ1 +σ2,π2 +π1) is a Nash equilibrium
for G .

3.2. Logic

We adapt a combination of the logic ATL� [8] and the
probabilistic logics [13, 20] to address edge labels, edge

costs and values. This logic is tuned to capturing worst-case
properties: equilibrium properties can only be captured ap-
proximately.

In the presentation of this subsection, we rely heavily on
prior research [8, 13] for background motivation and de-
tailed examples. In this paper, limited by space constraints,
we focus on the novelties.

Let ��∈ {=,<,≤,>,≥}, r ∈ R, q ∈ [0,1], A ⊆ {1,2}.
The state (φ), path (ψ) and cost/probability formulas (η) are
given by the following grammar:

η ::= true | ¬η | η∨ψ | v1 �� r | v2 �� r | prob �� q

φ ::= true | ¬φ | φ∨φ | 〈〈A〉〉ηψ
ψ ::= true | l | φ | ¬ψ | ψ∨ψ | ψ | ψU ψ

A path satisfies a path formula l if the first edge in the path
has label l.

We illustrate strategy quantifiers and cost formulas by
considering a concrete example. Let η = v1 ≥ r1 ∧ v2 ≥
r2∧prob≥ q. We use a path formula ψ to also stand for the
set of paths that satisfy it (i.e. eliding semantic brackets).
The strategy quantifier 〈〈1〉〉ηψ is true at a state s if player 1
has a strategy σ such that for any strategy π for player 2:

• The probability of the paths resulting from (σ,π) sat-
isfying ψ is at least q.

• Eσ,π
s [ψ[valpath1] ] ≥ r1: the expectation of player 1

value over the ψ-paths resulting from (σ,π) is ≥ r1.

• Eσ,π
s [ψ[valpath2] ] ≥ r2: the expectation of player 2

value over the ψ-paths resulting from (σ,π) is ≥ r2.

In the following examples, we freely use derived operators
∧ (conjunction) and the LTL path connectives � (always in
the future) and �(eventually in the future) with traditional
meanings.

EXAMPLE 16.

• In example 5, the buyer has a strategy to ensure that a
bid is accepted: 〈〈Player〉〉prob=1 � accept.

• In example 5, the game satisfies
〈〈System〉〉prob=1 �[notpay ⇒ (� rejectU pay)]:
the system has a strategy to ensure that it has the
option of rejecting the next bid if the bidder did not
pay the prior successful one.

• In example 9, the Player has a strategy to ensure that
they never lose the coins deposited for getting a gro-
cery cart: 〈〈Player〉〉vPlayer≥0 true.

• In example 9, the game only satisfies
〈〈System〉〉vSystem≤rSystem(replacecart)true: the System
can only guarantee that they never lose more than the
cost to replace the cart.
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• In example 12, the game satisfies
〈〈System〉〉vSystem≥x true, where x is the mini-
mum of (a) the expected gain from Player caught
cheating and (b) the System gain from the debit
transitions.

3.3. Alternating metric-bisimulation

In this subsection, we describe a coinductive reasoning
principle to calculate how close two game-states are — to
show that the distance between two states is less than ε, it
suffices to produce a (metric) bisimulation that sets the dis-
tance between the states to be less than ε. We show that
perturbing numerical values of costs yields a closeby game
and show that closeby games have closeby optimal values
and equilibria values.

As a technical warmup, we begin by defining a game
version of bisimulation. The definition combines and adapts
the definitions for games [9] and labeled Markov processes
[20]. Given an equivalence relation R on the state set, and
two probability distributions P1,P2, we say P1 R P2 if for
all U such that {s | (t,s) ∈ R, t ∈U} ⊆U , it is the case that
P1(U) = P2(U).

DEFINITION 17. Let G = ((S,E),(S1,S2,S1©,S2©),δ).
An equivalence relation R ⊆ [∪iSi]× [∪iSi] is a bisimulation
if for all i ∈ {1,2}:

• s, t ∈ Si,s R t ⇒ (∀(s, l,s′) ∈ E) (∃(t, l, t ′) ∈
E) δ(s′) R δ(t ′)

• s ∈ Si, t ∈ Sī,s R t ⇒
– (∃(s, l,s′) ∈ E) ⇒ (∃(t, l, t ′) ∈ E)

– (∀(s, l,s′) ∈ E) (∀(t, l, t ′) ∈ E) δ(s′) R δ(t ′)

The second case of the definition permits us to potentially
equate player 1 and player 2 states. There is a maximum
bisimulation, that we denote ≈.

EXAMPLE 18. Bisimulation is sound for logic. If s ≈ t,
then for all φ, s satisfies φ iff t satisfies φ.

Definition 17 is very sensitive to perturbations of numer-
ical values: a small change in numbers yields an inequiv-
alent process. So, we describe an approximate approach
based on distances between states. We model distances
standardly as pseudometrics 4.

4A pseudometric d on a state space S is a function S×S → Reals such
that: d(x,x) = 0, d(x,y) = m(y,x), d(x,z) ≤ m(x,y)+m(x,z).

Given a pseudometric d on the state set and given two
probability distributions P1,P2, the Wasserstein distance,
written d(P1,P2), lifts the metric to the space of probability
distributions on the statespace5.

If (s, l,s′),(t, l, t ′) ∈ E, we write d((s, l,s′),(t, l, t ′)) =
max(d(δ(s′),δ(t ′)), |r1(s, l,s′) − r1(t, l, t ′)|, |r2(s, l,s′) −
r2(t, l, t ′)|), thus accounting for both the distance from the
probabilities and the distance caused by difference of costs.

The following definition parallels definition 17, roughly
replacing every “equality” of that definition by “atmost ε”.

DEFINITION 19. Let G = ((S,E),(S1,S2,S1©,S2©),δ). A
metric d on ∪iSi is a metric-bisimulation if if d(s, t) < ε
implies for all i ∈ {1,2}:

• s, t ∈ Si ⇒ (∀(s, l,s′) ∈ E) (∃(t, l, t ′) ∈
E) d((s, l,s′),d(t, l, t ′)) < ε

• s ∈ Si, t ∈ Sī ⇒ (∀(s,s′) ∈ E)

– (∃(s, l,s′) ∈ E) ⇒ (∃(t, l, t ′) ∈ E)

– (∀(t, l, t ′) ∈ E) d((s, l,s′),d(t, l, t ′)) < ε

There is a minimum metric6, that we denote M .
The close correspondence between definitions 19 and 17

permits us to use analogues of traditional methods to reason
about metric distances. For example, to deduce that two
states are equivalent, it suffices to produce a bisimulation
that relates the states. Similarly, to show that the distance
between two states is less than ε, it suffices to produce a
(metric) bisimulation that sets the distance between them to
be less than ε.

EXAMPLE 20. Small perturbations in costs yield small dis-
tances. Let G = (G,r1,r2). Let G ′ = (G,r′1,r

′
2), where for

all e ∈ E, for all i ∈ 1,2, |ri(e)− r′(e)| < ε. Writing sG
(resp. sG ′) for the copies of state s in G (resp. G ′), we
deduce for all states s: M (sG ,sG ′) ≤ ε via the following
metric-bisimulation d:

• d(sG ,sG ′) = d(sG ′ ,sG ) = ε

• d(t, t ′) = d(t ′, t) = ∞, if ¬(∃s){t, t ′} = {sG}

Similarly, small perturbations in probabilities of transitions
not involved in loops yield small distances (see [23]).

EXAMPLE 21. Bisimulation = 0 distance. For any metric-
bisimulation d, it is the case that d−1(0) is a bisimulation.
More generally: ≈ = {(s, t) | M (s, t) = 0}.

5Due to space constraints, we refer the reader to [23] for a review of
relevant probability theory in the context of coinductive definitions.

6For pseudometrics d1,d2, d1 ≤ d2 if for all states s, d1(s) ≤ d2(s).
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EXAMPLE 22. Closeby states have closeby logical proper-
ties. The key case follows — a more complete treatment
including probability variations is elided in the interests of
space.

Let η be a cost formula in negation normal form, with
only value constraints7. For ε > 0, let ηε be the ε enlarge-
ment of η: e.g., replace v1 ≥ r (resp. v1 ≤ r) by v1 ≥ r− ε
(resp. v1 ≤ r + ε), and extend this homomorphically over
disjunctions and conjunctions of such η formulas. Let ψ be
a path formula whose only η sub-formula is true.

Then, if s satisfies 〈〈A〉〉ηψ and M (s, t) < ε, then, t sat-
isfies 〈〈A〉〉ηεψ.

EXAMPLE 23. Closeby states have closeby quantitative
properties. Let G = (G,r1,r2). Let M (s, t) < ε. Then:

• (Worst case reasoning:) |val1(s) − val1(t)| <
ε, |val2(s)− val2(t)| < ε

• (Rational case reasoning:) For every equilibrium value
profile (v1,v2) at s, there is an equilibrium value profile
(v′1,v

′
2) at t such that for i = 1,2, |vi − v′i| < ε.

Proofs of all the above examples rely on showing local
coinductive matching between the strategies from the states
using metric bisimulation.

4. Game Algebra

In this section, we describe operators (synchronous prod-
uct, restriction, sequencing, iteration, player choice, prob-
abilistic choice, and tensor) to build up composite games
from simpler games. In the special case of transition sys-
tems, all but the tensor operator specialize to the (familiar)
one of the same name. Tensor is spatial conjunction that
corresponds to interleaving of transition systems. In some
cases, e.g., choice and tensor, the games definitions have
subtle flavors without direct analogues in transition systems.

In some of the following constructions, we make as-
sumptions about which player is to make the starting move,
and/or which player is to move at blocked states. If a game
doesn’t already satisfy these assumptions, they can be met
by adding (conceptually redundant) moves.

4.1. Choice

The choice operator ⊕i enables player i to choose be-
tween games with player i start states. The definition
adapts process algebraic choice with the cost structure in-
herited from the cost structure for the underlying compo-
nent games.

7i.e. given in the following restricted grammar: η ::= η∧ η | η∨η |
v1 �� r | v2 �� r.

DEFINITION 24 (CHOICE OF ROOTED GAME GRAPHS).
Let GA = ((SA,EA),(SA

1 ,SA
2 ,SA

1©,SA
2©),δA) and GB =

((SB,EB),(SB
1 ,SB

2 ,SB
1©,SB

2©),δB) be rooted game graphs

with start states sA ∈ SA
i ,sB ∈ SB

i . Then, GA ⊕i GB =
((S,E),(S1,S2,S1©,S2©),δ) with start state 〈sa,sB〉 ∈ Si is
defined as:

• Si = SA
i � SB

i � {〈sA,sB〉}. Sī = SA
ī � SB

ī . For i ∈ {1,2}
Si© = SA

i©� SB
i©

• E = EA �EB �{(〈sA,sB〉, l, t) | (sA, l, t) ∈ EA ∨ (sB, l, t) ∈
EB}

• δ = δA �δB

DEFINITION 25. Let GA = (GA,rA
1 ,rA

2 ) and GB = (GB,rB
1 ,rB

2 ) be
rooted mean-payoff game graphs with start states sA ∈ SA

i ,sB ∈ SB
i .

GA ⊕i GB is defined as follows:

• G = GA ⊕i GB

• For j = 1,2:

r j(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rA
j (e), if e ∈ EA

rA
j ((s

A, l, t)), if e = (〈sA,sB〉, l, t)∧ (sA, l, t) ∈ EA

rB
j (e), if e ∈ EB ∨ e = (〈sA,sB〉, t)∧ (sB, t) ∈ EB

rB
j ((s

B, l, t)), if e = (〈sA,sB〉, l, t)∧ (sB, l, t) ∈ EB

EXAMPLE 26. In the highway tolling example 10, we have
described a game (say Gfastlane), with costs and probabil-
ities, for fastlanes. Let Gregular be a game specification of
a standard access control policy for a regular lane: wait for
suitable coins from the Player before granting access (we
elide the details in the interests of space).

A game specification of a composite policy for a toll-
booth, with Player choosing the lane type, is given by
Gtollbooth = Gfastlane⊕Player Gregular.

Choice of closeby games yields closeby games, i.e. the
choice combinator does not expand or increase distances, as
shown by a standard metric-bisimulation proof.

THEOREM 27. If M (sA
1 ,sA

2 )≤ ε1 and M (sB
1 ,sB

2 )≤ ε2, then
M (〈sA

1 , tA
1 〉〈sB

2 , tB
2 〉) ≤ ε1 + ε2.

In the case when ε1 = ε2 = 0, this yields that bisimulation
is a congruence for choice.

Choice is asymmetric between the players.

• 〈〈i〉〉ηψ is true for the resulting game if it is true in
either game. On the other hand, 〈〈ī〉〉ηψ is true for the
resulting game only if it is true in both games.

• The value for player i is the maximum of the values
for the individual games. The value for player ī is the
minimum of the values for the individual games.
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• An equilibrium profile (vi,vī) of a component game is
an equilibrium profile of the choice game iff there is no
other equilibrium profile in the other component with
a higher value for player i.

When applied to example 26, the first two items above yield
that the Player has strategies to choose the access lane that
minimizes her cost; System on the other hand is only guar-
anteed the minimum of the payments yielded by the two
options.

4.2. Synchronous parallel composition

The synchronous product is used to build conjunctions
of policies that share the same history of interaction.

The definition assumes that both games are started by
player i. The construction of the product probability dis-
tribution in the definition corresponds to treating the two
underlying random variables as independent, so the proba-
bilities are multiplied. An edge in the synchronous product
is a pair of edges, one each from the two component games.
The labels used in the synchronous product game are prod-
ucts of labels from the individual games. The cost function
on edges is the sum of the cost function on the two edges
constituting the pair.
DEFINITION 28. [Synchronous Product]
Let GA = ((SA,EA),(SA

1 ,SA
2 ,SA

1©,SA
2©),δA) and GB =

((SB,EB),(SB
1 ,SB

2 ,SB
1©,SB

2©),δB) be two rooted game graphs

with start states sA ∈ SA
i ,sB ∈ SB

i . Then, the product game graph
GA ×GB = ((S,E),(S1,S2,S1©,S2©),δ) is defined as follows:

• For i ∈ {1,2}, Si = SA
i ×SB

i , Si© = SA
i©×SB

i©
• For all 〈sA,sB〉 ∈ S: (〈sA,sB〉,〈lA, lB〉,〈tA, tB〉) ∈ E ⇔

(sA, lA, tA) ∈ EA ∧ (sB, lB, tB) ∈ EB

• For all 〈sA,sB〉 ∈ S1© ∪ S2©: δ(〈sA,sB〉)(〈tA, tB〉) =
δ(sA, tA)�δ(sB, tB)

DEFINITION 29. Let GA = (GA,rA
1 ,rA

2 ) and GB = (GB,rB
1 ,rB

2 )
be two rooted mean-payoff games with start states sA ∈ SA

i ,sB ∈
SB

i . The product mean-payoff game G = (G,r1,r2) is defined as
follows:

• G = GA ×GB

• For j ∈ {1,2}, for e = 〈sA,sB〉,〈lA, lB〉,〈tA, tB〉 ∈ E, r j(e) =
rA

j (s
A, lA, tA)+ rB

j (s
B, lB, tB).

As in choice, a simple metric-bisimulation proof shows the
analogue of Theorem 27 for synchronous product.

The only way for a strategy in one component in the syn-
chronous product to affect the strategy in the other compo-
nent is by being a blocking state and not having any tran-
sitions. We formalize this below. Given a strategy pair

(σA,πA) for a rooted game graph GA with start state s (sim-
ilarly (σB,πB) for rooted game graph GB with start state
t), we say they are compatible if all maximal paths in both

ωσA,πA

s and ωσB,πB

t are of the same length, i.e. they consist
only of infinite paths or all maximal paths are finite and of
the same length8. In this case,

E〈σA,σB〉,〈πA,πB〉
〈s,t〉 [valpath1] = EσA,πA

s [valpath1]+EσB,πB

s [valpath1]

Similarly for valpath2. This enables us to deduce that values
(resp. equilibrium value profiles) in the composite game are
sums of values (resp. pointwise sum of equilibrium value
profiles) in the component games when the compatibility
assumptions are met.

Other process algebraic combinators. Given choice
and synchronous product, the definitions for probabilistic
choice, sequential composition, restriction and iteration are
routine. Probabilistic choice, sequential composition and
restriction satisfy analogues of Theorem 27. However, iter-
ation does not — intuitively, since iteration involves poten-
tial repeated use, small differences can add up.

In the main text, we content ourselves with an example
that uses several of these combinators to construct a game
that combines different mechanisms of control.

no
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Figure 4. Insurance: Policy Issue

EXAMPLE 30. Arranging a home insurance policy requires
up-front checks, in the access control tradition (e.g., CLUE
reports for US home insurers) before a policy is issued.
Some checks require permission from the applicant. GCLUE,
the game for this procedure appears in Figure 4(i). If the in-
surer denies a policy to the applicant, the parties no longer

8This is automatically satisfied by the traditional games that have no
blocking states.
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have an useful interaction, modelled as a loop between the
Player and System.

Insurers also rely upon unverified information, e.g., an
insurer may not verify the existence of a fire alarm asserted
by the applicant. Gassert−alarm, the game in Figure 4(ii),
describes such a procedure in which the insurer refuses to
issue a policy unless the Player claims to have an alarm.
The entire preissue game, Gpreissue is:

(ν〈deny,accept〉) (ν〈accept,deny〉)[GCLUE×Gassert−alarm]

In Gpreissue, the combination of synchronous product
and restriction achieves the effect of synchronizing on ac-
cept/deny. The product in this game satisfies the hypothesis
of the compositional techniques alluded to earlier.

not
cannot
prove

alarm
prove

�

�
�

�
�

�

� �

��

pay out

S
?proof

P

destroyed

incident

pay out
S

punish

S
pay out

P

P

P
S P

P

destroyed

Figure 5. Insurance: Claim reimbursement

Gincident, of Figure 5, addresses the interaction after an
incident. The edges punish (and payout) has associated
Player cost (resp. benefit) and System benefit (resp. cost).
The probabilistic state (shown as a circle) models whether,
after the incident, it is possible to check that a fire alarm
was present. If so, the insurer punishes the policy holder if
no evidence for a fire-alarm is found. The System strategy
that chooses the ?proof transition in Gincident reduces the
(expected) risk of payout to dishonest Players to the product
of the destroyed probability and the payout costs.
The full game combining access-control based issue and
audit-based reimbursement is: Gpreissue;Gincident. In this
game, at each state after a policy has been issued, the ap-
plicant has a strategy that leads to a pay out and avoids
punishment, i.e. 〈〈Player〉〉prob=1(�issuepolicy ⇒
�[¬punish∧ � payout]).

4.3. Tensor conjunction

The aim of tensor is to combining policies on multi-
ple resources. The tensor achieves this by partitioning the
System/Player interaction into the individual components.
None of the other combinators yield the flexible temporal
overlap of the component games permitted by tensor — the
product shares the same Player/System interaction between
the two component games; choice forces the selection of

one of the two component games, and sequential composi-
tion orders the two component games.

The tensor game graph yields interleavings of the evolu-
tions of the game graphs of the two component games. The
restriction placed on the interleaving is that in GA ⊗ī GB,
only player i gets to shift between the two games.
DEFINITION 31. [Tensor of game graphs]
Let GA = ((SA,EA),(SA

1 ,SA
2 ,SA

1©,SA
2©),δA) and GB =

((SB,EB),(SB
1 ,SB

2 ,SB
1©,SB

2©),δB) be two rooted game graphs

with start states sA ∈ SA
i ,sB ∈ SB

i . Then, the rooted tensor game
graph GA ⊗ī GB = ((S,E),(S1,S2,S1©,S2©),δ) is defined as
follows:

States: Start state is 〈sA,sB〉
• Si = {〈tA, tB〉 | tA ∈ SA

i , tB ∈ SB
i }

• Sī = {〈tA, tB〉 | tA ∈ SA
i , tB ∈ SB

ī }∪ {〈tA, tB〉 | tB ∈
SB

i , tA ∈ SA
ī }

• Si© = {〈tA, tB〉 | tA ∈ SA
i©, tB ∈ SB

i }∪ {〈tA, tB〉 | tA ∈
SA

i , tB ∈ SA
i©}

• Sī© = {〈tA, tB〉 | tA ∈ SA
ī©, tB ∈ SA

i }∪ {〈tA, tB〉 | tA ∈
SA

i , tB ∈ SA
ī©}

Edges: E = {(〈tA, tB
1 〉, lB,〈tA, tB

2 〉)|(tB
1 , lB, tB

2 ) ∈ EB} ∪
{(〈tA

1 , tB〉, lA,〈tA
2 , tB〉)|(tA

1 , lA, tA
2 ) ∈ EA}

Distributions:

• δ(〈tA, tB〉) = δA(tA) if tA ∈ SA
1©∪ SA

2©.

• δ(〈tA, tB〉) = δB(tA) if tB ∈ SB
1©∪ SB

2©.

DEFINITION 32. Let GA = (GA,rA
1 ,rA

2 ) and GB = (GB,rB
1 ,rB

2 )
be two rooted mean-payoff game graphs with start states
sA ∈ SA

i ,sB ∈ SB
i . The mean-payoff game G = (G,r1,r2) =

(GA,rA
1 ,rA

2 )⊗ī (G
B,rB

1 ,rB
2 ) is defined as follows:

• G = GA ⊗ī GB

• For j ∈ {1,2}:

– r j(〈tA, tB
1 〉, lB,〈tA, tB

2 〉) = rB
j (t

B
1 , lB, tB

2 )

– r j(〈tA
1 , tB〉, lA,〈tA

2 , tB〉) = rA
j (t

A
1 , lA, tA

2 )

Each edge in the tensor game graph arises from an edge
in one of the two component game graphs. So, the cost
function is directly inherited from the cost functions of the
component games. The sum of costs on a path for either
player is the sum of the projections of the path on the com-
ponent games — this statement is of course not true for the
limit average definition of values of paths.

EXAMPLE 33. Example 9 describes a game specification,
say Gcart, for a grocery cart. Let Gcheckout be a game
that specifies a policy for checkout at the grocery store (this
could be a standard access control policy whose details we
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elide in the interest of space).
The policy that appropriately combines the two games

is given by Gcart⊗System Gcheckout. The interleaving and
Player switching supported by ⊗System permits the Player
to construct the desired interleaving of the two games,
namely pick a cart (from Gcart), checkout (from Gcheckout)
and return cart (from Gcart).

As in choice, a simple metric-bisimulation proof shows
the analogue of Theorem 27 for tensor.

A pair of strategies (say π1,π2) from the component
games yields a strategy, say 〈π1,π2〉, for player ī in the
tensor game. For player i, a strategy in the tensor game
can be built up from strategies (say σ1,σ2) for the compo-
nent games, and an interleaving strategy between the com-
ponents.

With a fair interleaving strategy by player i, the values
for players resulting from playing 〈σ1,σ2〉 against 〈π1,π2〉
can be calculated when values of paths are calculated in
terms of total costs, rather than limit averages, as fol-
lows. For a path ω = s0, l0,s1, l1,si+1, . . ., let valpath1(ω) =
∑r1((si, li,si+1)); valpath2(ω) = ∑r2((si, li,si+1)). In
this case, the interaction yields value Eσ1,π1

sA [valpath1] +
Eσ2,π2

sB [valpath1] for player 1 and value Eσ1,π1
sA [valpath2] +

Eσ2,π2
sB [valpath2] for player 2.

In example 33, this yields that the way for Player to max-
imize value (for both worst case and rational assumptions)
is to use the optimal strategies for the Gcheckout and Gcart

games. Unfortunately, we are not aware of a similar simple
characterization in the standard calculation of values based
on limit averages.

Unfair interleaving strategies by player i can lead to
asymmetry: disjunctive for player i and conjunctive for the
other, similar to choice. For example, let ψ be a path for-
mula that is not reliant on reaching blocked states9. For such
a formula, player i has a strategy to achieve ψ in the tensor
game (i.e. 〈〈i〉〉prob≥1ψ is true at the start state) if she has a
strategy to achieve ψ in either of the component games. On
the other hand, 〈〈ī〉〉prob≥1ψ is true for the tensor game only
if player ī has a strategy to achieve ψ in both component
games.

5. Conclusion

The need for controls arises when the owner of a re-
source has to share it with other parties. The requirements
on these controls depend on the underlying architectural as-
sumptions: the model of the requestor (worst case vs. ra-
tional), owner objectives (absolute correctness vs risk man-
agement) and when are controls exercised (before, during

9 This can be formalized by saying that ψ has at least one infinite path
in its set of models.

or after the access to the resource). The motivation for this
paper is that several useful applications require a mixture of
different kinds of controls.

We have argued that games provide a unified framework
to address this issue. Our formalization shows that games
provide good composition mechanisms. Several small ex-
amples illustrate the benefits derived for applications of in-
terest.

We have developed formal results to analyze games. A
key feature of our analysis methods is the explicit conces-
sion to approximate reasoning with quantitative informa-
tion: our methods are robust with respect to perturbations
of numerical values.

Extant research provides automated analysis methods for
important subcases: e.g., probabilistic systems, qualitative
games. For example, MOCHA [1] provides automated anal-
ysis of deterministic games with ATL specifications and
TICC [2] provides support for interface compatibility and
composition using symbolic game algorithms. However, a
suite of algorithms to automate analysis for all the games of
interest is as yet unavailable. This will be a topic of future
work.
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