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Abstract

We address the programmatic realization of the access
control model of security in distributed systems. Our aim is
to bridge the gap between abstract/declarative policies and
their concrete/operational implementations.

We present a programming formalism (which extends
the asynchronous pi-calculus with explicit principals) and
a specification logic (which extends Datalog with primi-
tives from authorization logic). We provide two kinds of
static analysis methods to tie implementation to specifica-
tion. Type checking determines that a program is a sound
implementation of policy; i.e., that all granted accesses are
safe in the face of arbitrary opponents. Model checking de-
termines a degree of completeness; i.e., that accesses per-
mitted by the policy are actually granted in the implemen-
tation.

1. Introduction

This paper focuses on the programmatic realization of
the access control model of security [31] in a distributed
system. In this model, each object has a reference monitor
that mediates requests from a subject: the authorization pol-
icy of the object determines whether subject requests are
granted.

In a distributed system, it is unreasonable to as-
sume global control of the trust relationships in the sys-
tem. Rather, each party in the system maintains its own
beliefs about trust relationships [13]. The resulting net-
work of trust can be complex, even under the assump-
tion of perfect authentication. For example, subtle notions
of delegation must be expressed. Logic-based policy lan-
guages are particularly effective at capturing these sub-
tleties. Notable examples have been derived from frag-
ments of many-sorted first-order predicate logic, with sorts
for roles and time [27], and from fragments of intuition-
ist modal logic [2, 24]. In each case, suitable restrictions

must be made to enable compilation to an efficient execu-
tion engine, such as Datalog.

There is often only an informal relationship between ab-
stract (often declarative) policies and their concrete (of-
ten imperative) implementations. To illustrate this, consider
protocols developed in the context of identity frameworks
such as the Liberty Alliance [1]. These include protocols
for federating identities (associating multiple accounts for
a given Principal) and for Single Sign On (SSO) (using a
federated network identity). It is attractive to implement
these protocols using widely available programmatic au-
thorization systems (such as Java Authentication and Au-
thorization Service and .NET) where the required access
checks are typically commingled with other aspects of code.
Such commingling complicates arguments of correctness:
we would like to know that the protocol implementation re-
alizes its declarative specification (e.g., that SSO credentials
are not used outside of some declared extent). More gen-
erally, one is interested in ensuring that the code realizing
web-services in such a setting conforms with application-
specific policies on creating, using, and updating identities.

We study programmatic implementations of authoriza-
tion policies in a distributed system, viewing policies as
part of the interface specification. We describe static analy-
sis methods to tie the code of a component to its interface, to
realize our goal of determining if a system satisfies a given
policy.

1.1. Daisy: An Outline

Authorization is fundamentally about specifying permit-
ted interactions between the principals that occur in dis-
tributed systems — users, applications, roles, etc. Thus our
programming model and specification logic have explicit
notions of principal. In this introduction, we provide an in-
formal overview of both the programming and specification
formalisms.

Dynamics. The programming formalism of Daisy builds
upon the asynchronous pi-calculus. Recall that the pi-
calculus describes processes in terms of their ability
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to send and receive names along communication chan-
nels, which are themselves names. Since the pi-calculus
supports name generation and name passing, it can de-
scribe dynamic network topologies.

To this basic setting, we add a notion of principal. Ev-
ery pi process is associated with a principal. Inspired by
related prior work on locations [8, 28], we sometimes say
that the code is located at a principal. Each principal has its
own local notion of trust [37]. Following the security liter-
ature, we model these local beliefs as a security lattice of
principals—a principal is (locally) more trustworthy if it is
lower in the security lattice. Each local security lattice also
provides a (local) interpretation of the constructions of com-
pound principals. In concordance with the distributed con-
text, we do not demand global consistency of local security
lattices. The code located at a principal executes in the con-
text of the trust lattice of the principal, using the local trust
lattice to answer questions about the local ordering of prin-
cipals in the trust lattice. The local security lattice evolves
dynamically and monotonically, adding new principals and
order relations during execution.

We eschew the standard “network is the oppo-
nent model” and assume that our messages have in-
tegrity, i.e., we are able to identify the sender of mes-
sages1. We do not address secrecy. This model is well
established in the literature [30, 42, 5, 32]. By assum-
ing integrity, we may focus on issues and attacks related
directly to authorization, rather than the underlying crypto-
graphic protocols.

Our computational model distinguishes three kinds of
messages from a principal A. First, messages may be cre-
ated from scratch by A — a receiver of the message can de-
tect that the sender is A. Second, messages may be created
by a distinct principal B and subsequently be forwarded by
A — a receiver of the message can establish that the mes-
sage from B is coming through unchanged, but via interme-
diary A. Third, messages may be created by A with an ex-
plicit tag, claiming to be from B — a receiver of the mes-
sage can establish that A claims, without evidence, that the
message is from B. The relative trust assigned to these dif-
ferent kinds of message is determined by local policies at
the receiver, based on the receivers view of A and B. Princi-
pals may also create composite objects whose components
are of different kinds.

Our formal treatment uses a sub-calculus of the calcu-
lus of compound principals [2, 3] to represent principals.
Differences with standard presentations are justified by im-
plementation concerns, which we discuss below.

Statics. We view specifications as annotations to be
checked statically: they have no effect on the execu-

1 Following [42, 30], messages/channels have integrity (resp. secrecy)
if we know the possible senders (resp. receivers).

tion of programs. Our formal development has two ingre-
dients, following [22]: (a) Datalog extended to incorporate
authorization logics, and (b) Code annotations to en-
force temporal properties.

Recall that a Datalog program is a finite set of Horn
clauses, without function symbols. We adapt Datalog to in-
tuitionist authorization logics, permitting predicates to be
modified by the modalities of the authorization logic. Intu-
itively, we associate the principal with each predicate, in-
dicating that the principal uttered the predicate. An impor-
tant predicate is that which encodes the local trust lattices.
Following authorization logics, we use distinct modalities
to represent the beliefs of distinct principals, which may
be compound. Our technical results reduce the execution
of Datalog programs over authorization logics to the exe-
cution of regular Datalog programs. This demonstrates the
efficient decidability of the properties that are required for
static-analysis (e.g., whether a clause can be inferred from
a program).

Extended Datalog programs over authorization logics do
not encode temporal notions. For example, in SSO, one
must determine if an authentication event has happened be-
fore a given request. To remedy this inadequacy, we fol-
low [22] in incorporating statements and expectations as
static annotations of programs. One can view these anno-
tations as correspondence assertions [43], adapted to con-
join specifications of concurrent systems [6]. A statement is
the analogue of the “assume” in usual program reasoning. It
can be used either to record an assertion of global policy or
to state assertions about a specific control point. An expec-
tation is the analogue of “guarantee” in usual program rea-
soning. It is a falsifiable claim that a clause is a logical con-
sequence of the current database of assertions.

Our static analysis falls into two categories: type-
checking and model-checking.

We provide a type-and-effect system for our program-
ming calculus, where the extended Datalog programs are
used as effects. Typing a program establishes two proper-
ties. First, in a well-typed program every “expectation” is
met. Second, the Datalog specification at any principal of a
well-typed program provides a static upper-bound on the lo-
cal trust lattice, i.e., if the specification does not permit prin-
cipal A to be ordered below principal B, then A will not be
below B in any execution of the program. In the SSO ex-
ample, this permits us to conclude that the implementation
does not provide more rights than those permitted by the
policy. We prove robust safety, indicating that well-typed
programs are safe in the face of arbitrary untyped opponent
processes.

We provide a model-checking framework for a subset
of programs by translating (a fragment of) our program-
ming calculus into a version of the pi-calculus amenable
to model-checking [7]. The fragment requires a fixed finite
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number of principals, in addition to restrictions on pi pro-
cesses imposed by [7]. Specifically, [7] requires that each
channel have a unique receiver and satisfy linearity restric-
tions, thus ensuring bounds on the use of generated names.
In the SSO example, this permits us to conclude that the im-
plementation does indeed provide the rights that are permit-
ted by the policy. This is a liveness property, which com-
plements the safety properties guaranteed by the type sys-
tem.

1.2. Related Work

Authorization logics [3, 2, 24, 23] are the basic founda-
tions of this paper. Our work particularly builds on com-
pound principals and their use for distributed authentication
frameworks [42, 30]. Our treatment complements this prior
research by focussing on relating implementations to inter-
faces that specify properties in these logics. More specula-
tively, our work can be viewed as the first step towards ex-
ploring the programming combinators that are suggested by
the language of compound principals.

Our approach to assume-guarantee reasoning is inspired
by recent work on types for authorization [22]. In [22], there
is no explicit notion of identity, and thus authorization is
viewed as a cryptographic protocol in the context of the tra-
ditional “network is the opponent” model. As a reader of
both papers will recognize immediately, we shamelessly in-
corporate their presentation idioms and technical methods,
albeit for a rather different programming model and speci-
fication formalism.

Binder [20] is a Datalog formalism that works over au-
thorization logics that is restricted to simple principals. We
adapt these techniques to permit compound principals and
yet ensure (effective) computability by imposing additional
axioms on the basic operation of “quoting” on trust lattices.
One can view these extra axioms as reducing the redun-
dancy between the lattice of principals and the proof the-
ory supported by authorization logics. On the other hand,
these extra axioms reduce the expressiveness of the calcu-
lus of compound principals.

In this area, restrictions of first-order logic that ensure
effective computability of specification logics have been
well-explored. Our sampling of these references is per-
force highly incomplete — the delegation logic [33] and RT
framework [34] approach to trust-management, Binder [20]
and compositional approaches to access-control [14, 40, 41]
that compile down to logic programs fall into this general
category. SecPAL [9] is a recent and expressive innovation
that belongs in this overall research program. Generally, the
focus of this line of work is specification. We focus on the
complementary relationship between a given specification
and a concrete implementation.

Access control in mobile process languages has been ex-
plored in a variety of settings — we consider a sampling
of some of these papers. [16] explores mandatory access
control in boxed ambients. Klaim (see [11] for a survey)
is a Linda-tuple based programming model with a notion
of named locations with access control policies that spec-
ify the capabilities of the location. A similar approach is
taken in [28, 37, 36]. [15] and [19] explore role-based ac-
cess control in the context of mobile process calculi. These
calculi have primitives to activate and deactivate roles: these
roles are used to prevent undesired mobility and/or commu-
nication. Our formal setting is similar to that of [15], where
the “locality” of a process is the name of the principal (or
role) on whose behalf the process acts. This style of presen-
tation is only loosely related to other notions of locality in
process calculi (see [17] for an extensive survey).

In contrast to this line of work, this paper emphasizes
compound principals in dynamics and specifications. Fur-
thermore, the type systems of the above papers are inten-
tionally less general than our specifications, which incorpo-
rate general authorization policies.

The use of static analysis techniques to verify secu-
rity properties is by now well-established, e.g., logic-
programming based methods for security protocols [12].
Model-checking methods have been explored for ac-
cess control in domain specific languages (e.g., [25, 44])
and in the context of systems such as SELinux [26, 29].
We use model-checking methods explored for mobile cal-
culi — see [21] for a survey. We directly use the re-
sults of [7], which identify a fragment of the pi-calculus
that is amenable to deciding the control-reachability prob-
lem: i.e., is a certain control point reachable in any execu-
tion of a program?

Limitations and Future work. The history and state sen-
sitive aspects of access control are now well-accepted;
see [4], temporal extensions to RBAC [10], state-transition
approaches to trust management [18], and usage con-
trol systems [45]. Our paper treats temporality in the spec-
ifications indirectly via the relative placement statements
and expectations in code. In future work, we will ex-
plore the incorporation of temporal connectives [35] in the
specification logic.

This paper provides only a very weak approximation to
revocation via garbage collection of unusable names. In fu-
ture work, we will explore the incorporation of quantitative
notions of time to enable the accurate description of leases,
which facilitate revocation in distributed computing.

Organization of this paper The following section presents
the dynamics of the language, which Section 3 illustrates
through the SSO example. This is followed by a description
of the typing system in Section 4, revisiting the SSO exam-
ple. Section 5 describes model checking. A longer version
of this paper is available at http://www.teasp.org/daisy.
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2. Syntax and Evaluation

This section describes the operational semantics of
Daisy. We first describe the properties expected of the cal-
culus of compound principals. We then describe terms,
local security orders, and processes.

2.1. Calculus of Compound Principals

The language of terms, A, B, C, includes atomic princi-
pals, the nullary constructors 0, 1 and del, and the binary
constructors ∧ and |. These are interpreted as a calculus of
compound principals. For a detailed treatment of the intu-
itions underlying compound principals, we refer to the orig-
inal sources [3, 42, 30].

We define a lattice ordering A⇒B indicating that A is
more trustworthy than B. (Papers emphasizing secrecy of-
ten use the dual ordering.) Thus 0 is the most trustworthy
principal, 1 the least; del is used to encode delegation. Fol-
lowing [2, 3], conjunction (∧) is a meet in the lattice of
principals; the quotation operator (|) is associative, in ad-
dition to being monotone and multiplicative in each argu-
ment. (Following standard equational presentations of lat-
tices, one may think of A⇒B as shorthand for the equality
of A∧B and A.)

We additionally take quotation (|) to be commutative,
idempotent and extensive. Further, we identify the speaks-
for relation with the lattice order; thus “⇒” can be read
as “speaks-for”. These extra axioms facilitate the finite-
ness principle of Remark 1. For further discussion, see Sec-
tion 4.1.

The following axioms define the principal order, where
⇔ is used to abbreviate bidirectional axioms.

Lattice Axioms (A⇒B)

A∧A⇔A ∧ Idempotent
A∧B⇔B∧A ∧ Commutative
A∧(B∧C)⇔ (A∧B)∧C ∧ Associative
A∧1⇔A ∧ Absorptive
A∧0⇔0 ∧ Bound
A |A⇔A | Idempotent
A |B⇔B |A | Commutative
A | (B |C)⇔ (A |B) |C | Associative
A |0⇔A | Absorptive
A |1⇔1 | Bound
A⇒A |B | Extensive
A | (B∧C)⇔ (A |B)∧(A |C) |-∧ Distributive

From these axioms one can derive that ∧ and | are mono-
tone in⇒. We use the following abbreviation [3].

A for B M= (A∧del) |B

for is reflexive, monotone in both arguments, and preserves
more trust than quotation (|). The original source (B) is al-
ways more trustworthy than a delegated source (A for B);
however, delegation via 0 does not decrease trust.

Some Derived Facts

A for B⇒A |B for-| Strength
B⇒A for B for Extensive
0 for A⇔A for Left Absorptive
A for A⇔A for Reflexive
A forC⇒B forC if A⇒B for Left Monotone
C for A⇒C for B if A⇒B for Right Monotone
A for (B forC)⇒ (A for B) forC for Semiassociative

Remark 1. For any finite lattice L of atomic principals,
there is a finite lattice of principals that interprets the quot-
ing combinator freely, such that the only equations that hold
are those induced by L and the entailment axioms given
above. (We elide the standard formalization as a free con-
struction in the vocabulary of category theory.) The proof
follows the observation that the the axioms on the quot-
ing combinator coincide with those of the Hoare powerdo-
main [38].

We sketch the proof here. Define a partial order with car-
rier as the set of all finite subsets of L . View a finite subset,
say {A1, . . . ,An}, as standing for A1 |A2 | · · · |An. S1 ≤ S2 iff
(∀A ∈ S1) (∃B ∈ S2)A⇒B. This is a complete lattice with
the quoting combinator interpreted as union and conjunc-
tion given by S1∧S2 = {A∧B | A ∈ S1,B ∈ S2}. 2

2.2. Terms

We describe the vocabulary of terms, which represent the
values that can be created and sent during computation.

Terms

a,b,c Atomic Principals
n,m, ` Names
x,y,z Variables
η ::= a | n | x Identifiers
A,B,C,M,N,L ::= Terms

η Identifier
del | 0 | 1 | A |B | A∧B Principal
N(~M) Labeled Tuple
sigA(M) | tagA(M) Signature, Tag
M.val | M.src Value, Source

We presume mutually disjoint syntactic categories for
atomic principals, a, b, c, names, n, m, `, and variables, x,
y, z. Names are used both as labels and as communication
channels. We use ` for names used a labels and n–m for
names used as channels.

To improve readability, we use A, B, C for terms inter-
preted as principals and M, N, L for terms in other contexts.
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Atomic principals are used to identify code. Non-atomic
principals occur in policies and in terms but do not iden-
tify code. Principals were discussed in the previous section.

Tuples N(~M) are labeled by a name N. Tuple labels are
used in matching; for example, the term `(M,N) matches
the pattern `(x,y).

The signature term sigA(M) represents a term with in-
tegrity: the origin is guaranteed to be the principal A. One
can imagine the straightforward use of digital signature
schemes to efficiently realize this abstraction; our nota-
tion acknowledges this potential implementation. The term
tagA(M) on the other hand is a term whose putative ori-
gin is A: the trust placed in this term depends on the appli-
cation context.

The term M.val indicates the value of M, ignoring signa-
tures and tags, whereas M.src indicates the source of M, ig-
noring its value. val can be used to forget the provenance of
a term, as for example in an anonymizer.

A ground term contains no variables. We treat ground
terms up to an equational algebra on terms, which defines
val and src. Let ' be the smallest congruence on ground
terms that satisfies the following2.

Ground Term Equivalence

M.val' N.val if M = sigB(N) or M = tagB(N)
M.val'M otherwise
M.src'M.src(0)
M.src(A)' A for (N.src(B)) if M = sigB(N)
M.src(A)' A | (N.src(B)) if M = tagB(N)
M.src(A)' A

Example 2. Note that if M is an name, principal or tu-
ple then M.val ' M and M.src ' 0. Further note that
M.src.val'M.src and M.val.src' 0 for any ground term
M.

The terms sigB(sigA(n)) and sigB(tagA(n)) are both
signed by B. The first is forwarded from B, whereas the sec-
ond is tagged by A. Both equal n under val; however, src
distinguishes them. Because 0 is a left zero of for and |, we
have

sigA(n).src' A for 0⇔ A
tagA(n).src' A |0 ⇔ A

and thus
sigB(sigA(n)).src'⇔ B for A
sigB(tagA(n)).src'⇔ B |A.

In this way, the provenance of the quoted message can be
established. 2

The lattice axioms prove that [(A | B)∧B]⇒ (A for B).
Consider a message sigB(n) sent by A. The reference im-
plementation of sig using digital signatures clearly satisfies

2 One could lift ground term equivalence to open terms simply by re-
stricting the axioms to closed terms.

A |B, since the message is coming from A quoting B. It also
satisfies B since the digital signature vouchsafes for B. Thus,
the reference implementation of sig is sound with respect to
trustworthiness.

2.3. Local Security Order

The ordering of principals can vary from site to site. The
calculus of compound principals (Section 2.1) is lifted to
terms to define a local security order at each atomic princi-
pal. A collection of formulas, a<~s>, reflects the policies and
acquired beliefs of atomic principal a, where each si is an
order formula M⇒N.

Order Formulas and Entailment

s, t ::= M⇒N
~s  A⇒B if A⇒B
~s  A⇒B if (A⇒B) ∈~s
~s  A⇒B if fv(A) = fv(B) = /0 and

A.val' A′ and B.val' B′ and~s  A′⇒B′

~s  A⇒B if ~s  A⇒C and~s  C⇒B
~s  A∧A′⇒B∧B′ if ~s  A⇒B and~s  A′⇒B′

~s  A | A′ ⇒B | B′ if ~s  A⇒B and~s  A′⇒B′

These rules quotient the lattice by the congruence gener-
ated by~s. The first rule injects the lattice axioms into entail-
ment. The second allows the use of assumptions. The third
interprets terms up to ground term equivalence. The remain-
ing rules encode transitivity and congruence.

The definition validates judgments such as

x.src⇒ y, y⇒A, y⇒B  x.src⇒A |B

and

A |B⇒C  sigA(tagB(n)).src⇒C.

2.4. Processes and Configurations

The basic entity of computation is a process, or thread.

Processes

Z Process Variables
P,Q,R ::= Processes (Threads)

0 | P|Q | µZ.P | Z Composition, Recursion
newn:T.P | newa withP Restriction
M!N | M?x:T.P Communication
match M as N(~x).P Match
learns.P Learn Order Formula
check s then P else Q Check Order Formula
C | expect C Correspondence
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We observe the normal scope rules for pi calculi3.

Definition 3. We write fn(P) for the set of free identifiers
in P, and similarly for other syntactic categories. Like-
wise, write fv(P) for the set of free variables in P. Write
P{x := M} for the capture avoiding substitution of M for
x in P. As usual, we identify syntax up to renaming, drop
types when uninteresting, and assume that occurrences of
process variables are guarded by input. 2

Threads incorporate primitives from the asynchronous
pi-calculus with pairs. These include composition, recur-
sion, restriction, output, input, and match. The match con-
struct is blocking. Computation of “match M as `(~x).P”
proceeds if M is a tuple of arity |~x| labeled with `; for ex-
ample, `(n,m) matches `(x,y), but fails to match n(x,y)
or `(x).

The learn primitive adds information to the local secu-
rity order, which the check primitive may query.

Correspondences are used in the type system, as dis-
cussed in Section 4; they have no effect on dynamics and
thus will be ignored for the rest of this section.

Running processes are collected into configurations.

Configurations

G,H ::= Configurations
0 | G|H Composition
newn:T.G | newa.G Restriction
a[P] Located Process
a<~s> Located Security Lattice

Composition and restriction in the configuration lan-
guage are related to the analogous constructs in the process
language by structural rules, discussed below.

Each thread a[P] of a configuration is located at a
unique atomic principal a. Any number of threads may be
located at the same atomic principal.

Each atomic principal has an associated local security or-
der a<~s>. The check and learn primitives operate on this lo-
cal order. As stated before, the security orders of different
principals are unrelated. We assume that each atomic prin-
cipal has at most one local order.

Definition 4. A configuration is well-formed if it contains
at most one trust lattice a<~s> for each atomic principal a. 2

In the sequel, we assume that all configurations are well-
formed. To make use of learn and check, an atomic princi-
pal must therefore have exactly one local security order.

Initial configurations may contain any number of tags;
however, sigs are generated at runtime.

3 “µZ.P” binds Z; “newn:T.P” binds n; “newa withP” binds a;
“M?x:T.P” binds x; and “match M as N(~x).P” binds~x. In each case,
the scope is P.

Definition 5. A configuration is initial if it contains no in-
stance of sig. 2

This initiality restriction mirrors initial key distribution con-
ditions in the formal analysis of cryptographic protocols. It
ensures that signatures are unforgeable.

2.5. Evaluation

Structural equivalence relates configurations that differ
only in the order of static combinators (composition and re-
striction).

Structural Equivalence (G≡ H)

0|G≡ G
G|H ≡ H|G
G|(H|F)≡ (G|H)|F
G|newη.H ≡ newη.(G|H) if η /∈ fn(G)
newη.G≡ G if η /∈ fn(G)
G|H ≡ G′|H if G≡ G′

newη.G≡ newη.G′ if G≡ G′

The structural equivalence is standard. It encodes the
monoid laws of composition and the extrusion and garbage
collection laws of restriction.

The evaluation rules describe the evolution of configura-
tions over time. We describe evaluation in two tables. The
first describes the behaviour of processes with respect to
static combinators.

Evaluation—Structural Rules (G→ H)

a[0]→ 0
a[P|Q]→ a[P]|a[Q]
a[µZ.P]→ a[P{Z := µZ.P}]
a[newn.P]→ newn.a[P]
a[newb withP]→ newb.(b[P]|b<a⇒b>)
G→ G′ if G≡ H→ H ′ ≡ G′

G|H→ G′|H if G→ G′

newη.G→ newη.G′ if G→ G′

The structural evaluation rules relate static combinators
of the process language to those of the configuration lan-
guage. For example, a[P|Q]≡ a[P]|a[Q]. The treatment
of recursion through unfolding of process variables is stan-
dard.

The evaluation rule for new principals establishes a lo-
cal security order for the new principal, preserving well-
formedness and enabling it to use learn and check. The lo-
cal lattice states that the new principal believes that its par-
ent is at least as trustworthy as itself. (Because the new prin-
cipal itself states this, it becomes a globally acknowledged
fact—see Remark 13.)

The second table of evaluation describes communica-
tion, matching, learn and check.
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Evaluation—Reduction Rules (G→ H)

a[M!N]|b[M′?x.P]→ b[P{x := siga(N)}]
if M.val'M′.val' n, for some n

a[match M as L(~x).P]→ a[P{~x := tagB(~N)}]
if M.val' L′(~N), and M.src' B,

and L.val' L′.val, and |~x|= |~N|
a[learn t.P]|a<~s>→ a[P]|a<~s, t>
a[check t then P else Q]|a<~s>→ a[P]|a<~s> if ~s  t
a[check t then P else Q]|a<~s>→ a[Q]|a<~s> if ~s 6 t

The rule for communication is notable in two re-
spects. First, the source of channel names is ignored;
that is, channel names are considered modulo val. Thus,
a[tagA(n)!M]|b[sigB(n)?x.P] evaluates to b[P]
with a suitable substitution. Second, the source of a mes-
sage is recorded in the recipient. Thus, the substitution gen-
erated by preceding example is b[P{x := siga(M)}]. The
source (in this case a) is unforgeably recorded in the re-
ceiving process. As initial configurations (Definition 5)
evaluate, terms carry sigs to indicate their provenance.

The evaluation rule for match M as `(~x) checks that the
value of M is a tuple of arity |~x| labeled with `. If these con-
ditions hold, then the match succeeds. In the consequent, the
elements of the tuple are tagged with the source of M, so as
not to lose the provenance of the data. The use of tag rather
than sig for this purpose is motivated by the reference imple-
mentation in terms of digital signatures — A cannot in gen-
eral create sigB(). This is further discussed in Remark 7.

The learn and check primitives allow interaction between
a thread and the local security order. learn is used to add new
order relations, monotonically, to the local order. check is
used to query the local order dynamically.

Remark 6. From the reflexivity of for, siga(N).src⇔
siga(siga(N)).src. Thus, multiple reforwardings of a mes-
sage by a principal A to itself are both useless and harm-
less. 2

Remark 7. If siga(N) occurs as a subterm of a configu-
ration reachable from an initial configuration, then it must
be that a thread located at a communicated N at some point
in the past. This intuition can be formalized by consider-
ing traces where communication reductions are annotated
with the substitution performed in the receiver.

For example, a[n!N]|b[n?x.0] has trace siga(N) to
b[0]. Suppose that s is such a trace of an initial con-
figuration G, reaching H after some number of evalua-
tion steps, including an arbitrary number of communication
steps (G s=⇒H). Then if siga(N) is a subterm of H, it must
be the case that siga(N) appears in s, indicating that a it-
self sent N in some prior communication. 2

Remark 8 (Conventions). In many cases, the label on a
tuple is uninteresting. We therefore presuppose a set of

standard labels zero, one, two, etc, indicating the cardi-
nality of the tuple. We elide these standard labels in both
terms and patterns, writing simply “(M,N)” rather than
“two(M,N)”. We also use the following abbreviations.

*n?x.P M= µZ.n?x.(P|Z)
n!M.P M= P|n!M

n!(newm:T).P M= newm:T.(P|n!m)

In multiline programs, write |P|Q for P|Q. We use sans
serif in examples, to distinguish variables from meta-
variables (which appear in italics); keywords are written in
boldface. 2

3. Encoding Single Sign On (SSO)

We consider the following simplified use case from SSO:
a user process running as principal uid is attempting to ac-
cess a protected resource res at a service provider running
as sp. We will adopt the policy that only members of insti-
tution inst may access res.

Since this is an SSO protocol, uid is asked to establish
its identity only if it is unknown already. In the case that sp
grants access after the initial request from uid, the message
sequence is as follows.

uid −→ sp : sp-req!(new yes,new no)
uid ←− sp : yes! -- access to res granted

uid sends a a request to sp on channel sp-req, passing two
new continuation channels. If a response is heard on the first
of these continuations then the operation was successful and
access to res has been granted.

In the case that sp initially refuses access, uid contacts
srv to get a certificate vouching for its identity. uid then for-
wards the certificate to sp and retries its initial request.

The certificate indicates that the server believes that uid
belongs to institution inst. In this example, however, the
server signs the certificate as srv | ip, indicating that srv does
not itself vouch for the claim, but rather is quoting another
identity provided ip. In order to provide access, sp must be-
lieve that certificates forwarded from srv | ip may speak as
authorized identity providers.

In this case, successful access proceeds as follows.

uid −→ sp : sp-req!(new yes1,new no1)
uid ←− sp : no1! -- access to res denied
uid −→ srv : ip-req!(new c)
uid ←− srv : c!(tag ip(okcert(uid,inst)))
uid −→ sp : sp-auth!(sig srv(tag ip(okcert(uid,inst))),

new yes2,new no2)
uid ←− sp : yes2! -- certificate accepted by sp
uid −→ sp : sp-req!(new yes3,new no3)
uid ←− sp : yes3! -- access to res granted

7



After the initial refusal by sp, uid sends a request to srv on
ip-req with continuation channel c, and srv replies with a
certificate. Crucial here is the form of the certificate created
by srv: this is a pair (uid,inst) labeled by okcert. The la-
bel is used to communicate the intent of the certificate via
types, as discussed in Section 4.4; we ignore it here. Be-
fore sending the certificate, srv tags it by ip, indicating its
qualified endorsement of the claims therein. As per the def-
inition of evaluation, the certificate received and then for-
warded by uid is signed by srv. Thus, the message received
by sp on sp-auth has the form

siguid(sig srv(tag ip(okcert(uid,inst)))︸ ︷︷ ︸
Forwarded from srv

, . . .)

sp accepts the certificate, notifying uid on the yes continu-
ation, at which point uid repeats its initial request, which is
now granted.

3.1. Encoding the SSO Protocol

With this introduction, we now describe the implemen-
tation, narrating the second use case above. The user con-
figuration has the following form.

uid[µ loop.
sp-req!(new yes1,new no1).
| yes1? -- access granted
| no1? -- access denied

ip-req!(new c).
c?cert.
sp-auth!(cert,new yes2,new no2).
| yes2? loop
| no2? -- go to another id provider or give up ]

If the initial request to sp on sp-req fails, then the user is-
sues a certificate request on ip-req and forwards the result
to sp on sp-auth. If the certificate is accepted, then the user
repeats its initial request on sp-req via loop. (For simplic-
ity, we have written the code assuming that ip-req is always
granted.)

We now present the code running at sp and srv, start-
ing with the local security order at sp.

sp<inst⇒ res,1 for (srv | ip)⇒authorized-ip>

In the example execution, sp initially believes that mem-
bers of inst may access res, and that certificates from srv | ip
are authorized to provide identity information for inst, even
when forwarded via an unknown sequence of intermedi-
aries. A proof that this policy achieves the desired effect fol-
lows from the monotonicity and semi-associativity of for.
(Although we treat this as the initial policy of sp, such poli-
cies may be built dynamically following the techniques dis-
cussed in this example.)

The code servicing sp-req is as follows.

sp[*sp-req?x.
match x as (yes,no).
check x.src ⇒ res then yes! else no!]

After receiving the message from uid, x is bound to
siguid(yes,no), and thus x.src is (equivalent to) uid.
With only the initial facts, i.e., the user has not been vali-
dated earlier, the test uid⇒ res fails.

At this point, uid contacts srv on ip-req to get a cer-
tificate that will prove its identity to sp. The local pol-
icy and code for srv are as follows.

srv<uid ⇒ inst>
srv[*ip-req?x.
check x.src ⇒ inst

then x!(tag ip(okcert(x.src,inst)))]

After receiving the message from uid, x is bound to
siguid(c), and thus x.src is uid. Since srv believes that uid
belongs to inst, it replies with a certificate that it is will-
ing to sign as srv | ip.

uid now forwards the certificate from srv to sp on
sp-auth. The message is received as follows.

sp[*sp-auth?x.
match x as (cert,yes,no).
check cert.src ⇒ authorized-ip
then match cert as okcert(zuid,zinst).

learn zuid ⇒ zinst. yes!
else no!]

After receiving the message from uid and performing the
match, cert is bound to

taguid(sig srv(tag ip(okcert(uid,inst))))

and thus cert.src is uid for (srv | ip). Recall that the local pol-
icy of sp specifies that 1 for (srv | ip)⇒authorized-ip. There-
fore the check cert.src⇒authorized-ip succeeds. The con-
tents of the certificate are then recovered using match, and
added to the local order of sp using learn. Subsequent re-
quests from uid on sp-req will grant access to res.

Remark 9. It is worth noting that correspondence between
the check (x.src⇒ inst) in ip-req and the learn (zuid⇒zinst)
in sp-auth is entirely programmatic, and therefore prone to
error. The type system makes explicit such implicit corre-
spondences, eliminating potential programming errors. 2

3.2. Variations

Full identity-management protocols permit variations in
the flow of information. For example, the certificate may be
sent directly from srv to sp. This can be accommodated in
our example by simple changes to the code for uid and srv,
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without modifying the local orders. Interestingly, we can
force such a change by modifying the local policy of sp to:

sp<inst⇒ res,(srv | ip)⇒authorized-ip>

This forces the protocol to directly communicate the autho-
rization token from srv to sp.

Rather than perform SSO operations as itself, the user
uid may perform them using a fresh identity anon to which
it delegates rights. In the simplest case, uid allows anon
to speak for uid with respect to srv. This can be achieved
by adding a new channel ip-auth and coding the necessary
communication.

We start by defining some syntactic sugar. The new prin-
cipal anon is known only to itself and therefore has no rights
in the system. We define “newb at a withP.Q” as a “sym-
metric” form of atomic principal creation, in which child
and parent agree on their relation in the principal order.

newb at a withP.Q M=
newn.
| newb withn!tagokcert(a,b).P
| (n?x.match x as okcert(y,z).

check x.src⇒ z then learny⇒ z.Q{b := z})

Evaluation proceeds as follows.

a<~s>|a[newb at a withP.Q]→∗
newb.(b<a⇒b>|b[P]|a<~s,a⇒b>|a[Q])

This definition allows us to easily describe systems in which
parent and child principals have mutual knowledge.

The uid code is moved to anon, and uid informs srv of
the new principal.

uid[new anon with (µ loop. -- uid code from before).
ip-auth!okcert(anon,uid)]

The user creates the fresh principal name (anon) and reg-
isters it with the srv, telling srv that anon speaks for uid.
For this to work, of course, srv must be willing to ac-
cept new order relations.

srv[ip-auth?x.
match x as okcert(y,z).
check x.src ⇒ z then learn y ⇒ z]

The server will allow anyone to say that others speak for
them.

When the modified code for uid and srv are added to the
system, the uid process carries on as before, but with iden-
tity anon instead of uid. After srv learns that anon⇒ uid
(and therefore anon⇒ inst) it will gladly issue the certifi-
cate sig srv(okcert(anon,inst)) which is valid for authen-
tication, but does not mention uid.

4. Types

We present a type-and-effect system where effects
are extended Datalog programs. Our formal presenta-
tion closely follows [22]. We begin this section with a
review of the underlying authorization logic and an ex-
tended Datalog built on top of authorization logic. Next,
we discuss the typing system and illustrate with code frag-
ments drawn from the SSO example.

4.1. Background: Authorization Logics

We refer the reader to [24, 2] for the intuitions under-
lying authorization logics. Our presentation satisfies more
commutativity properties than [24] in the proof theory. In
comparison to [2], we have no second-order quantifiers.

The formulas are given by the following grammar: for
expository purposes, we only consider conjunction & and
implication �.

α,β ::= true | α & β | α �β | A says α | A⇒B

A says α connects the calculus of principals to the logic: this
is the quoting combinator of the logic and is related to the
quoting combinator of the lattice by defining A |B says α to
be A says B says α .

We describe Hilbert-style axioms to describe the tautolo-
gies. We first define B-protected formulas [2, 39]. Infor-
mally, if there is a proof of a B-protected formula, then there
is one that does not require statements of principals that are
more trustworthy than B.

Definition 10. The class of B-protected formulas is defined
inductively as follows: (a) true is B-protected. (b) A says α

is B-protected if either α is B-protected or the ordering B⇒
A holds. (c) α & β (resp. α �β ) is B-protected if α and β

(resp. β ) are B-protected. (d) The ordering formula A⇒C
is B-protected if B⇒C. 2

In concordance with the informal intuitions, the following
axiom system satisfies the property that if a formula is B-
protected and A⇒B, then the formula is also A-protected.

Definition 11. The axioms of authorization logic (` α) are
as follows. (a) Propositional validity: If α is an instance of
a intuitionist propositional tautology, then ` α . (b) Modus
Ponens: If ` α and ` α �β , then ` β . (c) Modality-Unit:
If ` α , then ` A says α (d) Modality-Mult: If ` α & α ′�β .
(e) Lattice: If A⇒B in the security lattice, then ` A⇒B. 2

Following [2], examples of provable theorems are (a) Or-
der Naturality: if ` A says α and A⇒ B, then B says α;
(b) Reflexivity: A says A says α ↔ A says α; (c) Commu-
tativity: A says B says α ↔ B says A says α; and (d) Exten-
sivity: A says α �B says A says α .
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Remark 12. The primary use of principals in the logic is
via the quoting formulas constructed with says. So, it is con-
ceptually consistent to assume that properties (b)–(d) are re-
flected back into the security lattice, i.e., | is reflexive, com-
mutative, and extensive. 2

Remark 13. In contrast to [2], we identify the lattice or-
der⇒ and the speaks-for relation. The two important con-
sequences of “speaks-for” are derived as follows. (a) Order-
Naturality: if A⇒B, then A says α �B says α . (b) Since
B⇒ A is A-protected, we can deduce B⇒ A from A says
B⇒A. 2

The above remarks are motivated by finiteness considera-
tions (Remark 1), although they do reduce the expressive-
ness of the calculus of principals.

4.2. Extended Datalog

We describe the syntax and semantics of a variant of
Datalog extended to work over the authorization logic. As
with regular Datalog, a program will be built from a set of
Horn clauses without function symbols. In contrast to regu-
lar Datalog, the literals are in the form of quotes of princi-
pals. Despite this extra generality, the extended formalism
has decidable clause inference. We establish this by a trans-
lation of extended Datalog into Datalog.

Syntax of Extended Datalog

X Variables
p Predicates (Including⇒)
u,v,w ::= X | M Terms
L,K ::= u says p(~v) Literals
C,D ::= L:-K1, . . . ,Kn Clauses (fv(L)⊆ ∪i fv(Ki))

Extended Datalog terms include variables and terms
from the underlying process calculus.

Clauses in extended Datalog are a subset of the language
presented in Section 4.1. We write the predicate⇒ infix as
in a says B⇒C (or a says~s) and define A-protected clauses
as follows.

Definition 14. A clause L:-~K is u-protected if L is u-
protected according to Definition 10. 2

For example, the clause (u says v⇒w):-~K is A-protected
if A⇒u or A⇒w.

Definition 15. We define nested uses of says as a meta-
operation using compound principals: u says (v says p(~w))
M= (u | v) says p(~w). 2

The following example is a variant of one presented
in [20]. It illustrates the kind of distributed policy that can
be represented in this language.

Example 16. Consider a company A. It is agreed globally
that A′ is a subsidiary of A. It is also globally agreed that
the employee of a subsidiary is also an employee of the par-
ent company. AHR is the HR service of A. AHR believes that
B is an employee of A′. Rcon believes that all employees of
A can access some resource R. As far as C is concerned,
Rcon is the authority on access to R. We will deduce that C
permits B to access R. This policy is encoded in the follow-
ing extended Datalog program.

0 says A′⇒A :-
0 says emp(X,par) :- 0 says emp(X,sub),

0 says sub⇒ par
AHR says emp(B,A′) :-
Rcon says X⇒R :- AHR says emp(X,A)
C says X⇒R :- Rcon says X⇒R

Globally agreed clauses are represented as quotes of 0. The
last three clauses may be represented by local policies at
AHR, Rcon and C, respectively. 2

Semantics of Inference. The predicate “⇒” is special be-
cause of its use in the definition of protected literals. We re-
quire that the following bootstrap clause be included in all
extended Datalog programs: 0 says X⇒Y:-0 says X⇒Y.

Let θ range over substitutions of variables ~X for terms
~u. The inference rules for ground literals (~C � L) are as fol-
lows. The rule can be lifted to clauses (~C � D) in the stan-
dard way.

Inference for Ground Literals (~C � L)

L:-~K ∈ ~C (∀i) ~C � Kiθ

~C � Lθ

~s  M⇒N
(
∀(L⇒L′) ∈~s

)
~C � u says L⇒L′

~C � u says M⇒N
~C � Kθ

~C � u says Kθ

Lθ is u-protected L:-~K ∈ ~C (∀i) ~C � u says Kiθ

~C � Lθ

We comment on the relation between extended Data-
log and the axioms for authorization logic of Definition 11.
The first rule is the usual inference rule for Datalog, re-
flecting modus ponens. The lattice axiom is reflected in the
next rule. The third rule reflects modality-unit, whereas the
fourth reflects modality-mult.

Lemma 17. Let σ range over substitutions of variables x
for terms M. Extended Datalog inference satisfies the fol-
lowing:
• If ~C � D then (∀~E) ~C,~E � D.
• If ~C � D and ~C,D � E then ~C � E.
• If ~C � D then (∀σ) ~Cσ � Dσ . 2
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Translating into Regular Datalog. Consider an extended
Datalog program ~C. In the full version of this paper, we
adapt [20] to describe a translation of ~C into regular Data-
log that is sound and complete for the inference of ground
literals.

We sketch the key step in the construction, namely that
L — the lattice of all the possible principals that can occur
during execution of ~C — is finite. The generators of L in-
cludes all atomic principals occurring in ~C. It also includes
a fresh “symbolic” atomic principal for each quoting-free
program term that occurs in ~C, where program terms are
considered up to ground term equivalence. L is constructed
using Remark 1 as the free interpretation of the quoting op-
eration on the free ∧-semilattice on this set of generators.
|L | is doubly exponential in the number of generators for
~C.

The translation yields a regular Datalog program ~C′ of
size |~C′| ≤ O(|L |2 + |~C|). Thus we have a decision pro-
cedure for clause inference: Suppose that θ maps the free
extended Datalog variables of L1, . . . , Ln to fresh, distinct
names. Further, suppose that ~C,L1θ , . . . ,Lnθ � Lθ . Then
~C � L:-L1, . . . ,Ln.

4.3. Types

We first sketch the goals of typing, which are formalized
later. Recall that the syntax of processes (and therefore con-
figurations) includes extended Datalog clauses (C) and ex-
pectations (expect C). The interpretation of a clause a[C]
is modulated by the atomic principal a that utters it (using
the meta-operation a says C).

An opponent is an untrustworthy atomic principal. Op-
ponents may utter any clause and may have unreasonable
expectations. We model opponents as principals equivalent
to 1, the least trustworthy principal. We then require that
1 says α is valid for any α , and thus clauses of opponents
are effectively ignored. In typing, we assume that all sets of
extended Datalog clauses are closed with respect to this re-
quirement, though we will often elide the necessary clauses
in the interests of succinctness.

A configuration G has a runtime error if it contains
an expectation that cannot be justified by the accumulated
clauses of G (in addition to those statically defined). A con-
figuration is safe if it has no runtime errors (and this prop-
erty is preserved by evaluation). Our typing system ensures
robust safety, that is, safety of typed configurations when
combined with arbitrary opponents.

The typing system does not attempt to prevent represen-
tation errors, e.g., using a tuple as a channel. Thus the only
nontrivial types are those for labels, which carry effects.

Types and Environments

T,U ::= Un | Label(~x:~T)~C Types

E ::= · | E,Z | E,η:T | E,C Environments
E(η) M= T if E = E ′,η:T ,E ′′.

The type Label(~x:~T)~C represent a latent effect, labeled
with a name. In this type, the variables ~x are bound in ~C.
The match construct is required to unlock the label and ex-
pose the effects. For simplicity, we treat the enclosed ele-
ments ~x at type Un; it is straightforward to generalize the
typing system to allow these to be label types as well.

All other terms are assigned type Un. The type system is
designed to permit all opponents to circumvent checks by
using Un.

Unlike [22], the type associated with an identifier (η:T )
carries no meaningful information with respect to logical in-
ference.

Definition 18. Logical inference is lifted to environments
(E � C) simply by ignoring non-clauses in E. Let dom(E)
be the domain E, including identifiers and process vari-
ables. 2

In the composition G|H, assumptions in G may be dis-
charged in H. The typing rules use env to collect the clauses
in G, producing a suitable environment. To simplify the
definition, we assume (without loss of generality) that all
names bound by new are distinct and fresh.

Env

env(0) = ·
env(G|H) = env(G),env(H)
env(newn:T.G) = n:T ,env(G)
env(newb.G) = b:Un,env(G)
env(a[P]) = enva(P)
env(a<~s>) = a says~s

Typing. We describe the rules for environments, terms,
processes and configurations. An environment is well-typed
if it binds all free names, variables and atomic principals in
label types and clauses.

Environment (E ` �)

· ` �
E ` � Z /∈ dom(E)
E,Z ` �

E ` � fn(C)⊆ dom(E)
E,C ` �

E ` � fn(T )⊆ dom(E) η /∈ dom(E)
E,η:T ` �

The typing of terms is relative to the principal at which
the term occurs, and similarly for processes.

Term (E À M : T )

E ` � E(η) = T
E À η : T

E ` � E(η) = T
E À η : Un

E À del : Un E À 0 : Un E À 1 : Un
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E À B : Un E À C : Un

E À B |C : Un

E À B : Un E À C : Un

E À B∧C : Un

E À N : Label(~x:~T)~C (∀i)E À Mi : Ti

E � A says ~C{~x := tagA(~M)}
E À N(~M) : Un

E À N : Un (∀i)E À Mi : Un E � 0 says 1⇒A
E À N(~M) : Un

E À B : Un E B̀ M : T
E À sigB(M) : T

E À B : Un E À|B M : T
E À tagB(M) : T

E À M : T E � A says M.src⇒A
E À M.val : T

E À M : T
E À M.src : Un

Variables, names and principals may be viewed at type
Un in addition to any type contained in the environment.
The first rule for labeled tuples allows honest processes to
create tuples as long as the effect of the label is respected;
the second rule allows opponents to create tuples with ar-
bitrary labels. The rules for sig and tag cause the effective
location of the enclosed term to change. The soundness of
these rules follows from the extensivity of for and |. The typ-
ing rule for val allows a principal to discard the source of a
term if that source is at least as trusted as itself; if this is not
the case, val may still be used inside an appropriate tag().

Processes (E à P)

E,env(Q) à P E,env(P) à Q fn(P|Q)⊆ dom(E)
E à P|Q
E ` �
E à 0

E,Z à P
E à µZ.P

E ` � Z ∈ dom(E)
E à Z

E,n:T à P
E à newn:T.P

E,b:Un,b says a⇒b b̀ P
E à newb withP

E à M : Un E à N : Un

E à M!N
E à M : Un E,x:Un à P
E à M?x.P

E à M : Un E à N : Label(~x:~T)~C
E,~x:~T ,M.src says ~C à P
E à match M as N(~x).P
E à M : Un E à N : Un E,~x:Un à P
E à match M as N(~x).P
E à M : Un E à N : Un E à P E � a says M⇒N
E à learnM⇒N.P
E à M : Un E à N : Un E,a says M⇒N à P E à Q
E à check M⇒N then P else Q
E,C ` �
E à C

E,C ` � E � C
E à expect C

E,C ` � E � 0 says 1⇒a
E à expect C

The rule for parallel composition should be viewed as
a conjoining of specifications: each component can assume
the exposed clauses of the other component. The rules for 0,
recursive processes, new names, input and output are stan-

dard. Note that in the rule for new principals, the residual is
typed at the new principal. In addition, new principals may
make use of the fact that they are ordered below their par-
ent.

As there are two rules for creating tuples, there are also
two rules for matching them. The first rule allows honest
processes to use the latent effect of the label when typing
in the residual. Thus, the match construct can be viewed as
a “dynamic cast” operation acting on an untyped message.
The second rule allows matching in opponents.

The rule for learn demands static validation of modifi-
cations to the local security lattice. Since check is a condi-
tional, the typing rule expands the environment in case that
the check is satisfied.

The rule for clauses ensures syntactic validity. The first
rule for expectations ensures derivability from the clauses
in the environment. The second allows arbitrary expecta-
tions in opponents.

Configurations (E ` G)

E,env(H) ` G E,env(G) ` H fn(G|H)⊆ dom(E)
E ` G|H
E à P a ∈ dom(E)
E ` a[P]

E ` �
E ` 0

E,n:T ` G
E ` newn:T.G

E,b:Un ` G
E ` newb.G

a ∈ dom(E) (∀i)E à Mi : Un (∀i)E à Ni : Un
(∀i)E  a says Mi⇒Ni

E ` a<M1⇒N1, . . . ,Mn⇒Nn>

Each process in a configuration is typed at its locating
principal. The rules for composition and restriction follow
those for processes. The final rule ensures that each local or-
der is consistent with the environment.

Example 19. Consider the following program.

new l:Label(x:Un,y:Un){B says x⇒ y}.
a[B says c⇒d:-] | a[_!l(c,d)]

If a is not an opponent, then typing term l(c,d) requires
that (a |B) says c⇒ d. Typechecking of the right process
succeeds using the assumptions of the left, via env. 2

A typed program validates all learn and expect state-
ments, even in the presence of opponents. The result relies
on initiality (Definition 5), but not well-formedness.

Definition 20 (Runtime Error). A configuration G is er-
roneous at a (notation G a) if either (a) G→∗ G′|a[learn
M⇒N.P] and E,env(G′) 6� a says M⇒N, or (b) G→∗
G′|a[expect C] and E,env(G′) 6� C. 2

Definition 21 (Opponent). An atomic principal a is an E-
opponent principal if E � 0 says 1⇒a or a 6∈ dom(E).

An E-opponent configuration is a configuration a1[P1]|
. . .|an[Pn]|b1<~s1>| . . .|bm<~sm> such that every ai and b j
is an E-opponent principal. 2
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Definition 22 (Robust Safety). A configuration G is ro-
bustly E-safe if for every initial E-opponent configuration
H, we have that (G|H) a implies that a is an E-opponent
principal. 2

Theorem 23 (Robust Safety). If E ` G, then G is robustly
E-safe.

As usual, the proof of robust safety depends on lemmas
for opponent typability (if H is an initial E-opponent then
E,E ′ ` H, for some suitable E ′) and type preservation (if
E ` G and G→ H then E ` H).

4.4. Typing the SSO Example

We describe how correspondences such as that dis-
cussed in Remark 9 can be statically checked. We start with
the following static policy.

sp says X⇒Y:-sp says Z⇒authorized-ip,Z says X⇒Y
sp says (1 for (srv | ip))⇒authorized-ip:-
sp says inst⇒ res:-
srv says uid⇒ inst:-

Conformance ensures that the local orders obey this static
policy. This is true of the initial orders:

sp<inst⇒ res,1 for (srv | ip)⇒authorized-ip>
srv<uid ⇒ inst>

With respect to typing, the most significant fragment of
sp is the following code servicing sp-auth.

check cert.src ⇒ authorized-ip then
match cert as okcert(zuid,zinst). learn zuid ⇒ zinst

In order to typecheck the learn, we must deduce

sp says zuid⇒ zinst. (∗)

This is achieved by assigning okcert an appropriate type.

okcert:Label(zuid,zinst){0 says zuid⇒ zinst}

The type of okcert states that the sender of the tuple be-
lieves that the first enclosed principal dominates the sec-
ond. The learn is then typed using assumptions:

sp says cert.src⇒authorized-ip . . . from check
cert.src says zuid⇒ zinst . . . from match

Combined with the first clause of the static policy, this is
sufficient to deduce (∗). One may also annotate the learn
with an explicit expectation, such as the following.

expect X says zuid⇒ zinst :-sp says X⇒authorized-ip

This can be typed under the same assumptions.
Having discussed the certificate’s receiver, sp, we now

turn attention to its creator, srv. The relevant code fragment
is the following.

check x.src ⇒ inst
then x!(tag ip(okcert(x.src,inst)))]

In order to typecheck the output, we must deduce

(srv | ip) says x.src⇒ inst. (†)

The output is typed under the following assumption.

srv says x.src⇒ inst . . . from check

Combining this with the static policy, (†) follows from or-
der naturality and the extensivity of |.

The static policy we started with is quite permissive,
in that sp allows an authorized-ip to say anything at all.
More realistically, we may restrict authorized-ip to speak
only for inst by replacing the first line of the static pol-
icy with the following.

sp says X⇒Y:-sp says Z⇒authorized-ip,
Z says X⇒Y,sp says inst⇒Y

With this policy, however, the code servicing sp-auth does
not typecheck. To correct the problem, we must add an ad-
ditional check.

check cert.src ⇒ authorized-ip then
match cert as okcert(zuid,zinst).
check inst ⇒ zinst then learn zuid ⇒ zinst

Then the learn is typed successfully under the additional as-
sumption “sp says inst⇒ zinst”.

With a few modifications, one can establish the expecta-
tion “sp says uid⇒ inst” after the input on yes2 in uid; the
user can determine that sp has the necessary information to
grant access on a subsequent sp-req.

This does not, however, imply that sp has correspond-
ingly updated its local order. Despite the validity of the ex-
pectation, subsequent requests may be denied. Type check-
ing guarantees that all permitted accesses are justified; it
does not, however, address the dual question of whether ev-
ery permitted access is actually granted. For that, we turn to
model checking.

5. Model Checking

We apply reachability analysis to Daisy programs to an-
alyze the converse of the problem studied via typecheck-
ing: does a configuration incorporate order information en-
tailed by the policy into local trust lattices? We outline our
approach to model checking and the fragment of the lan-
guage that can be analyzed, then sketch the translation used
to reduce the reachability problem to an existing decidabil-
ity result for reachability in a fragment of pi-calculus.
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Analysis via Reachability. We can use reachability to en-
code interesting questions about SSO systems, building on
Section 3.

Example 24 (Single Sign On Revisited). If a user of an
SSO system has previously signed in, they expect to be
granted access to a resource for which they are entitled. One
may specify this by stating that certain states of a system
are unreachable, e.g., the uid code from Section 3 might be
modified to:

ip-req!(new c).c?cert. . . . credentials received from srv
sp-auth!(cert,new yes1,new no1).

yes1? . . . logged in to sp
sp-req!(new yes2,new no2).

no2? END . . . access denied by sp

This user proactively logs in to srv, then communicates the
login credentials to sp before requesting access to sp’s re-
sources. If analysis reveals that END is unreachable, then
the user can be assured that their behavior will be rewarded
with access to the desired resource. 2

The analysis tactic in Example 24 can be generalized to the
converse of the problem addressed by typechecking, i.e.,
does a configuration incorporate order information entailed
by the policy into local trust lattices? For example, for the
SSO example of Section 3, does sp’s local trust lattice en-
tail uid⇒ res whenever statements made by the configura-
tion entail sp says uid⇒ res? This approach allows us to
move from the hand-crafted analysis in Example 24 to an
analysis based upon the policy adopted for type checking.

There may be a delay between deducibility of a state-
ment (with respect to the combined global policy) and up-
dates to a local trust order. In the absence of an additional
temporal specification we adopt a late interpretation, veri-
fying the completeness of the local trust order with respect
to global deducibility at the point that a process performs a
check.

Definition 25 (Complete). A configuration G is complete
if whenever G→∗ G′|a[check M⇒N then P else Q] and
env(G′) � a says M⇒ N, then there exists G′′ such that
G′ ≡ G′′|a<~s> and~s  M⇒N. 2

Below, we distinguish a bounded fragment of our lan-
guage, dubbed DaisyB, for which completeness is decid-
able. All variants of the SSO example can be modified to
conform to this fragment (in part by replacing parallel com-
position with internal choice).

Assuming that the static policy of Section 4.4 is included
in the initial configuration, then sp says uid⇒ res is imme-
diately deducible from the global policy. We can verify that
the SSO code of Example 24 is complete; e.g., when the
check uid⇒ res is executed in sp, it will succeed. In con-
trast, the original code of Section 3 is not complete; the ini-

tial service request from uid to sp (before login) will cause
the check uid⇒ res to fail.

A Bounded Fragment and its Translation. The reachabil-
ity problem is decidable for an expressive bounded frag-
ment DaisyB of Daisy via translation to the expressive frag-
ment of asynchronous polyadic pi-calculus for which reach-
ability is shown to be decidable in [7]. The language of [7]
includes parameterized process definitions with name gen-
eration but places two restrictions on process definitions:
the bounded input condition (each process definition has
exactly one continuation or ends with the internal choice
between two continuations) and the unique receiver con-
dition (there is at most one process that can receive in-
put for each channel name). The source of the translation,
DaisyB, is therefore also defined in terms of parameterized
processes with the bounded input and unique receiver con-
ditions. DaisyB also presumes a finite lattice of principals
and a routine polyadic typing system (as opposed to the
type-and-effect system of Section 4).

A parameterized process definition is either the internal
choice of two parameterized processes, or has the form:

Z(~x1 : Ch(~T1);~x2 : ~T2) =
y1?y2:U2.new~n3:Ch(~T3).
match y3 as N(~x4 : ~T4).
C|(learnM1⇒M2.

check M3⇒M4

then (~η1!~N1|Z1(~η2;~N2))
else (~η3!~N3|Z2(~η4;~N4)))

Following [7], the parameters ~x1 are bound only to chan-
nel names, and y1 must be chosen from this list. In addi-
tion, the names ~η2, ~η4 must be chosen from ~x1 or ~n3. Un-
like [7], the parameters~x2 may be bound not only to names,
but more generally to terms. This allows terms to be carried
into continuations without imposing additional communi-
cation, which would alter the source of the term.

The operational semantics of DaisyB is obtained from
that of Section 2 by modifying the structural rule for un-
folding to operate on such declared names by performing
an appropriate substitution into the body of the declaration.

DaisyB parameterized processes must typecheck using a
routine polyadic type system. The type system keeps label
names distinct from channel names. The form of process
definitions precludes dynamic generation of new principals
or names for labeled tuples, thus allowing name matching
to be encoded in the target language.

As is the case for the target language, DaisyB is ex-
pressive. Trivial uses of clauses, match, learn, and check
are easily written (e.g., learning an inequality that is al-
ready known). Sequential uses of multiple clauses, matches,
learns, and checks can be encoded using multiple process
definitions with continuations.
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We require that ⇒ be the only predicate to occur in a
clause of a DaisyB program. In conjunction with the fi-
nite lattice of principals, the collection of instantiations
of clauses in this form is finite. This permits tracking the
clauses stated by a configuration and checking that each
principal’s local trust lattice is consistent with these clauses.

The key ingredients of the translation from DaisyB to
asynchronous polyadic pi-calculus are:

Name Matching: The elements of the finite lattice of
principal names, and the names for labeled tuples, are trans-
lated to channel names. Internal choice is used to encode
name matching, which suffices for reachability questions.

Runtime Principal Computations: Computation of a∧b
and a | b takes place at runtime, which is possible because
of principal name matching and the fact that the lattice is fi-
nite, so every case can be encoded into a server process that
handles requests for these computations.

Labeled Tuples as Lists: A labeled tuple in a DaisyB

process is transmitted as a list of names in the (polyadic
pi-calculus) translation. The size corresponds to the num-
ber of leaves of the labeled tuple, i.e., the number of princi-
pal and channel names nested inside the labeled tuple.

Terms with Principal: The translation of a DaisyB term
is also transmitted with a principal name computed at run-
time from the combination of one or more sig/tag construc-
tors. For example, the term sigA(sigB(m)) would be trans-
lated into two names: the first carrying the principal A for B
and the second representing m.

Located Trust Lattices: A single process is created to
store the current state of each principal’s trust lattice and,
if checking completeness (Definition 25), the collection of
statements made by the configuration. Checks, learns, and
statements in DaisyB are translated into a request-response
dialogue with the process storing this information. Since the
initial trust lattice is finite, both the set of inequations that
can be learned by each principal, and the set of clauses that
can be issued as statements, are finite. Therefore the pro-
cess has finite state. The response of the process to execu-
tion of the translation of a DaisyB check is defined in terms
of order entailment and clause inference. If clause inference
establishes the inequation in a check, but the principal in
question’s current trust lattice does not entail the inequa-
tion, then a well-known end state is reached.

Results. The translation extends from parameterized pro-
cess definitions to configurations, and, critically, both pre-
serves and reflects reachability of DaisyB parameterized
processes. In conjunction with [7], we obtain a decision pro-
cedure for reachability questions.

Proposition 26. Reachability is preserved and reflected by
the translation. Moreover, it is decidable whether a process
definition is reachable from a DaisyB configuration. 2

Theorem 27. It is decidable whether a DaisyB configura-
tion is complete. 2

6. Conclusions

Daisy falls into the broad area of language-based ap-
proaches to security, specifically access control. Our results
bridge the gap between specifications (based on authoriza-
tion logics) with implementations (based on programming
with explicit identities).

We advance the technical state-of-the-art with three re-
sults: (a) robust safety for an asynchronous pi-calculus en-
riched with compound identities, (b) translation of a dis-
tributed authorization logic into Datalog, and (c) decidabil-
ity for a suitable notion of completeness on a bounded frag-
ment of our language.
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A. Translating into Regular Datalog

Closure for Lattice Properties Consider an extended Data-
log program ~C. Our first step is to construct L , the lattice
of all possible principals that can occur during execution of
the extended datalog program.

We first describe the generators arising from a literal
u says p(~v). These are given by (a) the atomic principals
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that occur in u,~v and (b) terms in ~v and quoting-free sub-
terms of u that are not datalog variables (upto ground term
equivalence) viewed as symbolic atomic principals.

The generators for ~C is given by the union of these sets
for all literals in all the clauses of ~C. L is constructed us-
ing Remark 1 as the free interpretation of the quoting oper-
ation on the free ∧-semilattice on this set of generators. |L |
is doubly exponential in the number of generators for ~C.

Let κ and λ range over the elements of L . We write
κMλ (resp. κQλ ) to refer to the meet (resp. quote) of κ

and λ in L .
Having constructed L , we compute close(~C), the clo-

sure of the ~C with clauses that validates the axioms of Sec-
tion 2.1, which includes the following clauses.

(a) ⇒ clauses: If κ⇒λ in L , add 0 says κ⇒λ :-. Add
clauses to encode reflexivity (i.e. 0 says X⇒X:-), and tran-
sitivity.

(b) ∧-clauses: Let the 3-ary predicate meet rep-
resent the relational interpretation of meet (0 says
meet(κMλ ,κ,λ ):-). Then encode the properties of
∧ from section 2.1. For example, the encoding of ∧-
monotonicity is as follows.

0 says X⇒Y:-0 says X′⇒Y′,0 says X′′⇒Y′′
0 says meet(X,X′,X′′),0 says meet(Y,Y′,Y′′)

(c) |-clauses: Similarly let the 3-ary predicate quot
represent the relational interpretation of quoting (0 says
quot(κQλ ,κ,λ ):-), with the necessary clauses to capture
the properties form Section 2.1. For example, the encoding
of |-monotonicity is as follows.

0 says X⇒Y:-0 says X′⇒Y′,0 says X′′⇒Y′′
0 says quot(X,X′,X′′),0 says quot(Y,Y′,Y′′)

Consider an extended Datalog program that has been
closed as described above. We will translate a n-ary pred-
icate as a n + 1-ary predicate, the extra position being used
to record the quoter of the predicate. For a ground fact
L = u says p(~u) in extended Datalog, the corresponding
ground fact L′ in regular Datalog is p(u,~u).
Encoding Modality-Unit. For each n-ary predicate in
source extended Datalog program, say p( ·), add:
p(X,X1, . . . ,Xn):- p(X′,X1, . . . ,Xn),quot(X,X′,X′′)
Encoding the program. For each clause u says p(~v):-~K,
add a clause p(u,~u):-~K′, where ~K′ is defined from ~K as
follows: for each v says p′(~v) in ~K, there are two literals
p′(X,~v),quot(X,u,v) in ~K′.

In addition, for each clause of the form u says v⇒v′ :-~K,
add a clause p(u,~u):-~K′, where ~K′ is the translation of ~K
defined as follows: for each v′′ says p′(~v) in ~K, there are
two literals p′(X,~v),quot(X,v′′,v′) in ~K′.

There are at most two clauses for each clause in the
source program. So, given an extended Datalog program ~C,
the size of the translated program is at most O(|L |2 + |~C|).

B. Proofs

Let σ range over substitutions of variables x for terms
M. We first prove that if ~C � D then (∀σ) ~Cσ � Dσ .

The proof relies on some other lemmas.

Lemma 28 (Substitutivity of Order Entailment). If
~s  M⇒N then (∀σ)~sσ  Mσ⇒Nσ

PROOF. Induction on the number of rules required to prove
~s  M⇒N. 2

Lemma 29 (Substitutivity of Protected). If L is u-
protected, then (∀σ), Lσ is uσ -protected.

PROOF. There are two cases depending on the two forms
of L: (a) v says w and u⇒ v, or (b) v says w⇒w′ and u⇒
w′. In either case, result follows from Substitutivity of order
formulas and order entailment 2

Corollary 30. If L:-~K is u-protected, then (∀σ),
(L:-~K)σ is uσ -protected. 2

Proposition 31 (Substitutivity of Inference for Clauses).
If ~C � D then (∀σ) ~Cσ � Dσ .

PROOF. Induction on the number of rules required to prove
~C � D. 2

We now turn to proofs related to robust safety. First, we
observe that under certain circumstances, environments can
be reordered.

Lemma 32 (Permutation). If E1,E2,E3 ` � and f n(E2)⊆
dom(E1) and f n(E3)⊆ dom(E1), then

(a) E1,E3,E2 ` �,
(b) E1,E2,E3 à M : T implies E1,E3,E2 à M : T ,

(c) E1,E2,E3 à P implies E1,E3,E2 à P, and

(d) E1,E2,E3 ` G implies E1,E3,E2 ` G.

PROOF. Straightforward induction on the derivation of
each judgement. 2

Lemma 33 (Weakening). Let E,E ′ be environments such
that, E ` �, dom(E)∩dom(E ′) = /0, and f n(E ′)⊆ dom(E):

(a) E,E ′ ` �.
(b) If E À M : T , and E � B says A⇒B, then E,E ′ B̀ M : T .

(c) If E à P then E,E ′ à P.

(d) If E ` G then E,E ′ ` G.

PROOF. We prove each claim individually.

(a) Follows directly from the definition of well-formed en-
vironment.

(b) Straightforward induction on the structure of M, ap-
pealing to the monotonicity of inference in extended
Datalog and the order naturality of⇒ (see Remark 13).
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(c) By induction on the structure of P, appealing to (a) and
(b) when necessary. Three cases are interesting:

(P|Q) Assume E à P|Q and dom(E)∩dom(E ′) = /0.
By the typing rule, E,env(Q) à P,

and E,env(P) à Q.
By the induction hypothesis, E,env(Q),E ′ à P,

and E,env(P),E ′ à Q.
By permutation, E,E ′,env(Q) à P,

and E,E ′,env(P) à Q.
By the typing rule, E,E ′ à P|Q.

(learnM⇒N.P) Assume E à learnM⇒N.P,
and dom(E)∩dom(E ′) = /0.

By the typing rule, E à M : Un and E à N : Un, and
clauses(E) � a says M⇒N,
and E à P.

By (b), E,E ′ à M : Un and E,E ′ à N : Un.
By monotonicity of inference for clauses,

clauses(E,E ′) � a says M⇒N.
By the induction hypothesis, E,E ′ à P.
By the typing rule, E,E ′ à learnM⇒N.P.

(expect C) Assume E à expect C,
and dom(E)∩dom(E ′) = /0.

By the typing rule, E,C ` � and clauses(E)  C.
By (a), E,C,E ′ ` �.
By permutation, E,E ′,C ` �.
By Monotonicity, clauses(E,E ′)  C.
By the typing rule, E,E ′ à expect C.

(d) Straightforward induction on the structure of G, appeal-
ing to (a) and (c) when necessary. 2

Proposition 34 (Substitutivity of Typing). Let E,x:T ,E ′

be an environment such that E,x:T ,E ′ ` �, and {x := M}
an arbitrary substitution. Then,

(a) If E,x:T ,E ′ � ~C and E À M : T then E,E ′{x := M} �
~C{x := M}.

(b) If E À M : T then E,E ′{x := M} ` �.

(c) If E,x:T ,E ′ À N : U and E À M : T then
E,E ′{x := M} À N{x := M} : U{x := M}.

(d) If E,x:T ,E ′ à P and E à M : T then E,E ′{x := M} à
P{x := M}.

PROOF. We prove each claim individually.

(a) First note that by the definition of clauses,
E,x:M,E ′{x := M} = E,E ′{x := M}. Then the re-
sult follows from the Substitutivity of Inference for
Clauses.

(b) Proof by induction on the derivation of E,x:T ,E ′ ` �.

(· ` �) Trivial.

(E,x:T ,E ′′,y:U ` �) By hypothesis, E,x:T ,E ′′ ` �,
and f n(U)⊆ dom(E,x:T ,E ′′),
and y 6∈ dom(E,x:T ,E ′′).

By the induction hypothesis, E,E ′′{x := M} ` �.
It is easy to show that substitution commutes with
f n(·) and dom( · ),

therefore f n(U{x := M})⊆ dom(E,E ′′{x := M}),
and y 6∈ dom(E,E ′′{x := M}).

By the rule, E,E ′′{x := M},y:U{x := M} ` �.
(E,x:T ,E ′′,C) By hypothesis, E,x:T ,E ′′ ` �,

and f n(C)⊆ dom(E,x:T ,E ′′).
By the induction hypothesis, E,E ′′{x := M} ` �.
By def., f n(C{x := M})⊆ dom(E,E ′′{x := M}).
By the rule, E,E ′{x := M},C{x := M} ` �.

(c) Proof by induction on the derivation of E,x:T ,E ′ À N :
U :

(E,x:T ,E ′ À η : U where E,x:T ,E ′(η) = U) There
are two subcases:
If (η = x):
By inspection of the rules, either U = T or U = Un.
If U = Un, see the following case, for now as-
sume U = T .
By (b), E,E ′{x := M} ` �.
By definition of wfe, x 6∈ f n(T ),

so U = T = T{x := M}= U{x := M}.
By definition, η{x := M}= M.
By Weakening, E,E ′{x := M} À M : T ,

so, E,E ′{x := M} À η{x := M} : U{x := M}.
If (η 6= x):
By (b), E,E ′{x := η} ` �.
By def. of subst., η{x := M}= η .
By def. of subst., E,E ′{x := M}(n) = U{x := M}.
By the type rule, E,E ′{x := M} À η : U{x := M},

so, E,E ′{x := M} À η{x := M} : U{x := M}.
(E,x:T ,E ′ À η : Un where E,x:T ,E ′(η) = U) By

(b), E,E ′{x := M} ` �.
By Weakening, E,E ′{x := M} À M : T .
From inspection of the typing rules, we can see that
E,E ′{x := M} À M : Un.
By def. of subst., η{x := M}= M or η ,

in either case, E,E ′{x := M} À η{x := M} : Un.

(E,x:T ,E ′ À del : Un)
Trivial.

(E,x:T ,E ′ À 0 : Un)
Trivial.

(E,x:T ,E ′ À 1 : Un)
Trivial.

(E,x:T ,E ′ À B∧C : Un)
Straightforward induction.

(E,x:T ,E ′ À B |C : Un)
Straightforward induction.
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(E,x:T ,E ′ À N(~N) : Un)
where E,x:T ,E ′ � A says C{~y := tagA(~N)}
By hypothesis,

E,x:T ,E ′ À N : Label(~y:~U)C,
and (∀i) E,x:T ,E ′ À Ni : Ui,
and E,x:T ,E ′ � A says C{~y := tagA(~N)}.

By the induction hypothesis,
E,E ′ À N{x := M} : Label(~y:~U)C{x := M},
and (∀i) E,E ′ À Ni{x := M} : Ui{x := M}.

By (a), E,E ′{x := M} �
A says (~C{x := M}){~y := tagA(~N){x := M}}.

By the rule, E,E ′{x := M} À N(~N){x := M} : Un.

(E,x:T ,E ′ À N(~N) : Un)
where E,x:T ,E ′ � 0 says 1⇒A
By hypotheisis,

E,x:T ,E ′ À N : Un,
and (∀i) E,x:T ,E ′ À Ni : Ui,
and E,x:T ,E ′ � 0 says 1⇒A.

By the induction hypothesis,
E,E ′{x := M} À N : Un,
and (∀i) E,E ′{x := M} À Ni{x := M} :

Ui{x := M}.
By (a), E,E ′{x := M} � 0 says 1⇒A.
By the rule, E,E ′{x := M} À N(~N){x := M} : Un.

(E,x:T ,E ′ À sigB(N) : U)
By hypothesis, E,x:T ,E ′ B̀ N : U .
By the induction hypothesis,

E,E ′{x := M} B̀ N{x := M} : U{x := M}.
By the typing rule,
E,E ′{x := M} À sigB(N{x := M}) : U{x := M}.
By def. of subst.,

sigB(N){x := M}= sigB(N{x := M}), so,
E,E ′{x := M} À sigB(N){x := M} : U{x := M}.

(E,x:T ,E ′ À tagB(N) : U)
By hypothesis, E,x:T ,E ′ À|B N : U .
By the induction hypothesis,

E,E ′{x := M} À|B N{x := M} : U{x := M}.
By the typing rule,
E,E ′{x := M} À tagB(N{x := M}) : U{x := M}.
By def. of subst.,

tagB(N){x := M}= tagB(N{x := M}), so,
E,E ′{x := M} À tagB(N){x := M} : U{x := M}.

(E,x:M,E ′ À N.val : U)
By hypothesis, E,x:T ,E ′ À N : U ,

and E,x:T ,E ′ � A says N.src⇒A.
By the induction hypothesis,

E,E ′{x := M} À N{x := M} : U{x := M}.
By (a),

E,E ′{x := M} � (A says N.src⇒A){x := M}.
By def. of subst., this reduces to

E,E ′{x := M} � A says N{x := M}.src⇒A.
By the typing rule,

E,E ′{x := M} À N{x := M}.val : U{x := M}.
By def. of subst.,

E,E ′{x := M} À N.val{x := M} : U{x := M}.
(E,x:T ,E ′ À N.src : Un)

Similar to previous case.

(d) Straightforward induction on the derivation of
E,x:T ,E ′ à P. All cases are easy, appealing to (a), (b),
(c) and Monotonicity of Inference for Clauses. 2

Lemma 35. If E � C and E,C à P then E à P.

PROOF. By induction on the derivation of E,C à P, appeal-
ing to transitivity of inference. 2

Lemma 36. If E ` G and G≡ H then E ` H.

PROOF. Straightforward induction on the derivation of G≡
H. 2

Lemma 37 (Properties of src). We note that src has the
following properties:

(a) M.src(A)⇒M.src(B) iff A⇒B.

(b) A⇒M.src(A).

PROOF. Both claims follow directly from the definition of
src, noting that  A⇒ (A for B) and  A⇒ (A |B) are tau-
tologies in the axiomatization of entailment. 2

Lemma 38. If E À M : T then E M̀.src(A) M.val : T .

PROOF. By case analysis of the structure of M. All but the
following two cases are immediate.

Case (tagB(N)) Assume E À tagB(N) : T .
By definition, tagB(N).val = N.val,

and tagB(N).src(A) = A | (N.src(B)).
By the typing rule, E À|B N : T .
By Lemma 37 and Weakening, E À|(N.src(B)) N : T .
By Lemma 37, N.src⇒N.src(B).
By def. of |, N.src⇒A | (N.src(B)).
Finally, by the typing rule, E À|(N.src(B)) N.val : T .

Case (sigB(N)) Assume E À sigB(N) : T .
By definition, sigB(N).val = N.val,

and sigB(N).src(A) = A for (N.src(B)).
By the typing rule, E B̀ N : T .
By Lemma 37 and Weakening, E Àfor(N.src(B)) N : T .
By def. of for, N.src(B)⇒A for (N.src(B)), so

A for (N.src(B)) says N.src(B)⇒A for (N.src(B)).
Finally, by the typing rule, E Àfor(N.src(B)) N.val : T . 2

Corollary 39. If E À M : T then E M̀.src M.val : T .

PROOF. Follows from Lemmas 37, 38 and Weakening, not-
ing that M.src is defined as M.src(0). 2
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Proposition 40 (Type Preservation). If G→H and E `G
then E ` H.

PROOF. By induction on the derivation of G→ H.

Case (a[newb withP]→ newb.(b[P]|b<a⇒b>))
Assume E ` a[newb withP].
By the typing rule, E(a) = Un and E à newb withP.
By the typing rule, E,b:Un,b says a⇒b b̀ P.
By the typing rule, E,b:Un,b says a⇒b ` b[P].
By the typing rule, E,b:Un ` b<a⇒b>.
By Weakening, E,b:Un,env(b[P]) ` b<a⇒b>.
Noting that env(b<a⇒b>) = b says a⇒b,

by the typing rule E,b:Un ` b[P]|b<a⇒b>.
By the typing rule, E ` newb.(b[P]|b<a⇒b>).

Case (a[M!N]|b[M′?x.P]→ b[P{x := siga(N)}])
Assume E ` a[M!N]|b[M′?x.P].
By hypothesis, M.val'M′.val' n, for some n.
By the typing rule, E,env(b[M′?x.P]) ` a[M!N]

and E,env(a[M!N]) ` b[M′?x.P]
By definition, env(b[M′?x.P]) = ·

and env(a[M!N]) = ·,
so, E ` a[M!N]
and E ` b[M′?x.P].

By the typing rule for output, E à M!N.
By the typing rule for output, E à M : Un

and E à N : Un.
By the typing rule for input, E b̀ M′ : Un

and E,x:Un b̀ P.
By the typing rule for sig, E b̀ siga(N) : Un.
By Substitution, E b̀ P{x := siga(N)}.
Finally, by the typing rule for cfg, E `
b[P{x := siga(N)}].

Case (a[match M as L(~x).P]→ a[P{~x := tagB(~N)}])
Assume E ` a[match M as L(~x).P].
By hypothesis, M.val' L′(~N), M.src' B,

L.val' L′.val, and |~x|= |~N|.
By the typing rule, E à match M as L(~x).P.
There are two subcases.
If (E à L : Label(~x:~T)~C):
By the typing rule, E à M : Un,

and E,~x:~T ,B says ~C à P.
By Corollary 39, E B̀ L(~N) : Un.
By the typing rule, (∀i) E B̀ Ni : Un,

and E � B says ~C{~x := tagB(~N)}.
By Weakening, noting that � B⇒ (a |B),

(∀i) E à|B Ni : Un.
By the typing rule, (∀i) E à tagB(Ni) : Un.
By Substitution,

E,B says ~C{~x := tagB(~N)} à P{~x := tagB(~N)}.
By Lemma 35, E à P{~x := tagB(~N)}.
Finally, by the typing rule, E ` a[P{~x := tagB(~N)}].
If (E à L : Un):
By the typing rule, E à M : Un,

and E,~x:Un à P.
By Lemma 38, E B̀ L(~N) : Un.
By the typing rule, (∀i) E B̀ Ni : Un.
By Weakening, noting that � B⇒ (a |B),

(∀i) E à|B Ni : Un.
By the typing rule, (∀i) E à tagB(Ni) : Un.
By Substitution, E à P{~x := tagB(~N)}.
Finally, by the typing rule, E ` a[P{~x := tagB(~N)}].

Case (a[learnM⇒N.P]|a<~s>→ a[P]|a<~s,M⇒N>)
Assume E ` a[learnM⇒N.P]|a<~s>

where~s = M1⇒N1 . . .Mn⇒Nn.
By definition, env(a[learnM⇒N.P]) = ·.
By definition, env(a<~s>) = a says~s.
By the typing rule, E,a says~s ` a[learnM⇒N.P]

and E ` a<~s>.
By the typing rule, E,a says~s à learnM⇒N.P.
By the typing rule, E,a says~s à M : Un,

and E,a says~s à N : Un,
and E,a says~s à P,
and E,a says~s � a says M⇒N.

By the typing rule, (∀i) E à Mi : Un and E à Ni : Un.
By the typing rule E ` a<~s,M⇒N>.
By Weakening, E,env(a[P]) ` a<~s,M⇒N>.
By definition,

env(a<~s,M⇒N>) = a says~s,a says M⇒N.
By Weakening, E,a says~s,a says M⇒N à P.
By the typing rule, E ` a[P]|a<~s,M⇒N>.

Case (a[check M⇒N then P else Q]|a<~s>→ a[P]|a<~s>)
Assume E ` a[check M⇒N then P else Q]|a<~s>.
By the typing rule, E,env(a<~s>) ` a[check M ⇒
N then P else Q]

and E,env(a[check M⇒N then P else Q]) ` a<~s>.
By definition, env(a<~s>) = a says~s,

so E,a says~s ` a[check M⇒N then P else Q]
and env(check M⇒N then P else Q) = ·,
so E ` a<~s>.

By the typing rule, E,a says ~s à check M ⇒
N then P else Q.
By the typing rule, E,a says~s à M : Un

and E,a says~s à N : Un
and E,a says~s,a says M⇒N à P
and E,a says~s à Q.

By hypothesis,~s  M⇒N.
By definition, a says~s  a says M⇒N.
By monotonicity, clauses(E,a says~s)  M⇒N.
By Lemma 35, E,a says~s à P.
By the typing rule, E,a says~s ` a[P].
By Weakening, E,env(P) ` a<~s>.
Finally, By the typing rule, E ` a[P]|a<~s>.

Case (a[check M⇒N then P else Q]|a<~s>→ a[Q]|a<~s>)
Assume E ` a[check M⇒N then P else Q]|a<~s>.
By the typing rule, E,env(a<~s>) ` a[check M ⇒
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N then P else Q]
and E,env(a[check M⇒N then P else Q]) ` a<~s>.

By definition, env(a<~s>) = a says~s,
so E,a says~s ` a[check M⇒N then P else Q],
and env(a[check M⇒N then P else Q]) = ·,
so E ` a<~s>.

By the typing rule, E,a says ~s à check M ⇒
N then P else Q.
By the typing rule, E,a says~s à M : Un

and E,a says~s à N : Un
and E,a says~s,a says~s à P
and E,a says~s à Q.

By Weakening, E,env(Q) ` a<~s>.
Finally By the typing rule, E ` a[Q]|a<~s>.

Case (a[0]→ 0) Immediate from typing rule.

Case (a[P|Q]→ a[P]|a[Q]) Direct from typing rules.

Case (a[µZ.P]→ a[P{Z := µZ.P}]) Follows from typ-
ing rules and Substitution.

Case (a[newn.P]→ newn.a[P]) Direct from typ-
ing rules.

Case (a[newb withP]→ newb.(b[P]|b<a⇒b>))
Direct from typing rules.

Case (G→ H)
Assume E ` G.
By hypothesis, G≡ G′→ H ′ ≡ H.
Finally by Lemma 36, E ` H.

Case (G|H→ G′|H)
Assume E ` G|H.
By hypothesis, G→ G′.
By the typing rule, E,env(H) ` G,

and E,env(G) ` H.
By induction hypothesis, E,env(H) ` G′.
By the typing rule, E ` G′|H.

Case (newn:T.G→ newG:T.′)
Assume E ` newn:T.G.
By hypothesis, G→ G′.
By the typing rule, E,n:T ` G.
By induction hypothesis, E,n:T ` G′.
By the typing rule, E ` newn:T.G′.

Case (newb.G→ newb.G′)
Similar to previous case. 2

Lemma 41 (Initial Opponent Term Typability). Let M
be a term that does not contain any subterms of the form
sigB(N). Further suppose that fn(M) ⊆ dom(E). If A is a
E-opponent principal then E À M : Un.

PROOF. By definition of E-opponent principal, assume E �
0 says 1⇒A. By induction on the structure of M.

Cases (n), (del), (1), (0) Immediate from typing rules.

Cases (A∧B), (A |B) By typing rule and induction hypoth-
esis.

Case (L(~N)) By (2nd form of) typing rule and induction
hypothesis,

Case (sigB(M)) Not present, by hypothesis.

Case (tagB(M)) By typing rule and induction hypothesis,
noting that the axioms entail E � 0 says 1⇒ (A |B).

Cases (M.val), (M.src) By induction hypothesis.

Lemma 42 (Initial Opponent Process Typability). Let P
be a process that does not contain any subterms of the form
sigB(N). Further suppose that fn(P) ⊆ dom(E). If a is a
E-opponent principal then E à P.

PROOF. By definition of E-opponent principal, assume E �
0 says 1⇒a. By induction on the structure of P.

Case (0) Immediate from typing rule.

Case (P|Q) By induction hypothesis.

Case (µZ.P) By induction hypothesis.

Case (Z) Immediate from typing rule.

Case (newn:T.P) By induction hypothesis, appealing to
monotonicity of inference.

Case (newb withP) By hypothesis, b 6∈ E,
and by def. of w.f.e, E,b:Un,b says a⇒b ` �.

By transitivity, E,b:Un,b says a⇒b � 0 says 1⇒b.
By induction hypothesis, E,b:Un,b says a⇒b b̀ P.
Finally, by the typing rule, E à newb withP.

Case (M!N) By typing rule, and Lemma 41.

Case (M?x.P) By typing rule, Lemma 41 and induction
hypothesis.

Case (match M as L(~N).P) By typing rule, Lemma 41
and induction hypothesis.

Case (learnM⇒N.P) By typing rule, induction hypothe-
sis and Lemma 41, noting that (∀φ)1 says φ .

Case (check M⇒N then P else Q) By typing rule,
Lemma 41 and induction hypothesis.

Case (C) Immediate from typing rule.

Case (expect C) Immediate from (the 2nd form of the) typ-
ing rule. 2

Proposition 43 (Initial Opponent Typability). Let H
be an initial E-opponent configuration. Further sup-
pose that fn(H)⊆ dom(E). Then E ` H.

PROOF. By induction on the structure of H.

Case (0) Immediate from typing rule.

Case (G|H) By induction hypothesis.
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Case (newn:T.G) By induction hypothesis, noting that,
by definition, G is an initial (E,n:T )-opponent.

Case (newb.G) By induction hypothesis, noting that, by
definition, G is an initial (E,b:Un)-opponent.

Case (a[P]) By Lemma 42.

Case (a<~s>) Immediate from the typing rule, noting that by
hypothesis E � 0 says 1⇒a, and therefore (∀i) E � a says
Mi⇒Ni where Mi⇒Ni ∈~s.

Theorem 44 (Robust Safety). If E ` G then G is robustly
E-safe.
PROOF. Assume that E ` G, and let H be an initial E-
opponent such that G|H →∗ G′|a[expect C]. We show
that E,env(G′) � C.

Let E ′ map every identifier in fn(H) \ dom(E) to Un.
Further, for every atomic principal b ∈ dom(E ′) ensure that
E ′ � 0 says 1⇒b.
By Opponent Typability, E,E ′ ` H.
By the typing rule, E,E ′ ` G|H.
By Type Preservation, E,E ′ ` G′|a[expect C].
By the typing rule, E,E ′,env(a[expect C]) ` G′,

and E,E ′,env(G′) ` a[expect C].
By the typing rule, E,E ′,env(G′) à expect C.
By the typing rule, E,E ′,env(G′) � C. 2
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