
Specifications of A High-level Conflict-Free Firewall Policy
Language for Multi-domain Networks

Bin Zhang, Ehab Al-Shaer, Radha Jagadeesan, James Riely, Corin Pitcher
School of Computer Science, Telecommunications and Information Systems

DePaul University,
{bzhang, ehab, rjagadeesan, jriely, cpitcher}@cs.depaul.edu

ABSTRACT
Multiple firewalls typically cooperate to provide security
properties for a network, despite the fact that these fire-
walls are often spatially distributed and configured in isola-
tion. Without a global view of the network configuration,
such a system is ripe for misconfiguration, causing conflicts
and major security vulnerabilities.

We propose FLIP, a high-level firewall configuration pol-
icy language for traffic access control, to enforce security
and ensure seamless configuration management. In FLIP,
firewall security policies are defined as high-level service-
oriented goals, which can be translated automatically into
access control rules to be distributed to appropriate enforce-
ment devices. FLIP guarantees that the rules generated will
be conflict-free, both on individual firewall and between fire-
walls. We prove that the translation algorithm is both sound
and complete.

FLIP supports policy inheritance and customization fea-
tures that enable defining a global firewall policy for large-
scale enterprise network quickly and accurately. Through
a case study, we argue that firewall policy management for
large-scale networks is efficient and accurate using FLIP.

Categories and Subject Descriptors: F.m [Theory of
Computation]: Miscellaneous

General Terms: Languages, Security

Keywords: firewall, policy language, conflicts free

1. INTRODUCTION
As the size and complexity of enterprise network has in-

creased, traditional manual configuration of security devices
has proved inadequate to bridge the gap between the high-
level security requirement and low-level device implementa-
tions. Security requirements are defined by a set of policies
scattered over different security devices and environments
[15]. Varied network security devices have different goals
and are typically configured in isolation. Managing the se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

curity policy in such a large and heterogeneous environment
is a difficult task: the final security policy is the combination
of the local policy of each device. Conflicts between the con-
figurations of different devices are common [11]. How can
one resolve these conflicts to produce non-conflicting local
policies that satisfy the desired global security requirements?

Virtual networks [5, 7] are usually created to enable shar-
ing and aggregation of resources of various network domains
according to user-defined security requirements. Without a
global view of the network security devices configuration,
such a system is ripe for misconfiguration, causing problems
that range from unnecessary/redundant processing to ma-
jor security vulnerabilities. To enforce security and ensure
seamless device configuration management, security require-
ments must be defined as high-level service-oriented goals,
rather than device related configuration rules, that can then
be translated into rules distributed in security devices au-
tomatically. Many critical but cumbersome tasks includ-
ing policy definition, rule distribution and enforcement, and
conflicts resolution must also be automated. Traditional
work on firewalls [17, 6] has focused on nodes and enforce-
ment mechanisms rather than global network protection,
policy coordination and validation.

In this paper, we propose FLIP, a high-level firewall con-
figuration policy language for traffic access control. FLIP
addresses the security policy management problem in large-
scale heterogeneous network. FLIP is a high-level language
that decouples the policy from network topology and hides
the configuration details related to different vendors and de-
vices. The FLIP language is easy to understand and use, and
can be compiled to conflict-free device configurations.

The rest of this paper is organized as follows. In Section 2,
we describe the syntax and semantics of FLIP, as well as
the the design principles that guided us to the language. In
Section 3, we describe the algorithm that translates FLIP
into lower-level policies. We prove that the translation ex-
actly preserves the high-level semantics of FLIP. We present
a case study in Section 4, demonstrating the utility of the
language. We discuss the scalability and performance of rule
translation Section 5. Related and future work are discussed
in the last two sections.

2. HIGH LEVEL FIREWALL POLICY
LANGUAGE

We believe that a high level security policy language should
have the following features to meet the requirements of defin-
ing and managing security policies in a large-scale enterprise
network:

<domain_def> ::= "domain" <domain_name> "=["
<domain> { "," <domain> }
"]"

<domain> ::= <ip_address> | <ip_range>
| <domain_name> { <operator> <domain> }

<service> ::= <protocol> ".["
<predicates>
"]"

<protocol> ::= "tcp" | "udp" | "icmp" | "ip"
<predicates> ::= <predicate> { ("," | "OR") <predicate> }
<predicate> ::= <field_name> <operator> <value>

Figure 1: Domain and Service definition syntax.

• Service-oriented: The language should focus the user’s
attention on the security requirements of network ser-
vices rather than low-level traffic details as in the rule-
oriented approach.

• Modular and reusable: The language objects are self
contained and can be reused and extended to scale to
large networks.

• Rule order independent: The user should be able to
define the security policy in any order without worry-
ing about introducing conflicts.

• Conflict free: The compiled policies should not have
conflicts in a single device (intra-policy) or across mul-
tiple devices (inter-policy).

In this section we present in detail each of the basic con-
structs comprising FLIP and show the above principles are
embodied in the syntax and semantics of FLIP.

2.1 Key Language Constructs and Grammar
FLIP includes constructs to describe services, rules, pol-

icy groups and domains. Rules define the action performed
on the traffic flow of specific network service that satisfy
the rule conditions. A policy group is a logical unit which
aggregate related rules together and can be applied on do-
mains. The grammars and relationships of these constructs
are detailed below.

Domain.
A domain is a logical unit which contains the network

addresses of entities (workstations, servers and network de-
vices) that share the same security requirements. The enti-
ties in one domain can come from different physical subnets.
A domain can be defined by a set of IP ranges, IP addresses
with wildcard or host names. Also, one domain can be con-
structed by combining other domains. A domain can be
viewed as a special set contains only network address, so we
can apply the set operations on domain: intersection (*),
union (+), subtraction (-). The syntax of domain defini-
tions is shown in Figure 1, in EBNF. As usual square braces
indicate optional items and curly braces indicate potentially
empty repetition. The following example defines a domain
students:

domain students = [140.192.90.1-140.192.95.5];

Service.
A service is defined as the combination of a protocol name

and a set of properties associated with that protocol. Each
property of a protocol is a predicate which is defined by the

<group> ::= "policy_group" <name> ["extends" <name>] "{"
["incoming:" <block>]
["outgoing:" <block>]
"}"

<block> ::= ["enforce" | "restrict"]
(<service_name> | <service>) "{"
{ <rule> }
"}"

<rule> ::= ["enforce" | "restrict"]
("allow" | "deny")
<domain> { "except" <domain> }

Figure 2: Policy group definition syntax.

field name in that protocol header, the operator and value of
that field. The field names in common protocol headers have
been predefined in FLIP and the supporting protocols can
be extended if needed in the future. Predicates can be linked
together using the logical operator AND and OR, where the
comma represents AND. The syntax of service definition is
shown in Figure 1.

For example, tcp.[port = 80] means http traffic. One
service can represent multiple traffic flows in the network as
long as those traffic flows can satisfy the conditions defined
in the properties set. For example, tcp.[port > 2045,

port < 3078] represents all tcp traffics with destination
port between 2045 and 3078. We can define the yahoo in-
stant messaging (yahoo msg) and Bit Torrent [3] (torrent)
service as follow:

service yahoo_msg = tcp.[port=5050],
torrent = tcp.[port >= 6881, port <= 6999];

Policy Group.
A policy group is a aggregation and abstraction of detail

rules which are related to a set of entities (domains, hosts).
A policy group consists of a set of service blocks. Each
service block consists of rules associated with that specific
network service. The rules in each service block are not com-
plete firewall rules which contains all the 5 tuples (source
address, source port, destination address, destination port,
and protocol). For incoming traffics, the destination ad-
dresses are undefined, and for outgoing traffics, the source
addresses are undefined. So in FLIP, a policy group should
be applied on a policy target (domains, hosts) to complete
the rules. The policy targets shared the same policy group
can receive or send out the same types of traffic. In each
policy group, the incoming and outgoing services are orga-
nized int two service groups. The syntax of policy group
definition is shown in Figure 2.

The following example shows the definition of a simple
policy group which block the yahoo instant messaging and
Bit Torrent downloading but allow access to the internet.

policy_group student_policy {
incoming:

yahoo_msg { deny any }
torrent { deny any }

outgoing:
http { allow any }

}

Apply Policy Group on Domains.
In FLIP, we allow multiple policy groups to be applied to

a single domain. The syntax is shown in Figure 3. We can
apply the policy group student policy on domain students

as follow:

<apply_block> ::= "apply" <policy_set> "on" <domain_set>
<policy_set> ::= <policy_group_name>

{ "," <policy_group_name> }
<domain_set> ::= <domain_name>

{ ("+"|"-"|"*"|",") <domain_name> }

Figure 3: The syntax of applying policy groups on
domains.

apply student_policy on students

Policy Group Hierarchy and Inheritance.
In order to increase the modularity and reusability of the

policy group, we organize policy groups hierarchically. Ev-
ery policy group specifies its parent group, similar to the su-
perclass specification in common object-oriented languages.
If no parent group is specified, the default virtual policy
group is assigned as the parent group. FLIP only allows
single inheritance: each policy group can extends from only
one parent group. This restriction enforces a tree structure
on policy groups, making inheritance relationships between
policy group clear and helping users locate sources of con-
flict.

Restrict and Enforce Rules.
There are two special types of rules in FLIP: restrict and

enforce. Restrict rules are visible only in the current policy
group and can not be inherited by child groups. Restrict
rules are used to define special policy which should only
be applied to special domain. Restrict rules can also be
used to define policies for those services in which parent
and child have different policy. Enforce rules can not be
overwritten by child policy group, which are used to define
those policies the administrator want to be enforced across
multiple domains without any violation. Enforce rules must
be inherited by child group.

2.2 Conflict Detection and Resolution
An extensive study [2, 8] shows that various conflicts can

happen between rules in single or distribute firewalls. One of
the most important objectives of FLIP is to help user design
and enforce security policies without introducing conflicts.
The policies defined by FLIP should exactly reflect the se-
curity requirements without any ambiguity. FLIP handles
the conflicts from the following three perspectives:

Conflict in Single Policy Group.
In order to prevent conflict existence in policy group,

FLIP has two constraints for policy group:

• The rules in each service block must be disjoint. This
means that there should be no overlapping between the
source or destination address between different rules
for the same service.

• The services in incoming or outgoing traffic block must
be totally disjoint. For example, tcp.[port = 80] ser-
vice can not coexist in the same incoming traffic block
with service tcp.[port < 1024].

The first restriction guarantees no conflicts between rules in
the same service block; the second, between services in same
direction. These two constraints ensure that no conflicts can
occur between rules in same policy group.

Conflicts Between Parent and Child Policy Group.
Conflicts can be introduced when parent and child group

have different rules for same services. Whereas the high level
rules defined in the FLIP language are order-independent,
the low-level rules generated during translating are order-
sensitive. FLIP resolves the conflicts between parent and
child policy group by adjusting the order of low level rules for
child group generated by FLIP rule translation algorithm.
Conflicts between parent and child are resolved assuming
that the child group specifies a more detailed security policy
which further reflect the user’s objective. So FLIP gives the
rules in child group higher priority than the rules in parent
group, unless they conflict with the enforce rules of the
parent: these rules may not be overridden by child policies.
The high priority of rules in child group and enforced rules in
parent group is reflected by the rules order in the generated
low level rules. The translation is explained in section 3.3.

The following example shows the conflicts in single policy
group and between parent and child policy group. We now
define a new policy group dom std policy which contains
the security policy for students live in university dormitory.
The security objectives are the following: 1) allow students
use yahoo instant messaging, 2) block the online game World
of Warcraft [20](tcp, port=3724), 3) block web proxy cache
squid (tcp, port 3128) because it can also be used by Trojans.
4) allow windows remote desktop(tcp, port=3389) from net-
work 140.192.*. In order to block both World of Warcraft
and squid, the administrator in dormitory choose the block
all tcp traffic use port between 3100 and 3800. The policy
is shown below:

policy_group dom_std_policy extend student_policy {
incoming:

yahoo_msg { allow any }
tcp.[port>=3100, port < 3800] { deny any }
tcp.[port=3389] { allow 140.192.* }

}

We can easily see that there is a conflict between block-
ing all tcp service using port from 3100 to 3800 and allow
windows remote desktop. Also, there is another conflict be-
tween parent and child group for service yahoo msg

Conflicts Between Policy Groups Applied on Same Do-
main.

Different policy groups may have different policies for same
service. Conflicts can be introduced when one domain (or
subdomain) is applied with more than one policy groups.
This situation can happen under one of the following two
scenarios:

• If two or more policy groups must be enforced in a sin-
gle domain, those policy groups are explicitly applied
on that domain.

• When two or more domains share some common net-
work addresses and each domain is applied with differ-
ent policy group, the common part is implicitly applied
to more than one groups.

For the first scenario, FLIP resolves the conflicts between
policy groups based on the sequence in which these pol-
icy groups are applied on the domain. The earlier policy
groups applied first are given higher priority. For example,
apply p1, p2 on D specifies that both policy group P1 and
P2 should be applied on domain D, and that P1 should be
given higher priority. If conflicts exist, the rules in high pri-
ority policy group overwrite the rules in low priority policy

Algorithm 1 policyTranslation

1: if exist conflicts then
2: stop and send conflict reports
3: else
4: PGRules()
5: put all subdomain which has been assigned with more

than one policy group in Dmany.
6: put all domain and subdomain with only one policy

group in Done

7: if Dmany 6= ∅ then
8: for each Di ∈ Dmany do
9: put rules from each policy group related to Diinto

Rlist based on the priority
10: end for
11: end if
12: put rules of policy group for each D ∈ Done into Rlist

13: end if

Algorithm 2 PGRules

1: for each policy group P do
2: P.state ← unfinish
3: end for
4: for each P with P.state = unfinish do
5: ruleGeneration(P)
6: end for

group. The conflicts can be detected at compilation time,
and indeed our compiler gives the error reports about the
conflicts for the common addresses. This allows the user to
resolve the conflicts by explicitly applying the policy groups
with correct order.

3. RULE TRANSLATION ALGORITHM
The policy defined with FLIP must be translated into

lower level rules in order to be enforced by a firewall. Trans-
lation uses an intermediate language of common-format packet-
filtering rules: high-level policies are translated into common
format rules, and then the common format rules are trans-
lated to specific device configurations. It is crucial for that
these steps not introduce ambiguous or false low-level rules.

In this section, we introduce our rule translation algo-
rithm and show its soundness and completeness: that is,
the output IL program exactly captures the semantics of
the original FLIP program.

3.1 Semantics of the Intermediate Language
The common-format packet filtering rules (also called IL,

or intermediate language) have the format:

<IL> ::= <rule> { ";" <rule> }
<rule> ::= <header> "->" <action>

<header> ::= <protocol>
<src_ip> ":" <src_port>
<dst_ip> ":" <dst_port>

<action> ::= "accept" | "deny"

The source and destination IP addresses in IL rules may
include wildcards and subnet masks.

A packet consists of a header and data. An IL program
determines whether a given packet is accepted or denied by
going through the rules in order. The first rule header that
matches the packet header determines the outcome (accept
or deny).

Algorithm 3 ruleGeneration. Input: policy group P

1: if P.state = unfinish then
2: put enforced rules at the top of high-level policy defi-

nition
3: ER ← translate enforce rules of each service
4: NR ← translate normal rules of each service
5: Q ← P.parent
6: if Q = NULL then
7: P.Rules.add(ER)
8: P.Rules.add(NR)
9: else

10: parentRules ← ruleGeneration(Q)
11: P.Rules.add(parentRules.ER)
12: P.Rules.add(ER)
13: P.Rules.add(NR)
14: P.Rules.add(parentRules.NR)
15: end if
16: P.state ← finish
17: end if
18: return P.Rules

The semantics of an IL program is given as a pair (A, D)
where A is the set of packets accepted by the program and
D is the set of packets denied by the program. Clearly A
and D must be disjoint. Note that if no rule header matches
a packet, then the packet is neither accepted or denied. Two
IL programs are equivalent if the accept and deny exactly
the same packets.

3.2 Semantics of FLIP
In the next subsection we present an algorithm that trans-

lates FLIP into IL. Let AFLIP be the accept set of the orig-
inal FLIP program and let AIL be the accept set of the IL
program which is the result of translation. The translation
is sound if AIL ⊆ AFLIP and complete if AFLIP ⊆ AIL,
and similarly for the denied sets.

To give a compositional semantics for FLIP, we consider a
slightly richer model than that used for IL. The meaning of
a rule (or a group of rules such as a policy group applied to a
domain) is a four-tuple (A, D, EA, ED), where each element
of the tuple is a set of packets.

• A represents the packets accepted by the rule and D
represents the packets that are denied by the rule.
Packets that are neither explicitly accepted nor ex-
plicitly denied will not appear in either A or D.

• EA (resp. ED) stand for the packet-headers that cor-
respond to the enforced allow (resp. deny rules).

The following invariants hold: EA ⊆ A, ED ⊆ D, A ∩D =
∅, and EA∩ED = ∅. The four-tuples carry redundant infor-
mation used for combining FLIP programs together. When
finally executed, the sets A and D determine the packets
accepted and denied.

Definition 1. A FLIP program with meaning (A, D, EA,
ED) is equivalent to an IL program with meaning (A′, D′)
if A′ = A and D′ = D.

We understand the inheritance construct of FLIP denota-
tionally as an operation on four-tuples. Let P1 = (A1, D1,
EA1, ED1) and P2 = (A2, D2, EA2, ED2). Then P ′ = (A′,

Figure 4: Format of Low level rules generated by
algorithm

D′, EA′, ED′) represents the result of P1 extends P2, where

ED′ = ED2 ∪ [ED1\EA2]

EA′ = EA2 ∪ [EA1\ED2]

D′ = [D1\EA2] ∪ [D2\A1] ∪ [ED′\EA′]

A′ = [A1\ED2] ∪ [A2\D1] ∪ [EA′\ED′]

The rest of the FLIP constructs are semantically straight-
forward. Thus, we can associate a semantics as a 4-tuple
(A, D, EA, ED) with every FLIP program.

3.3 Rule Translation Algorithm
FLIP performs conflict discovery before translation. The

high-level policies are translated into low-level rules only
when all conflicts have been resolved [1].

The top-level rule generation algorithm is shown in Algo-
rithm 1. After the rule translation for each policy group,
FLIP analyzes the assignment between policy groups and
domains. For those domains or subdomains which are ap-
plied with more than one policy groups, FLIP generates
rules based on their priorities.

In order to translate high-level policy into low-level com-
mon format filtering rules, FLIP generates rules for each
policy group, as described in Algorithm 2.

Each policy group is then translated into low-level rules,
as described in Algorithm 3.

Because of the constraints imposed in section 2.2, there
can be no overlapping between high level rules in the same
policy group. So, in each policy group, we can process each
collection of high-level rules separately and modularly. The
disjointness also permits us to construct convenient order-
ings of the low-level rules. In our representation, we always
put the low-level rules corresponding to the enforced rules at
the top (of each policy group) — see the diagram in figure 4.

The algorithm works modularly with respect to the con-
structs of FLIP. Figure 5 shows an example of how the low
level rules from parent policy group are inherited by child
policy group. On the sides of the picture, we have pictorial
representations of the low-level rules that implement the en-
force rules (ER) and normal rules (NR) of the parent and
the child. The picture in the middle illustrates the result of
inheritance. The resulting rule order is consistent with the
hierarchical relation between policy groups — the enforce
rules (ER) from parent group are put on top of the rule list,
then the local enforce rules. After that, the normal rules
(NR) from local policy group and normal rules form parent
group are put into rule list sequentially.

3.4 Results
We prove that our translation of the inheritance combi-

nator of FLIP preserves equivalence.

Figure 5: Illustration of translation algorithm for
inheritance

Lemma 1. Let the translation of policy group P1 (resp.
P2) be equivalent to P1 (resp. P2). Then the policy group
P1 be extended from policy group P2is equivalent to its trans-
lation given by the algorithm.

Proof. The proof is based on boolean algebra manipu-
lations. We sketch the operational intuitions underlying the
equivalence by tracing the accept/deny decisions.

When policy group P1 extended from P2 algorithm 3 adds
enforced rules of P2 to the top of low level rules list. Then
it adds the enforce rules of P1 into the rules list. The rule
order guarantees that the enforce rules from parent group
will be matched first. So the enforce allow rules of P1

after translation will be the union of enforce allows rules

with the enforce allow rules of P1from P2 that are not
already denied by the enforce deny rules of P2, i.e.

T (EA′1) = EA2 ∪ [EA1\ED2].

Similarly, we can get the required equivalence for T (ED′
1).

Based on the rule order, the normal allow rules defined
in P1 will be hit if the combined enforce rule can not match
the packet. And the normal allow rules defined in P2 can
only be hit if both the combined enforce rules and the nor-
mal rules defined in P1 can not match the packet. So the
total allow rules will be the union of the enforce allow

rules(EA′1\ED′
1), normal allow rules in P1 (A1) that are

not denied in P2 (ED2) and the normal allow rules in P2

(A2) that are not already denied in P1 (D1). So we get

T (A′1) = [A1\ED2] ∪ [A2\D1] ∪ [EA′1\ED′
1].

Similarly, we can get the required equivalence for T (D′
1).

This is the key case of the proof since the priorities between
multiple policy groups on a domain is also resolved in a
fahsion analogous to inheritance of policies. So, we have the
desired theorem:

Theorem 1. Any FLIP program is equivalent to the IL
rules generated for that program by the translation algo-
rithm.

4. A CASE STUDY
Through the following example, we show how FLIP can

be used to define security policy in a large-scale environment
with different security requirements. We use the School
of Computer Science, Telecommunications and Information
Systems (CTI) of DePaul University as our case study. The

CTI network is composed by a set of departments, adminis-
tration office, research labs, servers (mail, FTP, Web, etc.),
and the desktop of faculties and staffs. Based on the in-
formation sensitivity, research and administration require-
ments, each office and lab may have different security poli-
cies. We use a fraction of these policies to demonstrate the
usability and expressiveness of FLIP, these policies by no
means cover all the security requirements in real life deploy-
ments. The security requirements are outlined as follows:

• All labs must not allow SSH [19] access from machine
other than the network administrators’ machine.

• It is recommended (but not enforced) to prevent stu-
dents in labs to access www.yahoo.com.

• If it does not violate the CTI or research lab general
policy, mnlab would like to allow incoming multicast
traffic and to allow student access any web page.

• The admin group may disallow student access from
remote campuses through remote desktop. However,
faculty are allowed remote desktop access from remote
campuses.

• NFS should not be allowed through a firewall in mnlab.

The domains and services used in this example can be de-
fined as follows:

domain CTI = [140.192.*],
remote_campus = [140.192.8.*],
Labs = [140.192.35.128 -140.192.37.255],
mnlab = [140.192.37.128-140.192.37.143],
faculty = [140.192.34.*],
CTIadmin = [140.192.34.224-140.192.35.15],
Blacklist = [207.115.*];
multicast = [224.0.0.0 -239.255.255.255],

service http = tcp.[port =80],
telnet = tcp.[port =23],
remote_desktop = tcp.[port=3389],
ssh = tcp.[port =22]
NFS = tcp.[port=2049]

First we define the policy group CTI Policy which is the
general policy for CTI domain:

policy_group CTI_Policy {
incoming:

tcp.[port = *] { enforce deny BlackList }
}

Then we extend CTI Policy to define the general policy
for research lab.

policy_group Lab_Policy extends CTI_Policy {
incoming:

enforce ssh { deny * except CTIadmin }
enforce udp.[port=*] { deny multicast }

outgoing:
http { deny to yahoo.com }

}

Now we can define the policy for multimedia network-
ing lab (mnlab). Please be aware that the policy of http
traffic to yahoo defined in Lab Policy is overwritten by the
policy defined in mnlab Policy. Although, the policy in
mnlab Policy try to allow multicast traffic, it conflict with
the enforce rule inherited from Lab Policy. So multicast
traffic can not reach mnlab. Through this example, we can
see how the enforce rule is kept during policy group inheri-
tance.

enforce deny remote_campusallow remote_campus

Figure 6: Conflicts between Fac Policy and Ad-
min Policy

policy_group mnlab_Policy extends Lab_Policy {
incoming:

udp.[port= any] { allow multicast }
NFS { deny * }

outgoing:
http { allow * }

}

The policy for CTI admin and faculty ca be defined by
extending the general global policy group (CTI Policy)as
follow:

policy_group Admin_Policy extends CTI_Policy{
incoming:

remote_desktop { enforce deny remote_campus }
}

policy_group Fac_Policy extends CTI_Policy{
incoming:

remote_desktop { allow remote_campus }
}

After define all the policy and domain, now we can apply
the policy groups on domains.

apply CTI_policy on CTI;
apply Lab_policy on Labs;
apply mnlab_Policy on mnlab;
apply Admin_Poliy, Fac_Policy on faculty* CTIadmin;
apply Fac_Policy on faculty;
apply Admin_Policy on CTIadmin;

Because there is an intersection between faculty and
CTIadmin domain, the common part of these two domains
will be applied with two policy groups. There is a con-
flict between policies for remote desktop service, as shown
in Figure 6. For the common part we explicitly apply both
faculty and CTIadmin, and give CTIadmin high priority;
thus the intersection between faculty and CTIadmin will
not support remote desktop access. Due to space limitation,
we only show the low level rules in IL format generated by
FLIP for mnlab which is applied with mnlab Policy:

1 tcp 207.115.*:any 140.192.37.128/28:any ->deny
2 tcp 140.192.34.224/27:any 140.192.37.128/28:22 ->allow
3 tcp 140.192.35.0/28:any 140.192.37.128/28:22 ->allow
4 tcp any:any 140.192.37.128/28:22 ->deny
5 udp 224.0.0.0/3:any 140.192.37.128/28:any ->deny
6 udp 224.0.0.0/3:any 140.192.37.128/28:any ->allow
7 tcp any:any 140.192.37.128/28:2049->deny
8 tcp 140.192.37.128/28:any any:80 ->allow
9 tcp 140.192.37.128/28:any 69.147.114.210:80 ->allow

Rule 1 is the enforce rule for BlackList defined in CTI Policy.
The enforce rules for ssh defined in Lab policy is translated
into rule 2,3 and 4. Rule 5 is the enforce rule for multicast

Experience Time Man-written(m) Time With FLIP(m) Man-written Conflicts FLIP Conflicts
Expert 30 17 7 0

Intermediate 51 24 13 0
Beginner 75 32 17 0

Figure 7: Average finishing time and number of anomalies of the policy definition experiment

10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

Number of policy groups

P
ro

ce
ss

in
g

tim
e

(m
s)

0% intersection
20% intersection
40% intersection

Figure 8: Processing time for conflict discovery.

traffic defined in Lab policy. The rule for allowing multi-
cast traffic defined in mnlab Policy is translated into rule 6.
Rule 7 is for NSF traffic. The rule of allowing Web traffic
from mnlab Policy is shown in 8, which overwrites the rule
of deny Web traffic to yahoo.com from Lab policy (rule 9).

5. IMPLEMENTATION AND EVALUATION
We implemented the techniques and algorithms described

in this paper in a software module called FLIP tool. The im-
plemented tool, FLIP, performs conflict detection and low-
level rule generation. The implementation is built in Java.
In this section, we present our evaluation study of the us-
ability and the performance of the FLIP.

5.1 FLIP Usability
To assess the practical value of our techniques, we used

the FLIP to design some real firewall rules based on differ-
ent security requirements. FLIP has shown to be effective
by reducing the policy development time without introduc-
ing conflicts. We then attempted to quantitatively evaluate
the practical usability of FLIP by conducting a experiments
that consider the level of network administrator expertise,
the developing time and number of anomalies in the final re-
sult. In this experiment, we created a firewall policy exercise
and asked 12 network administrators with varying level of
expertise in the field to complete the exercise. The network
administrators are separated into two groups, each group
has equal numbers of administrators in same level. The ex-
ercise is to write firewall rules based on a given security pol-
icy requirements. The total number of rules was around 60
in a network having only three firewalls. The results of this
experiment are shown in Figure 7. We can see that with the
help of FLIP, the beginner can complete the experiment in

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6

7

8
x 10

5

Number of High Level Rules

N
ub

m
er

 o
f R

ul
es

 G
en

er
at

ed
 b

y
F

LI
P

degree =3
degree=5
degree =10

Figure 9: The generated rules number changes as
degree changes

almost half the time needed by the expert with no conflicts.

5.2 Scalability and Performance
In second part of our evaluation study, we conducted a

number of experiments to measure the performance and the
scalability of FLIP. We produced three sets of policy groups
and domains definition. In first set, there is no intersec-
tion between target domains on which the policy groups are
applied. In second set, 20% of target domains have over-
lapping, and in third set, 40% of target domains have over-
lapping. Our simulation target a B class IP network, we
assume each policy group explicitly defines 20 high level
rules, and each policy group is applied to a different do-
main. We use FLIP to analyze these policy groups to find
conflicts with various number of policy groups. The process-
ing time needed to finish the complete analysis is shown in
Figure 8. The result shows clearly that as the percentage
of intersecting domains increase, the time needed to detect
the conflicts increase. This is because each domain intersec-
tion is applied with more than one policy group, the rules
from different policy groups need to be analyzed together to
detect the conflicts. Our experiments were performed on a
Pentium PIII 800 MHz processor with 256M Byte of RAM.

5.3 The Number of Rules Generated by FLIP
The number of rules generated by FLIP is crucial to the

firewall performance, since running time to find a match
increases linearly in the number of rules [9]. Our goal is
to avoid generating unnecessary or redundant rules. FLIP
translate the rules into general firewall configuration format,
like the format in IPTables [14]. That means the source
and destination can not be defined as IP Range. So the

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Number of High Level Rules

N
um

be
r

of
 R

ul
es

 g
en

er
at

ed
 b

y
F

LI
P

20% IP Range
40 % IP Range
80% IP Range

Figure 10: The generated rules number changes as
percent of domains defined by IP Range changes

domain defined by IP Range have to be break in to sub-
domain which can be defined with network address and sub-
net masks. Due to the policy group inheritance and domain
(IP range) separation, the number of low level rules gener-
ated by FLIP is larger than the explicitly defined rules in
high level policy groups. In the example in Section 4, we
define 8 domains, 6 network services and 6 policy groups,
after translation, FLIP generates 48 low level rules.

In this section, we evaluate the rules generated by FLIP
under different scenario and try to identify the key factors
which influence the rule numbers. There are three factors
which contribute to the number of rules generated by FLIP
engine: policy group inheritance, domain definition, and
number of exception rules. We evaluate their influence sep-
arately. For this study, we continue use the previous setting
(each group has 20 high level rules).

The Impact of Policy Group Inheritance.
We control the inheritance relationships between groups

by define the maximal child group each parent can possible
has (degree). The smaller the degree, the larger the depth
of the tree. This means child groups inherit more rules from
parent groups. In this experiment, we assume there are 20%
domains defined by IP range, and 20% of high level rules
have exception. We generate a set of policy groups and a
set of domains. We fix the relation between the policy group
and domain, conduct the experiment with different degree
values. The result of number of low level rules is shown
in Figure 9. For this result, we can see that the change of
degree does not influence the final rules number much.

The Impact of Domain Definition With IP Range.
In this study, we fix the degree =5, exception rules ratio

equal 20%. We control how many percentage of domain are
defined with IP Range, and study its impact on the rule
generation. The result is shown in Figure 10. From this
figure, we can see that as the percentage of domains de-
fined with IP Range increase, the rules number increase ev-
idently. This is because the more the domains defined with
Ip Range, the high the possibility that these domains have
overlapping. More overlapping domains may introduce more

0 2000 4000 6000 8000 10000 12000 14000 16000

1

2

3

4

5

6

7

8

9

10
x 10

5

Number of Rules Generated by FLIP

N
um

be
r

of
 H

ig
h

Le
ve

l R
ul

es

10 % exception rules
40 % exception rules
80 % exception rules

Figure 11: The generated rules number changes as
percent of exception rules change

conflicts. Since our approach breaks large overlapping do-
mains into small disjoint subdomains to resolve the conflicts
for each subdomains, as the overlapping domains increase,
the number of rules generated by FLIP also increases.

The Impact of Exception Rules.
Exception rules need be translated specially in our ap-

proach, it need more than one rules to represent the user’s
objectives. We fix the degree equal to 5, 20% of domains de-
fined with IP range, and study the number of rules changes
as the percentage of exception rules change. The result is
shown in Figure 11. From this figure, we can see that with
exception rules increase, the total low level rules does not
increase much.

6. RELATED WORK
In this section we will review some representatives of high

level firewall languages and works about firewall policy de-
ployment. We evaluate these languages based on following
aspects: conflict free, rule-order dependency, easy to use,
expressiveness, modularity and reusability.

The high-level firewall language (HLFL) [12] project is an
approach to translate the high level firewall rules into useful
rules for IPChains, Netfilter, Cisco and many others. HLFL
adopts a simple grammar to define firewall rules:

proto src operator dst [interface][keywords]

The user can use this language to define the rules for an
entire network. The major contribution of this approach is
the automated translation, but it lacks important features
such as detecting and preventing the conflicts in the firewall
rules. Also the rule order is important in this language: in
order to update the firewall policy, the user must find the
appropriate position to insert the rules. This is very difficult
when there are large number of rules in a firewall.

Firmato [4] is a complete firewall management toolkit,
based on entity-relation model. With Firmato, the user can
define host group, service group and role group and the re-
lation between these groups. The Firmato entity-relation
model can be viewed as the application of a role-based model
to the firewall policy area. Firmato support the separation

of policy definition from network topology to increase the
language modularity and reusability. One of the major lim-
itation of Firmato is that the user can only define allow

rules. deny rules are supported only by the default rule:
all traffic not explicit allowed will be denied. Although this
make Firmato conflict-free and rule order independent, it
greatly limits its expressiveness and usability. Filtering pos-
tures adopts the same idea of only supporting allow rules,
so it shares the same limitation.

The Inspect language [13] is an object-orient, high level
script language to define the packet handling rules. Inspect
supports features (such as functions, macros, and dynamic
data structures) which are usually supported only by full
programming languages. Inspect lacks conflict detection and
rules are order dependent. The language also requires de-
tailed knowledge of TCP/IP .

Netspoc [16] is a description language for security policy
and topology. In netspoc, policy is a set of related rules,
network objects and service definitions are used in rules to
describe network traffic. Rules in a single policy refer to
the same network objects. Netspoc resolves the conflicts
between rules by giving the deny rules higher priority, au-
tomatically overwriting allow rules. Also this is a safe ap-
proach, it make the debugging of firewall policy more diffi-
cult. If desired traffic is blocked by the firewall, it’s hard to
find the cause of the problem.

Security policy specification language (SPSL) [10] is an at-
tempt by IETF to create a policy specification language for
use with IPSEC. The syntax was derived from the routing
policy specification language. SPSL use objects, each ob-
ject has attributes to store the data. SPSL can define node
based or domain based policy. The order of rules in SPSL is
important, it will enforce the first matching policy. It also
lacks the conflict detection and and other features that is
important to large-scale policy management like inheritance
and restriction.

Although all these approaches propose some high level
language to define firewall policy, each has its own advan-
tages and limitations. FLIP offers novel features that are im-
portant for firewall policy management but missing in most
of these solutions.

Safety in firewall policy deployment has been studied in
[21]. A deployment is safe if it does not cause the firewall to
drop legal traffic or permit illegal traffic during deployment.
This work introduces formal definition and theoretical anal-
ysis of safe deployment problem and proposes algorithms to
discover the smallest possible number of editing commands
to safely deploy firewall policy. Our work can benefit from
the algorithms proposed in this work to find the safe and
efficient ways to update firewall rules.

7. CONCLUSION AND FUTURE WORK
Managing security policy in large-scale enterprise network

requires a fixable policy definition, conflicts resolution and
rule distribution. Simply having firewalls on the network
boundaries or between sub-domains may not necessarily make
a network any more secure. Misconfiguration of security de-
vices due to rule conflicts or policy inconsistency may in-
crease network vulnerabilities. In this paper, we proposed
a new high-level firewall policy language (FLIP) to man-
age distributed firewalls globally and transparently. FLIP
is a service-oriented language that focuses on the service
security requirements, unlike rule-oriented languages that

impose traffic detail in the configuration. FLIP allows net-
work administrators to define their high-level security goals
that are then translated to rules and distributed in the fire-
wall devices automatically. The generated rules are order-
independent and conflict-free for intra- or inter-firewall con-
figuration. The FLIP modularity and reusability exhibited
by the policy group definition greatly reduce the time and
effort to define firewall policies and generate rules in a large-
scale enterprise networks. The hierarchical structure of pol-
icy groups improves the understanding of the interaction be-
tween the global and local policies. We also show the sound-
ness and completeness of our rule translation algorithm. So,
FLIP can guarantee the consistency between the security
policy definition groups and the enforcement points

In our evaluation study, we have shown that using FLIP
enables the network administrators with little experience to
design the firewall policies faster and more accurately than
experts in the field. In regards to performance, although the
policy group analysis are parabolically dependant on the
number of policy groups and the number of rules in each
group, our experiments show that the average processing
time for conflicts discovery is very reasonable for practical
applications. Using our Java implementation of the FLIP
engine, our results indicate that, in case of 80% of domains
are intersected with each other, it takes 56 to 1103 ms of
processing time to analyze 10 to 90 (200-1800 rules) policies
groups. We also show that the number of rules generated
rules by FLIP is very comparable to the rules defined man-
ually in IPTables format.

Our future research plan includes extending FLIP to sup-
port other security devices: IPSec, IPS/IDS, and extending
FLIP to accommodate business-level objectives/abstraction.
We also want to improve the rules translation and distri-
bution algorithms, optimize the rules order, combine and
aggregate rules to improve firewall performance.

8. ACKNOWLEDGEMENTS
This research was supported in part by National Science

Foundation under Grant Cybertrust 0430175 and Career
0347542. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the fund-
ing agencies.

9. REFERENCES
[1] Ehab Al-Shaer and Hazem Hamed, Discovery of

Policy Anomalies in Distributed Firewalls,In
Proceedings of IEEE INFOCOM’04, March 2004

[2] Ehab Al-Shaer and Hazem Hamed, Taxonomy of
Conflicts in Network Security Policies, IEEE
Communications Magazine, Vol. 44, No. 3, March 2006

[3] BitTorrent http://www.bittorrent.com/

[4] Y. Bartal., A. Mayer, K. Nissim and A. Wool.
Firmato: A Novel Firewall Management Toolkit.
Proceedings of 1999 IEEE Symposium on Security and
Privacy, May 1999.

[5] Ian Foster The Grid: Blueprint for a New Computing
Infrastructure Morgan Kaufmann, 2004.

[6] M. Greenwald, S. Singhal, J. Stone, and D. Cheriton.
Designing an Academic Firewall. Policy, Practice and
Experience with SURF. Proc. of Network and

Distributed System Security Symposium (NDSS),
pages 79”C91, February 1996.

[7] Greg Graham, Richard Cavanaugh, Peter Couvares,
Alan De Smet, and miron Livny Distributed Data
Analysis: Federated Computing for High-Energy
Physics The Grid: Blueprint for a New Computing
Infrastructure, 2004.

[8] Hazem Hamed, Ehab Al-Shaer and Will Marrero,
Modeling and Verification of IPSec and VPN Security
Policies. In Proceedings of IEEE ICNP’2005,
November 2005.

[9] Hazem Hamed and Ehab Al-Shaer, Dynamic
Rule-ordering Optimization for High-speed Firewall
Filtering, ACM Symposium on InformAtion,
Computer and Communications Security
(ASIACCS’06), March 2006.

[10] D. Harkins, D. Carrel, The Internet Key Exchange
(IKE) RFC 2409,1998

[11] J. D. Howard. An Analysis Of Security On The
Internet 1989 - 1995. PhD thesis, Carnegie Mellon
University,, April 1997

[12] High Level Firewall Language http://www.hlfl.org/

[13] The INSPECT Language guide
http://www.security-gurus.de/papers

[14] IPtables http://www.netfilter.org/

[15] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith.
Implementing Distributed Firewall. Proceedings of
Computer and Communications Security (CCS), pages
190”C199, November 2000.

[16] NetSPoC: a Network Security Policy Compiler
http://netspoc.berlios.de

[17] D. Nessett and P. Humenn. The Multilayer Firewall.
Proc. of Network and Distributed System Security
Symposium (NDSS), pages 13”C27, March 1998.

[18] Squid Web Proxy Cache
http://www.squid-cache.org/

[19] Tatu Ylönen SSH — secure login connections of the
internet. In Proceedings of the Sixth USENIX Security
Symposium, San Jose, California, USA, July 1996.

[20] World of Warcraft
http://www.worldofwarcraft.com/

[21] Charles C. Zhang, Marianne Winslett and Carl A.
Gunter. On the Safety and Efficiency of Firewall
Policy Deployment Proc. of IEEE Symposium on
Security and Privacy, May 2007.

