
Automata Theory and Formal Grammars: Lecture 1

Sets, Languages, Logic

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.1/74

Sets, Languages, Logic

Today

Course Overview

Administrivia

Sets Theory (Review?)

Logic, Proofs (Review?)

Words, and operations on them: w1 ◦ w2, w
i, w∗, w+

Languages, and operations on them: L1 ◦ L2, L
i, L∗, L+

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.2/74

What This Course Is About

Mathematical theory of computation!

We’ll study different “machine models” (finite automata, pushdown
automata). . .

. . . with a view toward characterizing what they can compute.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.3/74

Why Study This Topic?

To understand the limits of computation.

Some things require more resources to compute, and others
cannot be computed at all. To study these issues we need
mathematical notions of “resource” and “compute”.

To learn some programming tools.

Automata show up in many different settings: compilers, text
editors, communications protocols, hardware design, . . .

First compilers took several person-years; now written by a single
student in one semester, thanks to theory of parsing.

To learn about program analysis.

Microsoft is shipping two model-checking tools. PREfix discovered
≥2000 bugs in XP (fixed in SP2).

To learn to think analytically about computing.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.4/74

Why Study This Topic?

This course focuses on machines and logics.

Analysis technique: model checking (SE431).

CSC535 focuses on languages and types.

Analysis technique: type checking (CSC535).

Both approaches are very useful.

For example, in Computer Security (SE547).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.5/74

Administrivia

Course Homepage:
http://www.depaul.edu/~jriely/csc444fall2003/

Syllabus:
http://www.depaul.edu/~jriely/csc444fall2003/syllabus.html

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.6/74

Set Theory: Sets, Functions, Relations

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.7/74

Sets

Sets are collections of objects.

{ }, {42}, {alice, bob}

N = {0, 1, 2, ...}

Z = {...,−2,−1, 0, 1, 2, ...}

R = the set of real numbers includings Z,
√

2, π, etc

{x ∈ N | x ≥ 5 }

Sets are unordered and insensitive to repetition.

{42, 27} = {27, 42}

{42, 42} = {42}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.8/74

http://www.depaul.edu/~jriely/csc444fall2003/
http://www.depaul.edu/~jriely/csc444fall2003/syllabus.html

What Do the Following Mean?

∅, {} empty set

a ∈ A membership

A ⊆ B subset

A ∪ B union

A ∩ B intersection

◦A complement

A − B set difference = A ∩ ◦B
⋃

i∈I Ai indexed union
⋂

i∈I Ai indexed intersection

2A power set (set of all subsets)

A × B Cartesian product = { 〈a, b〉 | a ∈ A, b ∈ B }
|A| size (cardinality, or number of elements)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.9/74

Examples

Let A = {m, n} and B = {x, y, z}

What is |A|? |B|?
2, 3

What is A × B? |A × B|?
{〈m, x〉, 〈m, y〉, 〈m, z〉, 〈n, x〉, 〈n, y〉, 〈n, z〉} , 2 × 3 = 6

What is 2A? |2A|?
{∅, {m}, {n}, {m, n}} , 22 = 4

What is 2B? |2B|?
{∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}} , 23 = 8

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.10/74

Equality on Sets

Let A and B be sets. When does A = B?

When they contain the same elements.
When A ⊆ B and B ⊆ A.

Some Set Equalities

A ∪ ∅ = A

A ∩ ∅ = ∅
◦A ∪ B = ◦A ∩ ◦B (De Morgan)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (Distributivity)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.11/74

Cardinality

Cardinality is easy with finite sets.

|{1, 2, 3}| = |{a, b, c}|

What about infinite ones?

To answer this we need to understand functions.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.12/74

Binary Relations

... relate elements of a set to other elements in the set.

Definition Let A be a set. Then R is a binary relation over A if
R ⊆ A × A.

Notation We usually write a1 R a2, rather than 〈a1, a2〉 ∈ R.

Examples

{〈0, 1〉, 〈1, 2〉} is a binary relation over N.

{ 〈n, n〉 | n ∈ N } is a binary relation over N.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.13/74

Equivalence Relations

When is R ⊆ A × A an equivalence relation?

R must be

reflexive a1 R a1 holds for any a1 ∈ A.

symmetric a1 R a2 implies a2 R a1 for any a1, a2 ∈ A.

transitive a1 R a2 and a2 R a3 implies a1 R a3 for all a1, a2, a3 ∈ A.

As an example, consider =3⊆ N × N defined by i =3 j if and only if

i modulo 3 = j modulo 3

For example

0 =3 3 =3 6 6=3 1 =3 4 =3 7

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.14/74

Equivalence Classes

Let R be an equivalence relation R ⊆ A × A. Let a ∈ A.
Then we write [a]R for the set of elements equivalent to a under R.

[a]R = { a′ | a R a′ }

Note that [a]R ⊆ A.

What is [1]=3
?

{1, 4, 7, 10, ...}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.15/74

Functions

When is R ⊆ A × B a function (ie, a total function)?

R must be

deterministic If a R b1 and a R b2 then b1 = b2.

total For every a ∈ A, there exists b ∈ B such that a R b holds.

Equivalently. . . For every a ∈ A, require
∣

∣{ b | a R b }
∣

∣ = 1.

If we require only determinism, we define partial functions.

Functions map elements from one set to elements from another.

f : A → B

A : domain of f

B : codomain of f

f(a) : result of applying f to a ∈ A — f(a) ∈ B.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.16/74

Relational Inverse

R−1 ⊆ B × A is the inverse of R ⊆ A × B.

Definition b R−1 a if and only if a R b.

Is the inverse of a function always a function?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.17/74

Bijections

When Is f : A → B ...

... injective (or one-to-one)?

When f(a1) = f(a2) implies a1 = a2 for any a1, a2 ∈ A.

When f−1 is deterministic

... surjective (onto)?

When for any b ∈ B there is an a ∈ A with f(a) = b.

When f−1 is total

... bijective?

When it is injective and surjective.

When f−1 is a function

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.18/74

Which f : N → N Is Injective/Surjective?

f(x) = x + 1 injective, not surjective

f(x) = ⌊x
2
⌋ surjective, not injective

f(x) = |x| bijective

What if instead f : Z → Z?

f(x) = x + 1 bijective

f(x) = ⌊x
2
⌋ surjective, not injective

f(x) = |x| neither injective nor surjective

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.19/74

More On Functions

Let f : A → B

If S ⊆ A then how is f(S) defined?

f(S) = { f(a) | a ∈ S }.

We have lifted f from A → B to 2A → 2B.

What is f(A) called?

The range of f .

If g : B → C then how is g ◦ f defined?

g ◦ f : A → C is defined as g ◦ f(a) = g(f(a)).

If f is a bijection, what is (f−1)−1?

f

If f is a bijection, what is f ◦ f−1(b)?

b

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.20/74

Cardinality Revisited

Definition Two infinite sets have the same cardinality if there exists
a bijection between them.

Recall the naturals (N), integers (Z) and reals (R).

Theorem

N	=	Z
N	=	N × N
N	6=	2N
2N	=	R

How would you prove these statements?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.21/74

Words

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.22/74

Languages and Computation

What are computers? Symbol pushers

They take in sequences of symbols ...

... and produce sequences of symbols.

Mathematically, languages are sets of sequences of symbols (“words”)
taken from some alphabet.

Computers are language processors.

We’ll study different classes of languages with a view toward
characterizing how much computing power is needed to “process”
them.

But first, we need precise definitions of alphabet, word and language.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.23/74

Alphabets

An alphabet is a finite, nonempty set of symbols.

Examples

{ a, b, . . . , z }

{ a, b, . . . , z, ä, ö, ü, ß }

{ 0,1 }

ASCII

Alphabets are usually denoted by Σ.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.24/74

Words

A word (or string) or over an alphabet is a finite sequence of symbols
from the alphabet.

Examples

sour

süß

010101110

We write the empty string as ε.

Let Σ∗ be the set of all words over alphabet Σ.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.25/74

Words as Lists

One can think about strings as a ε-terminated list of symbols.

Examples

sour = s · o · u · r · ε
süß = s · ü · ß · ε
010101110 = 0 · 1 · 0 · 1 · 0 · 1 · 1 · 1 · 0 · ε

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.26/74

Operations on Words: Length

Definition Let Σ be an alphabet. The length function | − | : Σ∗ → N

is defined inductively as follows.

|w| =







0 if w = ε

1 + |w′| if w = a · w′

E.g. |abb| = |a · b · b · ε|
= 1 + |b · b · ε|
= 1 + 1 + |b · ε|
= 1 + 1 + 1 + |ε|
= 1 + 1 + 1 + 0

= 3

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.27/74

Operations on Words: Concatenation

Definition Let Σ be an alphabet. The concatenation operation
C : Σ∗ × Σ∗ → Σ is defined inductively as follows.

C(w1, w2) =







w2 if w1 = ε

a · (C(w′
1, w2)) if w1 = a · w′

1

E.g. C(01, 10) = C(0 · 1 · ε, 10)
= 0 · C(1 · ε, 10)
= 0 · 1 · C(ε, 10)

= 0 · 1 · 10
= 0110

Notation C(w1, w2) usually written as w1 · w2 or w1w2.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.28/74

Substrings

Using concatenation, we can define substrings.

v is a substring of a string w if there are strings x and y s.t.
w = xvy

if w = uv for some string u then v is a suffix of w

if w = uv for some string v then u is a prefix of w

Degenerate cases:

ε is a substring of any string

Any string is a substring of itself

ε is a prefix and suffix of any string

Any string is a prefix and suffix of itself

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.29/74

Operations on Words: Exponentiation

Definition Let Σ be an alphabet. The exponentiation operation
−− : Σ∗ × N → Σ∗ is defined inductively as follows.

wi =







ε if i = 0

w ◦ (wi−1) otherwise

E.g. (ab)2 = ab ◦ (ab)1

= ab ◦ ab ◦ (ab)0

= ab ◦ ab ◦ ε

= abab

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.30/74

Operations on Words: Reverse

Definition Let Σ be an alphabet. The reverse operation
−R : Σ∗ → Σ∗ is defined inductively as follows.

wR =







ε if w = ε

C(wR, a) if w = a · u

E.g. abcR = (a · b · c · ε)R

= C((b · c · ε)R, a)

= C(C((c · ε)R, b), a)

= C(C(C((ε)R, c), b), a)

= C(C(C(ε, c), b), a)

= C(C(c, b), a)

= C(cb, a)

= cba

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.31/74

Properties of Operators on Words

ε ◦ w = w

w ◦ ε = w

w1 ◦ (w2 ◦ w3) = (w1 ◦ w2) ◦ w3

|w1 ◦ w2| = |w1| + |w2|
w1 = w

wi+j = wi ◦ wj

(wR)R = w

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.32/74

Conventions

Σ is an arbitrary alphabet. (In examples, Σ should be clear from
context.)

The variables a–e range over letters in Σ.

The variables u–z range over words over Σ∗.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.33/74

Formal Definitions Using Recursive Sets

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.34/74

More Formally: Alphabets and Words

Definition (Alphabet) An alphabet is a finite, non-empty set of
symbols.

Definition (Σ∗) Let Σ be an alphabet. The set Σ∗ of words (or

strings) over Σ is defined recursively as follows.

ε ∈ Σ∗

If a ∈ Σ and w ∈ Σ∗ then a · w ∈ Σ∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.35/74

What?

ε is a special symbol representing the empty string (i.e. a string
with no symbols). You can also think of it as the “end-of-word”
marker.

a · w represents a word consisting of the letter a followed by the
word w.

Examples

ε ∈ {0, 1}∗

0 · ε ∈ {0, 1}∗

0 · 1 · 1 · 0 · ε ∈ {0, 1}∗

Notation Instances of ·, trailing ε’s are usually omitted:
0, 0110 written rather than 0 · ε, 0 · 1 · 1 · 0 · ε.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.36/74

Recall Fibonacci

The nth Fibonacci number f(n):

f(0) = 0

f(1) = 1

f(n) = f(n − 1) + f(n − 2), for n ≥ 2

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.37/74

Recursive Definitions for Functions

Recursion A method of defining something “in terms of itself”.

Fibonacci is defined in terms of itself.

Why is this OK?

Because:

There are “base cases” (n = 0, 1).

Applications of f in body are to “smaller” arguments.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.38/74

Sets Can Also Be Defined Recursively

Recursive set definitions consist of rules explaining how to build up
elements in the set from elements already in the set.

Example A set A can be defined as follows.

1 ∈ A

If a ∈ A then a + 3 ∈ A

What are elements in A?

A = {1, 4, 7, ...} = [1]=3

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.39/74

Elements of Recursively Defined Sets

The previous definition specifies that A =
⋃∞

i=0
Ai, where

A0 = ∅
Ai+1 = {1} ∪ { a + 3 | a ∈ Ai }

E.g.

A0 = ∅
A1 = {1} ∪ ∅ = {1}
A2 = {1} ∪ {4} = {1, 4}
A3 = {1} ∪ {4, 7} = {1, 4, 7}
A4 =

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.40/74

More Generally

Recursive set definitions consist of rules of following forms:
c ∈ A for some constant c

If a ∈ A and p(a) then f(a) ∈ A for some predicate p and function f

Then A =
⋃∞

i=0
Ai, where

A0 = ∅
Ai+1 = { c | c ∈ A is a rule }∪

{f(a) | If a ∈ A and p(a) then f(a) ∈ A is a rule

∧ a ∈ Ai ∧ p(a)}

E.g. In previous example:

p(a) is “true”

f(a) = a + 3

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.41/74

More Formally: Alphabets and Words

Definition (Σ∗) Let Σ be an alphabet. The set Σ∗ of words (or

strings) over Σ is defined recursively as follows.

ε ∈ Σ∗

If a ∈ Σ and w ∈ Σ∗ then a · w ∈ Σ∗

(Σ∗) =
⋃∞

i=0
(Σ∗)i, where

(Σ∗)0 = ∅
(Σ∗)i+1 = ε ∪ { a · w | a ∈ Σ and w ∈ (Σ∗)i }

Convention: we write 0, 10 rather than 0 · ε, 1 · 0 · ε.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.42/74

An example

(Σ∗) =
⋃∞

i=0
(Σ∗)i, where

(Σ∗)0 = ∅
(Σ∗)i+1 = ε ∪ { a · w | a ∈ Σ and w ∈ (Σ∗)i }

For example, let Σ = {0, 1}

(Σ∗)0 = ∅
(Σ∗)1 = {ε} ∪ ∅ = {ε}
(Σ∗)2 = {ε} ∪ {0, 1} = {ε, 0, 1}
(Σ∗)3 = {ε} ∪ {0, 1, 00, 01, 10, 11} = {ε, 0, 1, 00, 01, 10, 11}
(Σ∗)4 =

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, ...}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.43/74

Generally...

Σ∗ =
⋃∞

i=0
(Σ∗)i, where

(Σ∗)0 = ∅
(Σ∗)1 = {ε}
(Σ∗)2 = {ε} ∪ { a · ε | a ∈ Σ }

= {ε} ∪ { a | a ∈ Σ }
(Σ∗)3 = {ε} ∪ { a · w′ | a ∈ Σ ∧ w′ ∈ (Σ∗)2 }

= {ε} ∪ { a · ε | a ∈ Σ } ∪ { a1 · a2 · ε | a1, a2 ∈ Σ }
= {ε} ∪ { a | a ∈ Σ } ∪ { a1a2 | a1, a2 ∈ Σ }
...

Note. (Σ∗)i consists of all words containing up to i − 1 symbols from Σ.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.44/74

Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.45/74

Languages

... are just sets of words, i.e. subsets of Σ∗!

Definition Let Σ be an alphabet. Then a language over Σ is a
subset of Σ∗.

Question What is 2Σ
∗

?

The set of all languages over Σ!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.46/74

Operations on Languages

The usual set operations may be applied to languages: ∪,∩, etc. One
can also “lift” operations on words to languages.

Definition Let Σ be an alphabet, and let L, L1, L2 ⊆ Σ∗ be
languages.

Concatenation: L1 ◦ L2 = {w1 ◦ w2 | w1 ∈ L1 ∧ w2 ∈ L2 }.

Exponentiation: Let i ∈ N. Then Li is defined recursively as follows.

Li =







{ε} if i = 0

L ◦ Li−1 otherwise

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.47/74

Examples of Language Operations

{ab, aa} ◦ {bb, a} = {ab ◦ bb, ab ◦ a, aa ◦ bb, aa ◦ a}
= {abbb, aba, aabb, aaa}

{01, 1}2 = {01, 1} ◦ {01, 1}1

= {01, 1} ◦ {01, 1} ◦ {01, 1}0

= {01, 1} ◦ {01, 1} ◦ {ε}
= {0101, 011, 101, 11}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.48/74

Operations on Languages: Kleene Closure

Kleene closure (pronounced “clean-y”) is another important operation
on languages.

Definition Let Σ be an alphabet, and let L ⊆ Σ∗ be a language.
Then the Kleene closure, L∗, of L is defined recursively as follows.

1. ε ∈ L∗.

2. If w ∈ L and w′ ∈ L∗ then w ◦ w′ ∈ L∗

E.g. {01}∗ = {ε, 01, 0101, 010101, ...}

What is ∅∗?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.49/74

What is L∗ Mathematically?

Since L∗ is defined recursively, we know that L∗ =
⋃∞

i=0
(L∗)i, where:

(L∗)0 = ∅
(L∗)i+1 = {ε} ∪ {u ◦ v | u ∈ L and v ∈ (L∗)i }

(L∗)1 = {ε}
(L∗)2 = {ε} ∪ {w ◦ ε | w ∈ L }

= {ε} ∪ L

(L∗)3 = {ε} ∪ {w ◦ w′ | w ∈ L ∧ w′ ∈ (L∗)2 }
= {ε} ∪ L ∪ (L ◦ L)

(L∗)i consists of words obtained by gluing together up to i − 1 copies
of words from L.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.50/74

A Variation on L∗

Definition Let L ⊆ Σ∗. Then L+ is defined inductively as follows.

L ⊆ L+.

If v ∈ L and w ∈ L+ then v ◦ w ∈ L+.

Difference between L∗, L+: ε is not guaranteed to be an element of
L+!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.51/74

Properties of L1 ◦ L2, Li, L∗, L+

L ◦ ∅ = ∅ (1)

L ◦ {ε} = L (2)

L1 ◦ (L2 ◦ L3) = (L1 ◦ L2) ◦ L3 (3)

L1 ◦ (L2 ∪ L3) = (L1 ◦ L2) ∪ (L1 ◦ L3) (4)

L1 = L (5)

Li+j = Li ◦ Lj (6)

L∗ =
∞
⋃

i=0

Li (7)

L+ =

∞
⋃

i=1

Li (8)

L+ = L ◦ L∗ (9)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.52/74

Logic

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.53/74

Logic ...

... is the study of propositions and proofs.

Propositions: Statements that are either true or false.

Proof: A rigorous argument that a proposition is true.

Propositions are built up

... from (nonlogical/domain-specific) predicates and atomic
propositions...

E.g. “x is prime”, “f is differentiable”

... using logical constructors.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.54/74

What Do the Following Logical Constructors
Mean?

∧ conjunction (“and”)

∨ disjunction (“or”)

¬ negation (“not”)

−→ implication (“if ... then”, “implies”)

←→ bi-implication (“if and only if”)

∀ universal quantifier (“for all”)

∃ existential quantifier (“there exists”)

Examples (Propositions)

1. ∀f : R → R. “f is differentiable” −→ “f is continuous”

2. ¬∃x ∈ N. “x is prime” ∧ (∀y ∈ N. y ≥ x −→ ¬“y is prime”).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.55/74

Formulas and Instantiations

Definition A formula is a proposition containing propositional and
predicate variables.
E.g. ¬(p ∧ q), ∀x : N. P (x)

Definition A substitution is a function R mapping propositional
variables to propositions and predicate variables to predicates.
E.g. R where R(p) = “1 > 0”, R(q) = “1 < 0”, and R(P) = “x > x + 1”

Definition An instantiation of a formula f by substitution R (notation:
f [R]) is a proposition obtained by replacing each variable p in f with
R(p).

E.g.
(¬(p ∧ q))[R] = ¬(1 > 0 ∧ 1 < 0)

(∀x : N. P (x))[R] = ∀x : N. x + 1 > x

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.56/74

Logical Implications, Logical Equivalences, and
Tautologies

Definition Let f, g be formulas.

f logically implies g (notation: f =⇒ g) if for every substitution R

such that f [R] is true, g[R] is also true.

f and g are logically equivalent (notation: f ⇐⇒ g) if for every
substitution R, f [R] and g[R] are either both true or both false.

f is a tautology if for every substitution R, f [R] is true (equivalently,
f ≡ true).

Intuitively, f =⇒ g and f ≡ g reflect truths that hold independently of
any domain-specific information.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.57/74

Examples of Implications, Equivalences and Tau-
tologies

p ∧ q =⇒ p ∨ q Disjunctive weakening (I)

p =⇒ p ∨ q Disjunctive weakening (II)

¬¬p ≡ p Double negation

p −→ q ≡ (¬p) ∨ q Material implication

¬(p ∨ q) ≡ (¬p) ∧ (¬q) DeMorgan’s Laws

p −→ q ≡ (¬q) −→ (¬p) Contrapositive

¬∀x. P (x) ≡ ∃x.¬P (x) DeMorgan’s Laws

p ∨ (¬p) ≡ true Law of Excluded Middle

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.58/74

Propositions, Natural Language, and Mathematics

In this course we will devote a lot of attention to proofs of assertions
about different models of computation.

These statements are usually given in English, e.g.

A language L is regular if and only if it can be recognized by
some FA M .

In order to prove statements like these it is extremely useful to know
the “logical structure” of the statement: that is, to “convert” it into a
proposition!

E.g.
∀L. “L is a language” −→ (“L is regular” ←→ ∃M. “M is a FA” ∧ “M recognizes L”)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.59/74

Translating Natural Langauge into Logic

Phrase Logical construct

“... not ...” ¬
“... and ...” ∧
“... or ...” ∨
“if ... then ..., “... implies ...”, −→
“... only if ...”

“... if and only if ...”, ←→
“... is logically equivalent to ...”

“... all ...”, “... any ...” ∀
“... exists ...”, “... some ...” ∃

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.60/74

Proofs

Proofs are rigorous arguments for the truth of propositions. They come
in one of two forms.

Direct proofs: Use “templates” or “recipes” based on the logical form of
the proposition.

Indirect proofs: Involve the direct proof of a proposition that logically
implies the one we are interested in.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.61/74

Direct Proofs

Logical Form Proof recipe

¬p Assume p and then derive a contradiction.

p ∧ q Prove p; then prove q.

p ∨ q Prove either p or q.

p −→ q Assume p and then prove q.

p ←→ q Prove p −→ q; then prove q −→ p.

∀x. P (x) Fix a generic x and then prove P (x).

∃x. P (x) Present a specific value a and prove P (a).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.62/74

Sample Direct Proof

A theorem is a statement to be proved.

Theorem A language L is regular if and only if it is recognized by
some FA M .

Logical Form
∀L. “L is a language” −→ (“L is regular” ←→ ∃M. “M is a FA” ∧ “M recognizes L”)

Proof Fix a generic L (∀) and assume that L is a language (−→);
we must prove that L is regular if and only if it is recognized by some
FA M . So assume that L is regular; we must now show that some FA
M exists such that M recognizes L (first part of ←→).... Now assume
that some FA M exists such that M recognizes L; we must show that
L is regular (second part of ←→)....

This is not a complete proof; we need to know the definitions to
continue. But notice that the logical form gets us started!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.63/74

Indirect Proofs

... rely on proof of a statement that logically implies the one we are
interested in.

Examples

To prove... It suffices to prove... Terminology

p ¬¬p “Proof by contradiction”

p −→ q (¬q) −→ (¬p) “Proof by contrapositive”

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.64/74

Mathematical Induction...

... is an indirect proof technique for statements having logical form

∀k ∈ N. P (k).

Induction proofs have two parts.

Base case: Prove P (0).

Induction step: Prove ∀k ∈ N. (P (k) −→ P (k + 1)). The P (k) is often
called the induction hypothesis.

Note that an induction proof is actually a proof of the following:

P (0) ∧ (∀k ∈ N. P (k) −→ P (k + 1))

Why does this logically imply ∀k ∈ N. P (k)?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.65/74

Sample Induction Proof

Theorem For any natural number k,
∑k

i=0
2i = 2k+1 − 1

Logical Form ∀k ∈ N. P (k), where P (k) is
∑k

i=0
2i = 2k+1 − 1

Proof The proof proceeds by induction.

Base case: We must prove P (0), i.e.
∑0

i=0
2i = 21 − 1. But

∑0

i=0
2i = 20 = 1 = 2 − 1 = 21 − 1.

Induction step: We must prove ∀k ∈ N. P (k) −→ P (k + 1). So fix a
generic k ∈ N and assume (induction hypothesis) that P (k) holds, i.e.
that

∑k

i=0
2i = 2k+1 − 1 is true. We must prove P (k + 1), i.e. that

∑k+1

i=0
2i = 2k+2 − 1. The proof proceeds as follows.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.66/74

Proof (cont.)

∑k+1

i=0
2i = (

∑k
i=0

2i) + 2k+1 Definition of
∑

= 2k+1 − 1 + 2k+1 Induction hypothesis

= (2 · 2k+1) − 1 Arithmetic

= 2k+2 − 1 Exponentiation

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.67/74

Strong Induction (Skip)

Also used to prove statements of form ∀n ∈ N.P (n)

Like regular induction but with “stronger” induction hypothesis and
no explicit base case.

Notation [i..j) = {i, i + 1, ..., j − 1}.

Strong induction argument consists of proof of following

∀n ∈ N. (∀k ∈ [0..n). P (k)) −→ P (n)

∀k ∈ [0..n). P (k) is usually called the induction hypothesis.

Proof usually requires a case analysis on values n can take.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.68/74

Example Strong Induction Proof (Skip)

Theorem Consider f : N → N given as follows.

f(n) =







1 if n = 0, 1

f(n − 1) + f(n − 2) otherwise

Prove that f(n) ≤ (5

3
)n all n ∈ N.

Logical Form ∀n ∈ N. P (n), where P (n) is “f(n) ≤ (5

3
)n”.

Proof Proceeds by strong induction. So fix n ∈ N and assume
(induction hypothesis) ∀k ∈ [0..n).P (k); we must prove P (n). We now
do a case analysis on n.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.69/74

Example Strong Induction Proof (cont.) (Skip)

n = 0: We must show P (0), i.e. f(0) ≤ (5

3
)0. But f(0) = 1 = (5

3
)0.

n = 1: We must show P (1), i.e. f(1) ≤ (5

3
)1. This follows because

f(1) = 1 < 5

3
= (5

3
)1.

n ≥ 2: In this case we argue as follows.

f(n) = f(n − 1) + f(n − 2) Definition of f

≤ (5

3
)n−1 + (5

3
)n−2 Induction hypothesis

(twice)

= (5

3
)n−2 · (5

3
+ 1) Factoring

= (5

3
)n−2 · (8

3
) Algebra

< (5

3
)n−2 · (5

3
)2 8

3
= 24

9
< 25

9
= (5

3
)2

= (5

3
)n Exponents

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.70/74

Proving Properties of Recursively Defined Sets

Suppose A is a recursively defined set; how do we prove a statement
of form:

∀a ∈ A. P (a)

Use induction!

Recall that A =
⋃∞

i=0
Ai.

∀a ∈ A. P (a) is logically equivalent to ∀k ∈ N. (∀a ∈ Ak. P (a)).

The latter statement has the correct form for an induction proof!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.71/74

Example Proof about Recursively Defined Set

Theorem Let A ⊆ N be the set defined as follows.

1. 0 ∈ A

2. If a ∈ A then a + 3 ∈ A.

Prove that any a ∈ A is divisible by 3.

Logical form ∀a ∈ A. P (a), where P (a) is “a is divisible by 3”.

Proof Proceeds by induction. The statement to be proved has form
∀k ∈ N. Q(k), where Q(k) is ∀a ∈ Ak. P (a).

Base case: k = 0. We must prove Q(0), i.e. ∀a ∈ A0. P (a), i.e. for
every a ∈ A0, a is divisible by 3. This follows immediately since A0 = ∅.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.72/74

Sample Proof (cont.)

Induction step: We must prove that ∀k ∈ N. (Q(k) −→ Q(k + 1)). So fix
k ∈ N and assume Q(k), i.e. ∀a ∈ Ak. P (a) (induction hypothesis). We
must show Q(k + 1) = ∀a ∈ Ak+1. P (a), i.e. we must show that every
a ∈ Ak+1 is divisible by 3 under the assumption that every a ∈ Ak is
divisible by 3. So fix a generic a ∈ Ak+1. Based on the definition of A a

is added into Ak+1 in one of two ways.

a = 0. In this case a is certainly divisible by 0, since 0 = 0 · 3.

a = b + 3 for some b ∈ Ak. By the induction hypothesis b is divisible
by 0, i.e. b = 3 · c some c ∈ N. But then a = b + 3 = 3 · (c + 1), and
thus a is divisible by 3.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.73/74

Notes on Proof

In the induction proof the base case was trivial; this will always be
the case when using induction to prove properties of recursive
sets! So it can be omitted.

The induction step amounts to showing that the constants have the
right property and that each application of a rule “preserves” the
property.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.74/74

	Sets, Languages, Logic
	What This Course Is About
	Why Study This Topic?
	Why Study This Topic?
	Administrivia
	Set Theory: Sets, Functions, Relations
	Sets
	What Do the Following Mean?
	Examples
	Equality on Sets
	Cardinality
	Binary Relations
	Equivalence Relations
	Equivalence Classes
	Functions
	Relational Inverse
	Bijections
	Which $f:
ats
ightarrow
ats $ Is Injective/Surjective?
	More On Functions
	Cardinality Revisited
	Words
	Languages and Computation
	Alphabets
	Words
	Words as Lists
	Operations on Words: Length
	Operations on Words: Concatenation
	Substrings
	Operations on Words: Exponentiation
	Operations on Words: Reverse
	Properties of Operators on Words
	Conventions
	Formal Definitions Using Recursive Sets
	More Formally: Alphabets and Words
	What?
	Recall Fibonacci
	Recursive Definitions for Functions
	Sets Can Also Be Defined Recursively
	Elements of Recursively Defined Sets
	More Generally
	More Formally: Alphabets and Words
	An example
	Generally...
	Languages
	Languages
	Operations on Languages
	Examples of Language Operations
	Operations on Languages: Kleene Closure
	What is L^* Mathematically?
	A Variation on L^*
	Properties of $L_1 concat L_2$, L^i, L^*, L^+
	Logic
	Logic ...
	What Do the Following Logical Constructors Mean?
	Formulas and Instantiations
	Logical Implications, Logical Equivalences, and Tautologies
	Examples of Implications, Equivalences and Tautologies
	Propositions, Natural Language, and Mathematics
	Translating Natural Langauge into Logic
	Proofs
	Direct Proofs
	Sample Direct Proof
	Indirect Proofs
	Mathematical Induction...
	Sample Induction Proof
	Proof (cont.)
	Strong Induction (Skip)
	Example Strong Induction Proof (Skip)
	Example Strong Induction Proof (cont.) (Skip)
	Proving Properties of Recursively Defined Sets
	Example Proof about Recursively Defined Set
	Sample Proof (cont.)
	Notes on Proof

