
Automata Theory and Formal Grammars: Lecture 7

Non-Context Free Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.1/48

Non-Context Free Languages

Last Time

Context-free grammars and languages

Closure properties of CFLs

Relating regular languages and CFLs

Today

An introduction to Chomsky Normal Form

Eliminating ε-productions from CFGs

Eliminating unit productions from CFGs

A Pumping Lemma for CFLs

Non-closure Properties for CFLs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.2/48

Simplifying CFGs: Chomsky Normal Form

A question we are ultimately interested in: what can and can’t we do

with CFGs? I.e. are there langauges that are not context-free?

For regular languages, we showed how FAs can be simplified

(minimized).

This served as basis for proofs of nonregularity.

We will follow a similar line of development for CFLs, but with a twist.

We will show how CFGs can be “simplified” into Chomsky Normal

Form.

We will use this simplification scheme as a basis for establishing

that languages are not CFLs (among other things).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.3/48

Defining Chomsky Normal Form

Definition A CFG 〈V,Σ, S, P 〉 is in Chomsky Normal Form (CNF) if

every production has one of two forms.

A −→ BC for B,C ∈ V

A −→ a for a ∈ Σ

Examples

1. Is S −→ ε | 0S1 in CNF?

No; both productions violate the two allowed forms.

2. Is S −→ SS | 0 | 1 in CNF?

Yes.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.4/48

What’s the Big Deal about CNF?

In an arbitrary CFG it is hard to say whether applying a production

leads to “progress” in generating a word.

Example Consider the following CFG G:

S −→ SS | 0 | 1 | ε

and look at this derivation of 01.

S ⇒G SS ⇒G SSS ⇒G SSSS ⇒G SSS ⇒G SS ⇒G 0S ⇒G 01

The “intermediate strings” can grow and shrink!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.5/48

What’s the Big Deal about CNF? (cont.)

Applying a production in a CNF grammar always results in “one step of

progress”: either the number of nonterminals grows by one, or the

number of terminals increases by 1.

Example Consider G′ given below.

S −→ SS | 0 | 1

The derivation for 01 is:

S ⇒G′ SS ⇒G′ 0S ⇒G′ 01.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.6/48

Converting CFGs into CNF

Can every CFG G be converted into a CNF CFG G′ so that

L(G′) = L(G)?

No! If G′ is in CNF, then ε 6∈ L(G)!

However, we can get a CNF G′ so that L(G′) = L(G)− {ε}.

1. Eliminate ε-productions (i.e. productions of form A −→ ε).

2. Eliminate unit productions (i.e. productions of form A −→ B).

3. Eliminate terminal+ productions (i.e. productions of form A −→ aC

or A −→ aba).

4. Eliminate nonbinary productions (i.e. productions of form

A −→ ABA).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.7/48

Eliminating ε-Productions

CNF grammars contain no ε-productions, and yet arbitrary CFGs may.

To convert a CFG to CNF, we therefore need a way of eliminating them.

Of course, CFGs without ε-productions cannot generate the word ε.

Goal Given CFG G, generate CFG G1 such that:

G1 has no ε-productions; and

L(G1) = L(G)− {ε}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.8/48

Eliminating ε-Productions: The Naive Approach

Can we just eliminate the ε-productions?

No! What would language of new grammar be if we eliminate the

ε-production in the following?

S −→ ε | 0S1

Answer ∅!

The new grammar would be S −→ 0S1.

Every derivation looks like: S ⇒G 0S1 ⇒G 00S11 ⇒G ···.

That is, can’t get rid of S!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.9/48

So How Can We Eliminate ε-Productions?

ε-productions add “derivational capability” in CFGs by allowing

variables to be “eliminated” in a derivation step.

Example Consider the CFG G given as follows.

S −→ ε | 0S1

The derivation S ⇒G 0S1 ⇒G 01 uses the ε-production to get rid of S.

If we want to eliminate ε-productions, we need to add new productions

that preserve this derivational capability.

1. Precisely what “derivational capability” do ε-productions provide?

2. How can we recover this capability without ε-productions?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.10/48

Nullability

Definition Let G = 〈V,Σ, S, P 〉 be a CFG. Then A ∈ V is nullable if

A ⇒∗
G ε.

E.g. Consider the following CFG.

S −→ ABCBC

A −→ CD

B −→ Cb

C −→ a | ε

D −→ bD | ε

A is nullable since A ⇒G CD ⇒G D ⇒G ε.

Why are variables nullable? Because of ε-productions! So nullability is

the “derivational capability” that ε-productions add to a CFG.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.11/48

Generating a ε-Production-Free CFGs

Let G = 〈V,Σ, S, P 〉 be a CFG, and let N ⊆ V be the set of nullable

variables.

If we remove the ε-productions from G, we remove the capability of

nullifying variables (i.e. “eliminating” them).

To restore this capability, we need to add productions in which nullable

variables are explicitly removed.

Example Consider

S −→ ε | 0S1

S is nullable; to eliminate ε-production we should add production

S −→ 01. The new grammar:

S −→ 0S1 | 01

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.12/48

Constructing ε-Free CFGs

Let G = 〈V,Σ, S, P 〉 be a CFG, and let N ⊆ V be the set of nullable

variables. Consider the following definition of G1 = 〈V1,Σ, S1, P1〉.

V1 = V

S1 = S

P = P − {A −→ ε | A −→ ε ∈ P }

∪ {A −→ α0···αn | α0···αn 6= ε ∧ ∃A1, ..., An ∈ N.

A −→ α0A1α1...αn−1Anαn ∈ P}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.13/48

Huh?

P1 contains:

the non-ε-productions in P , together with

productions obtained by selectively omitting occurrences of

nullable variables.

A −→ α0A1α1...αn−1Anαn is a production in G.

The Ai are nullable variables.

The αi is the “stuff” in-between the Ai.

A −→ α0···αn is a modified production with the Ai’s omitted.

The idea is that in the original grammar, A ⇒∗
G α0···αn by “nullifying”

the Ai. In G1, this capability is realized in a single production.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.14/48

Calculating the Set of Nullable Variables

To generate G1, we need to calculate the set N ⊆ V of nullable

variables. We can do so by giving a recursive characterization of N .

Define N(G) ⊆ V as follows.

If A −→ ε then A ∈ N(G).

If A −→ B1···Bn and B1, ..., Bn ∈ N(G) then A ∈ N(G).

Lemma Let G = 〈V,Σ, S, P 〉 be a CFG, and let A ∈ V . Then

A ∈ N(G) if and only if A is nullable.

Proof Use induction!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.15/48

Example

Consider G given as follows.

S −→ ABCBC

A −→ CD

B −→ Cb

C −→ a | ε

D −→ bD | ε

First, calculate N(G).

N(G)0 = ∅

N(G)1 = {C,D}

N(G)2 = {A,C,D}

N(G)3 = N(G)2

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.16/48

Recall G; remember that N(G) = {A,C,D}.

S −→ ABCBC C −→ a | ε

A −→ CD D −→ bD | ε

B −→ Cb

G1 is (boxed transitions are new ones):

S −→ ABCBC | ABCB | ABBC | ABB

| BCBC | BCB | BBC | BB

A −→ CD | C | D

B −→ Cb | b

C −→ a

D −→ bD | b

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.17/48

Where are we?

So Far

Simplifying CFGs and Chomsky Normal Form (CNF)

Eliminating ε-productions from CFGs.

To Do Eliminating:

unit

terminal+

nonbinary productions

from CFGs.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.18/48

Converting CFGs into Chomsky Normal Form

1. Eliminate ε-productions (A −→ ε).

2. Eliminate unit productions (A −→ B).

3. Eliminate terminal+ productions (A −→ aC, A −→ aba).

4. Eliminate nonbinary productions (A −→ ABA).

Last time we proved the following.

Lemma Let G be a CFG. Then there is a CFG G1 containing no

ε-productions and such that L(G1) = L(G)− {ε}.

I.e. we now know how to eliminate ε-productions! What about the

others?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.19/48

Eliminating Unit Productions

Definition A unit production has form A −→ B where B ∈ V .

Like ε productions, they add “derivational capability” to grammars.

Consequently, if we eliminate them we need to “add in” productions

that simulate derivations that involved them.

Example Consider G given by:

S −→ A | C

A −→ aA | B

B −→ bB | b

C −→ cC | c

In order to remove S −→ A, need to add e.g. S −→ aA!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.20/48

But Which Productions Do We Need To Add?

Suppose G is a CFG. Then unit productions allow derivations like this.

A ⇒G A1 ⇒G A2 ⇒G ··· ⇒G An ⇒G α

where each Ai ∈ V is a single variable. If α is not just a single variable,

then we should add a production A −→ α. How do we determine these

α’s?

Definition Let G = 〈V,Σ, S, P 〉 be a CFG, with A ∈ V . Then

U(G,A) ⊆ V is defined inductively as follows.

A ∈ U(G,A).

If B ∈ U(G,A) and B −→ C ∈ P then C ∈ U(G,A).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.21/48

U(G,A) and New Productions

Intuitively, B ∈ U(G,A) iff A ⇒∗
G B using only unit productions!

Idea In new CFG, we will remove unit productions but add in

productions of form A −→ α for every variable A, where B −→ α in

original CFG and B ∈ U(G,A)!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.22/48

Example

Let G be given as follows.

S −→ A | C

A −→ aA | B

B −→ bB | b

C −→ cC | c

Then U(G,S) can be computed as follows.

U(G,S)0 = ∅

U(G,S)1 = {S}

U(G,S)2 = {S,A,C}

U(G,S)3 = {S,A,B,C} = U(G,S)4

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.23/48

Example (cont.)

S −→ A | C

A −→ aA | B

B −→ bB | b

C −→ cC | c

We can similarly show that U(G,A) = {A,B}, U(G,B) = {B}, and

U(G,C) = {C}. Then the new grammar should be:

S −→ aA | bB | b | cC | c

A −→ aA | bB | b

B −→ bB | b

C −→ cC | c

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.24/48

Formal Construction

Let G = 〈V,Σ, S, P 〉 be a CFG. Then we define G2 = 〈V,Σ, S, P2〉 as

follows.

P2 = {A −→ α | ∃B ∈ U(G,A), α. B −→ α ∈ P ∧ α 6∈ V }

Fact Let G = 〈V,Σ, S, P 〉 be a CFG without ε productions, and let G2

be defined as above. Then the following hold.

1. G2 contains no ε productions.

2. G2 contains no unit productions.

3. L(G2) = L(G)− {ε}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.25/48

Eliminating Terminal+ Productions

Definition A production A −→ α is terminal+ if |α| ≥ 2 and α

contains at least one terminal.

Examples

A −→ Ca

A −→ aba

Eliminating these is fairly simple:

Introduce a new variable Xa for each terminal a ∈ Σ.

Add productions Xa −→ a.

In each terminal+ production, replace terminals a by variables Xa.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.26/48

Example

Let G be given by:

S −→ aSb | aS | Sb | a | b

Then G3 is:

S −→ XaSXb | XaS | SXb | a | b

Xa −→ a

Xb −→ b

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.27/48

Formal Construction

Let G = 〈V,Σ, S, P 〉 be a CFG. Then we define G3 = 〈V3,Σ, S, P3〉 as

follows.

V3 = V ∪ {Xa | a ∈ Σ }, where Xa 6∈ V ∪ Σ

P3 = {A −→ α′ | A −→ α ∈ P

∧ α′
is α with a replaced by Xa if A −→ α is terminal+}

∪ {Xa −→ a | a ∈ Σ }

Lemma Let G be a CFG without ε- or unit-productions, and let G3

be constructed as above. Then the following are true.

1. G3 contains no ε or unit productions.

2. G3 contains no terminal+ productions.

3. L(G3) = L(G)− {ε}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.28/48

Eliminating Nonbinary Productions

Definition A production A −→ α is nonbinary if |α| ≥ 3.

Example A −→ BAB

How do we eliminate these?

For each such production p = A −→ A1A2···An and n ≥ 3, we will

introduce new variables Xp,2, ...Xp,n−1.

Replace A −→ A1A2···An by a collection of productions:

A −→ A1Xp,2

Xp,2 −→ A2Xp,3

...

Xp,n−1 −→ An−1An

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.29/48

Explaining the Idea

Suppose we have a production A −→ BCCD. The construction would

replace it with the following.

A −→ BXp,2

Xp,2 −→ CXp,3

Xp,3 −→ CD

In the original CFG, A ⇒∗
G BCCD in one step.

In the new CFG it takes three steps:

A ⇒G4
BXp,2 ⇒G4

BCXp,3 ⇒G4
BCCD.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.30/48

Example

Let G be:

S −→ XaSXb | XaS | SXb | a | b

Xa −→ a

Xb −→ b

Then G4 is:

S −→ XaX1,2 | XaS | SXb | a | b

X1,2 −→ SXb

Xa −→ a

Xb −→ b

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.31/48

Formal Construction

Let G = 〈V,Σ, S, P 〉 be a CFG containing no terminal+ productions.

Then we define G4 = 〈V4,Σ, S, P4〉 as follows.

V4 = V ∪ {Xp,i | p = A −→ α ∈ P ∧ 2 ≤ i < |α| }, where Xp,i 6∈ V ∪ Σ

P4 = {A −→ α ∈ P | |α| ≤ 2 }

∪ {A −→ A1Xp,2 | p = A −→ A1...An ∈ P ∧ n > 2 }

∪ {Xp,i −→ AiXp,i+1 | p = A −→ A1...An ∈ P ∧ n > 2 ∧ 2 ≤ i < n− 1 }

∪ {Xp,n−1 −→ An−1An | p = A −→ A1...An ∈ P ∧ n > 2 }

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.32/48

Correctness of Nonbinary Production Elimination

Lemma Let G be a CFG without ε-, unit- or terminal+ productions,

and let G4 be constructed as above. Then the following hold.

1. G4 has no ε-, unit- or terminal+ productions.

2. G4 has no nonbinary productions.

3. L(G4) = L(G)− {ε}.

Note Since G4 contains no ε-, unit-, terminal+, or nonbinary

productions, it has to be in Chomsky Normal Form!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.33/48

A Pumping Lemma for CFLs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.34/48

Proving Languages Non-Regular

Recall how we proved languages to be nonregular.

Myhill-Nerode: A language L is regular iff its indistinguishability relation

IL has finitely many equivalence classes.

Pumping Lemma: If L is regular, and x ∈ L is “long enough”, then x can

be split into u, v, w so that uviw ∈ L all i.

x

u

v

w

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.35/48

Proving Languages Non-Context-Free

There’s no Myhill-Nerode theorem for CFLs, but there is a Pumping

Lemma: if L is a CFL and a word is “long enough” then parts of the

word can be replicated.

Questions

What is “long enough”?

Which parts can be “replicated”?

To answer these questions we’ll:

introduce the notion of “derivation tree” for CFGs;

show that CFGs in Chomsky normal form have derivation trees of

a specific form.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.36/48

Derivation Trees

“Derivation sequences” show how CFGs generate words.

Example Let G be S −→ ε | 0S1. Then to show that G generates

0011:

S ⇒G 0S1 ⇒G 00S11 ⇒G 00 · ε · 11 = 0011

A derivation tree is a tree-

like representation of a

derivation sequence.

S

S

S

ε

0

0

1

1

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.37/48

Formally Defining Derivation Trees

Definition Let G = 〈V,Σ, S, P 〉 be a CFG, and let w ∈ Σ∗. Then a

derivation tree for w in G is a labeled ordered tree satisfying the

following.

The root is labeled by S.

Internal nodes are labeled by elements of V .singset

Leaves are labeld by elements of Σ ∪ {ε}.

If A is label of an internal node and X1, ..., Xn are labels of its

children from left to right then A −→ X1···Xn is a production in P .

Concatenating the leaves from left to right forms w.

One can show that w ∈ L(G) if and only if there is a derivation tree for

w in G.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.38/48

Another Example Derivation Tree

Let G be:

S −→ AC

A −→ aAb | ε

C −→ cC | ε

Then a derivation tree for aabbc is:

S

CA

a bA

a bA

ε

c C

ε

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.39/48

Derivation Trees and Chomsky Normal Form

Suppose G is in CNF; what property do the derivation trees for words

have?

No leaves are labeled by ε.

Every internal node has either one child, which must be a leaf, or

two children, which must both be internal.

A

B C

A

a

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.40/48

When Are Words “Long Enough”?

If derivation tree for u is... ... then the following derivation tree also exists!

S

A

A

v w x y z

u

S

A

A

A
v w

w x y

y z

If the CFG is in CNF, one can characterize when words are “long

enough” to have such trees!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.41/48

CFGs, CNF and “Long Enough” Words

Suppose G = 〈V,Σ, S, P 〉 is a CFG in CNF. We want to know how long

a word w ∈ L(G) has to be in order to ensure the existence of a

derivation like the following.

S ⇒∗
G vAz ⇒∗

G vwAyx ⇒∗
G vwxyz

Note This holds when derivation tree contains a path of length

|V |+ 1!

Such a path contains |V |+ 2 nodes.

All nodes except last one are labeled by variables.

So some variable appears twice!

Since derivation trees in G must be binary (G is in CNF), the longest a

word w ∈ L(G) can be and have a derivation tree of height |V | is

2|V |−1.

So if |w| ≥ 2|V |−1 + 1, then the “right kind” of derivation must exist!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.42/48

The Pumping Lemma for CFLs

Theorem

If L ⊆ Σ∗ is a CFL

then there exists N > 0 such that for all u ∈ L,

if |u| ≥ N

then there exist v, w, x, y, z ∈ Σ∗ such that:

u = vwxyz and

|wy| > 0 and

|wxy| ≤ N and

for all m ≥ 0, vwmxymz ∈ L.

What is N? If nL is the smallest number of variables needed to give a

CFG G in CNF with L(G) = L− {ε}, then N = 2nL−1 + 1.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.43/48

Proving Languages Non-Context-Free Using the
Pumping Lemma

As was the case with regular languages, we can use the contrapositive

of the Pumping Lemma to prove languages to be non-CFLs

Lemma (Pumping Lemma for CFLs) L is a CFL =⇒ P (L), where

P (L) is:

∃N > 0. ∀u ∈ L . |u| ≥ N =⇒ ∃v, w, x, y, z ∈ Σ∗.

(u = vwxyz ∧ |wy| > 0 ∧ |wxy| ≤ N ∧ ∀m ≥ 0. vwmxymz ∈ L)

Contrapositive (¬P (L)) =⇒ L is not a CFL.

So to prove L is not a CFL, it suffices to prove ¬P (L), which can be

simplified to:

∀N > 0. ∃u ∈ L. |u| ≥ N ∧ ∀v, w, x, y, z ∈ Σ∗.

(u = vwxyz ∧ |wy| > 0 ∧ |wxy| ≤ N) =⇒ ∃m ≥ 0. vwmxymz 6∈ L)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.44/48

Example: Proof that L = { anbncn | n ≥ 0 } Is Not a
CFL

On the basis of the Pumping Lemma it suffices to prove the following.

∀N > 0. ∃u ∈ L. |u| ≥ N ∧ ∀v, w, x, y, z ∈ Σ∗.

(u = vwxyz ∧ |wy| > 0 ∧ |wxy| ≤ N) =⇒ ∃m ≥ 0. vwmxymz 6∈ L)

So fix N > 0 and consider u = aNbNcN ; clearly u ∈ L and |u| ≥ N .

Now fix v, w, x, y, z ∈ Σ∗ so that the following hold.

u = vwxyz

|wy| > 0

|wxy| ≤ N

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.45/48

Proof (cont.)

We wish to show that there is an m such that vwmxymz 6∈ L. There are

two cases to consider.

1. wxy ∈ {a, b}∗ (i.e. contains no c’s).

2. wxy = w′ci some i > 0, w′ ∈ {a, b}∗ (i.e. does contain c’s).

For both cases, consider m = 0. In case 1, vw0xy0z 6∈ L, since

vw0xy0z contains n c’s but < n of either a’s or b’s. In case 2, w′ ∈ {b}∗

since |wxy| ≤ N . Consequently, vw0xy0z contains n a’s but < n b’s or

c’s. So we have demonstrated the existence of m with vwmxymz 6∈ L,

and L is not context-free.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.46/48

Ramifications

Non-context-free languages exist! Other examples:

{ww | w ∈ {a, b}∗ }

{ ambncmdn | m,n ≥ 0 }

However, { ambncndm | m,n ≥ 0 } is a CFL.

Moral In CFLs can count pairwise and “outside in”.

CFLs are not closed with respect to ∩! Let L = { anbncn | n ≥ 0 }.

Then L = L1 ∩ L2 where:

L1 = { anbncm | m,n ≥ 0 }

L2 = { ambncn | m,n ≥ 0 }

Both L1 and L2 are CFLs.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.47/48

Ramifications (cont.)

CFLs are not closed with respect to complementation!

CFLs are closed with respect to ∪.

L1 ∩ L2 = (L′
1 ∪ L′

2)
′

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 7 – p.48/48

	Non-Context Free Languages
	Simplifying CFGs: Chomsky Normal Form
	Defining Chomsky Normal Form
	What's the Big Deal about CNF?
	What's the Big Deal about CNF? (cont.)
	Converting CFGs into CNF
	Eliminating $emptystring $-Productions
	Eliminating $emptystring $-Productions: The Naive Approach
	So How Can We Eliminate $emptystring $-Productions?
	Nullability
	Generating a $emptystring $-Production-Free CFGs
	Constructing $emptystring $-Free CFGs
	Huh?
	Calculating the Set of Nullable Variables
	Example
	Where are we?
	Converting CFGs into Chomsky Normal Form
	Eliminating Unit Productions
	But Which Productions Do We Need To Add?
	$U(G,A)$
and New Productions
	Example
	Example (cont.)
	Formal Construction
	Eliminating Terminal+ Productions
	Example
	Formal Construction
	Eliminating Nonbinary Productions
	Explaining the Idea
	Example
	Formal Construction
	Correctness of Nonbinary Production Elimination
	A Pumping Lemma for CFLs
	Proving Languages Non-Regular
	Proving Languages Non-Context-Free
	Derivation Trees
	Formally Defining Derivation Trees
	Another Example Derivation Tree
	Derivation Trees and Chomsky Normal Form
	When Are Words ``Long Enough''?
	CFGs, CNF and ``Long Enough'' Words
	The Pumping Lemma for CFLs
	Proving Languages Non-Context-Free Using the Pumping Lemma
	Example: Proof that $L = setof {a^nb^nc^n}{n geq 0}$ Is Not a CFL
	Proof (cont.)
	Ramifications
	Ramifications (cont.)

