Automata Theory and Formal Grammars: Lecture 7

Non-Context Free Languages
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Last Time

m Context-free grammars and languages
® Closure properties of CFLs

® Relating regular languages and CFLs

Today

® An introduction to Chomsky Normal Form
® Eliminating e-productions from CFGs

® Eliminating unit productions from CFGs

® A Pumping Lemma for CFLs

® Non-closure Properties for CFLs
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A question we are ultimately interested in: what can and can’t we do
with CFGs? l.e. are there langauges that are not context-free?

® For regular languages, we showed how FAs can be simplified
(minimized).

® This served as basis for proofs of nonregularity.
We will follow a similar line of development for CFLs, but with a twist.

® We will show how CFGs can be “simplified” into Chomsky Normal
Form.

® We will use this simplification scheme as a basis for establishing
that languages are not CFLs (among other things).
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Definition| A CFG (V, X, S, P) is in Chomsky Normal Form (CNF) if
every production has one of two forms.

mA_— BCforB,CcV

mA—sagforaed

Examples

1.1s S—¢ | 051 inCNF?
No, both productions violate the two allowed forms.

2.1s S— S5 | 0|1 inCNF?
Yes.
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In an arbitrary CFG it is hard to say whether applying a production
leads to “progress” in generating a word.

Example | Consider the following CFG G-

S—SS |0 |1]e¢
and look at this derivation of 01.
S=aS55=c8555=c5555=c555=cS55=05=01

The “intermediate strings” can grow and shrink!
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Applying a production in a CNF grammar always results in “one step of

progress”: either the number of nonterminals grows by one, or the
number of terminals increases by 1.

Example| Consider G’ given below.

S—5SS |01

The derivation for 01 is:

S =a S5 = 0S = 01.
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Can every CFG G be converted into a CNF CFG G’ so that
L(G") = L(G)?

No!|If G' isin CNF, then ¢ ¢ L(G)!
However, we can get a CNF G’ so that L(G') = L(G) — {¢}.

1. Eliminate e-productions (i.e. productions of form A — ¢).
2. Eliminate unit productions (i.e. productions of form A — B).

3. Eliminate terminal+ productions (i.e. productions of form A — aC
or A — aba).

4. Eliminate nonbinary productions (i.e. productions of form
A — ABA).
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CNF grammars contain no e-productions, and yet arbitrary CFGs may.
To convert a CFG to CNF, we therefore need a way of eliminating them.

Of course, CFGs without e-productions cannot generate the word ¢.

Goal| Given CFG G, generate CFG G4 such that:
® (71 has no e-productions; and
B L(GL) =L(G) —{e}.
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Answer| !

® The new grammar would

® Thatis, can’'t get rid of S'!

Can we just eliminate the e-productions?

No! | What would language of new grammar be if we eliminate the
e-production in the following?

S — e | 051

be S — 0S51.

® Every derivation looks like: S =¢ 051 =g 00511 =¢ .
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e-productions add “derivational capability” in CFGs by allowing
variables to be “eliminated” in a derivation step.

Example | Consider the CFG G given as follows.

S — e | 051

The derivation S =4 051 = 01 uses the e-production to get rid of S.

If we want to eliminate e-productions, we need to add new productions
that preserve this derivational capability.

1. Precisely what “derivational capability” do e-productions provide?

2. How can we recover this capability without e-productions?

BEEoHA
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A=¢ e

S
A
B
C
D

Definition| Let G = (V. X, S, P) be a CFG. Then A € V is nullable if

E.g.| Consider the following CFG.

o

—

—

o

o

Ais nullable since A =¢ CD = D = =.

Why are variables nullable? Because of e-productions! So nullability is
the “derivational capability” that e-productions add to a CFG.

ABCBC
CD

Cb

a | €

bD | €
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Let G = (V, X, S, P) be a CFG, and let N C V be the set of nullable
variables.

If we remove the e-productions from G, we remove the capability of
nullifying variables (i.e. “eliminating” them).

To restore this capability, we need to add productions in which nullable
variables are explicitly removed.

Example | Consider

S — e | 051

S is nullable; to eliminate e-production we should add production
S — 01. The new grammar:

S —+051 | 01

BEEoHA
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Let G = (V, X, S, P) be a CFG, and let N C V be the set of nullable
variables. Consider the following definition of G; = (V1, %, 51, P1).

Vi=V

S1=5

P=P—-{A—¢e¢|A—ccP}
U{A — agan | agay, #e ANTJAq, ..., Ay € N.

A— agAiaq...0_1 A0 € P}
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P; contains:

® the non-e-productions in P, together with

B productions obtained by selectively omitting occurrences of
nullable variables.
B A— agAioq...a,_1 A, 1S @ production in G.
® The A; are nullable variables.
® The «; is the “stuff” in-between the A;.
B A — apa, is a modified production with the A;’s omitted.

The idea is that in the original grammar, A =¢, ag--a,, by “nullifying”
the A;. In GGy, this capability is realized in a single production.
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To generate (G1, we need to calculate the set V C V of nullable
variables. We can do so by giving a recursive characterization of V.

Define N(G) C V as follows.
mifA— ecthen A e N(G).

mifA— By-B,and By,..., B, € N(G) then A € N(G).

Lemma|Let G = (V,X, S, P) be a CFG, andlet A € V. Then
A e N(G) if and only if A is nullable.

Proof | Use induction!
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Consider G given as follows.

S — ABCBC
A — CD
B — Cb
C — ace
D — bD | ¢
First, calculate N(G).

NG = 0

N(G)Q — {A7 C7 D}

N(G); = N(G)s
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Recall G; remember that N(G) = {A,C, D}.

S — ABCBC C — a|lce¢
A — CD D — bD | ¢
B — Cb

(1 is (| boxed | transitions are new ones):

S — ABCBC | |ABCB| | |ABBC| | |ABB
| |BCBC| | |BCB| | |BBC| | |BB

A — CD ||C|||D

B — Cb | |b

C — a

D — bD | |b
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So Far

m Simplifying CFGs and Chomsky Normal Form (CNF)

® Eliminating e-productions from CFGs.

To Do | Eliminating:

= unit
B terminal+
® nonbinary productions

from CFGs.
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1. Eliminate e-productions (A — ¢).

2. Eliminate unit productions (A — B).

3. Eliminate terminal+ productions (A — aC, A — aba).
4. Eliminate nonbinary productions (A — ABA).

Last time we proved the following.

Lemma| Let G be a CFG. Then there is a CFG G1 containing no
e-productions and such that £(G1) = L(G) — {¢}.

l.e. we now know how to eliminate e-productions! What about the
others?
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Definition | A unit production has form A — B where B € V.

Like ¢ productions, they add “derivational capability” to grammars.

Consequently, if we eliminate them we need to “add in” productions
that simulate derivations that involved them.

Example | Consider G given by:

S — A | C
A — aA | B
B — 0B | b
C — cC | c

In order to remove S — A, need to add e.g. S — aA!
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Suppose G is a CFG. Then unit productions allow derivations like this.
A =G Al =G AQ =G =G An =g

where each A; € V is a single variable. If « is not just a single variable,
then we should add a production A —> «. How do we determine these
o’s?

Definition| Let G = (V,3, S, P) be a CFG, with A € V. Then
U(G,A) C V is defined inductively as follows.

mAcU(G,A).
mifBeU(G,A)and B— C € PthenC € U(G, A).
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Intuitively, B € U(G, A) iff A =7, B using only unit productions!

ldea| In new CFG, we will remove unit productions but add in
productions of form A — « for every variable A, where B —> « in
original CFG and B € U(G, A)!
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U(G, S)o
U(G, 5N
U(G, S)2
U(G, S)s

Let G be given as follows.

Ll

0
157

A | C
aA | B
bB | b
cC | c

Then U (G, S) can be computed as follows.

{S,A,C}

(S,A4,B,C} = U(G,S)s
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S — A|C
A — aA | B
B — 0B | b
C — cC | c

We can similarly show that U (G, A) = {A, B}, U(G, B) = {B}, and
U(G,C)={C}. Then the new grammar should be:

S — |adA bB bl | |cC| | |c

A — dA bB| | |b
B — bB | b

C — cC | c
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Let G = (V, X, S, P) be a CFG. Then we define G, = (V, 3, S, P») as
follows.

P, = {A—a|dBeU(G,A),a. B—a€ePNagV}

Fact|Let G = (V, X, S, P) be a CFG without € productions, and let G,
be defined as above. Then the following hold.

1. G5 contains no ¢ productions.
2. (G contains no unit productions.

3. L(Gs) = L(G) — {e}.
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Definition| A production A — « is terminal+ if |a| > 2 and «
contains at least one terminal.

Examples

mBA— Ca

A — aba
Eliminating these is fairly simple:
® [ntroduce a new variable X, for each terminal a € X..
® Add productions X, — a.

® In each terminal+ production, replace terminals a by variables X,,.
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Let G be given by:
S — aSb | aS | Sb| a | b
Then G is:

S — XSXp | XoS | SXp | a | b
X, — a

Xb—>b
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Let G = (V. %, 5, P) be a CFG. Then we define G3 = (V3,3, .5, P3) as
follows.
Via=VU{X,|aeX}, where X, €V U
Ps={A—d|A—aeP
A o is o with a replaced by X, if A — «is terminal+}
U{X, —alaeX}

Lemma| Let G be a CFG without - or unit-productions, and let G5
be constructed as above. Then the following are true.

1. G35 contains no ¢ or unit productions.
2. (G3 contains no terminal+ productions.
3. L(G3) = L(G) — {&}.
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Definition| A production A — « is nonbinary if |a| > 3.

Example| A — BAB

How do we eliminate these?

® For each such productionp = A — A;A45-A,, and n > 3, we will
introduce new variables X, 5, .. X, 1.

® Replace A — A, A5--A,, by a collection of productions:

A — AlXp,Q
ijz — AQijg

Xp,n—l — An—lAn
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Suppose we have a production A — BCCD. The construction would
replace it with the following.

A — BXp’Q
Xp72 — CXp,g
Xp73 — CD

In the original CFG, A =} BCCD in one step.

In the new CFG it takes three steps:
A =G4 BXp,Q =G4 BCXp73 =G4 BCCD.
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Let GG be:

Then G4 Is:

Ll

Xb%b

S — X.SXy | XuS | SXp | a | b

XaX12

S Xy

|XaS‘SXb‘CL‘b
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Let G = (V, 3, S, P) be a CFG containing no terminal+ productions.
Then we define G4 = (V,4, 3, S, P,) as follows.

Vi=VU{X,i|lp=A—a€PAN2<i<|a|}, where X,,; ¢V UX
Pi={A—acP|la <2}

U{A— A1 X,2|p=A—A1..,. A, e PAn>2}
U{Xpi — AiXpir1|p=A—A1.. A, ePAn>2AN2<i<n-—1}
U{Xpp1— Ap_ 1A, |p=A— A A, e PAn>2}
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Lemma| Let G be a CFG without -, unit- or terminal+ productions,
and let G, be constructed as above. Then the following hold.

1. G4 has no e-, unit- or terminal+ productions.
2. (G4 has no nonbinary productions.
3. L(G4) = L(G) — {e}.

Note | Since G4 contains no e-, unit-, terminal+, or nonbinary
productions, it has to be in Chomsky Normal Form!
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A Pumping Lemma for CFLs
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Recall how we proved languages to be nonregular.

Myhill-Nerode: A language L is regular iff its indistinguishability relation
I;, has finitely many equivalence classes.

Pumping Lemma: If L is regular, and x € L is “long enough”, then x can
be split into u, v, w so that uv'w € L all 3.

BEEoHA
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There’s no Myhill-Nerode theorem for CFLs, but there is a Pumping
Lemma: if L is a CFL and a word is “long enough” then parts of the
word can be replicated.

Questions

® What is “long enough”?

® Which parts can be “replicated”?
To answer these questions we’ll:
® introduce the notion of “derivation tree” for CFGs;

® show that CFGs in Chomsky normal form have derivation trees of
a specific form.
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“Derivation sequences” show how CFGs generate words.

Example| LetGbe S — ¢ | 051. Then to show that G generates
0011:

S = 051 =3 00511 =5 00-¢-11 = 0011

A derivation tree is a tree-

like representation of a S

derivation sequence. / \
0 S 1
0 S 1

Portions (€)2000 Rance Cleaveland (¢)2004 James Riely Automata Theory and Formal Grammars: Lecture 7 — p.37/48



Definition| Let G = (V,X, S, P) be a CFG, and let w € ¥*. Then a
derivation tree for w in GG is a labeled ordered tree satisfying the
following.

® The root is labeled by S.

® Internal nodes are labeled by elements of V.singset
W Leaves are labeld by elements of ¥ U {¢}.

® |f Ais label of an internal node and X1, ..., X,, are labels of its
children from left to right then A — X;---X,, is a production in P.

® Concatenating the leaves from left to right forms w.

One can show that w € £(G) if and only if there is a derivation tree for
win G.
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Let GG be:

S — AC
A — adb | ¢

C — cC | ¢

Then a derivation tree for aabbc is:
/S\
A C\
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Suppose G is in CNF; what property do the derivation trees for words
have?

® No leaves are labeled by «.

® Every internal node has either one child, which must be a leaf, or
two children, which must both be internal.

A A

/N
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If derivation tree for u is... ... then the following derivation tree also exis

S
S
A '
A
A '
A
oy e ehe g ele g ele o o] ey B e 7a—
T &
w x Y

If the CFG is in CNF, one can characterize when words are “long
enough” to have such trees!

BBod
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Suppose G = (V, X, S, P) is a CFG in CNF. We want to know how long
aword w € L(G) has to be in order to ensure the existence of a
derivation like the following.

S =5 vAz =7 vwAyxr = vwryz

Note | This holds when derivation tree contains a path of length
V| + 1!
® Such a path contains |V| 4+ 2 nodes.

® All nodes except last one are labeled by variables.
B So some variable appears twice!

Since derivation trees in G must be binary (G is in CNF), the longest a

word w € L(G) can be and have a derivation tree of height |V| is
2IVI-1,

So if |w| > 2IVI=1 + 1, then the “right kind” of derivation must exist!
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Theorem

If L C ¥*isa CFL
then there exists V > 0 such that for all w € L,
if |lu| > N
then there exist v, w, z,y, z € ¥* such that:
u = vwzryz and
lwy| > 0 and
lwxy| < N and
forall m > 0, vw™xy™z € L.

What is N? If ny, is the smallest number of variables needed to give a
CFG G in CNF with £(G) = L — {e},then N = 2"~ 4+ 1.
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As was the case with regular languages, we can use the contrapositive
of the Pumping Lemma to prove languages to be non-CFLs

Lemma (Pumping Lemma for CFLs)| LisaCFL — P(L), where
P(L) is:

AN >0.Vu €|L| |u| > N = Jv,w,x,y,z € .

(u = vwzyz A |lwy| > 0A |lwxy| < N AVm > 0.vw™ay™z €| L))

Contrapositive | (—P(L)) = L is not a CFL.

So to prove L is not a CFL, it suffices to prove —P(L), which can be
simplified to:

VN >0.3u € L. |u| > N AVo,w,z,y,z € X*.

(u = vwzyz A |lwy| > 0A |lwxy| < N) = Im > 0.vw™zy™ 2z & L)
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So fix N > 0 and consider

B u = vwryz
" |wy| >0

B |lwzy| < N

On the basis of the Pumping Lemma it suffices to prove the following.

VN >0.3u € L. |u| > N AVo,w,z,y,z € X*.
(u = vwzyz A |lwy| > 0A |lwzy| < N) = Im > 0.vw™zy™z &€ L)

u=a

NbNCN

Now fix v, w, z,y, z € ¥* so that the following hold.

; clearly w € L and |u| > N.
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We wish to show that there is an m such that vw™xy™z ¢ L. There are
two cases to consider.

1. wzxy € {a,b}* (i.e. contains no ¢’s).
2. wry = w'c’ some i > 0, w' € {a,b}* (i.e. does contain c’s).

For both cases, consider m = 0. In case 1, vuw'zy°z & L, since
vwxy"z contains n ¢’s but < n of either a’s or b’s. In case 2, w’ € {b}*
since |wxzy| < N. Consequently, vw'xzy"z contains n a’s but < n b’s or
c's. So we have demonstrated the existence of m with vw™zy™z & L,
and L is not context-free.

Portions (€)2000 Rance Cleaveland (¢)2004 James Riely Automata Theory and Formal Grammars: Lecture 7 — p.46/48



® Non-context-free languages exist! Other examples:
B {ww|wée{a,b}"}

m{a"b"c"d"” | m,n >0}

However, { a™b"c"d™ | m,n > 0} is a CFL.

Moral | In CFLs can count pairwise and “outside in”.

® CFLs are not closed with respectto N! Let L = {a™b"c™ | n > 0 }.
Then L = L{ N L, where:

Ly = {ad"b"c™ |m,n>0}
Ly = {ad™b"c" |m,n>0}

Both L.; and L, are CFLs.
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®m CFLs are not closed with respect to complementation!
B CFLs are closed with respect to U.
B /,NLy,=(L]ULS,)
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