
Semantic processing at parse time

Recall how an LR parser uses a stack to
apply reductions:
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Our parse stack previously consisted of

, where is a grammar symbol and
is a parse state. We now augment the

stack to contain semantic information:

We can use this semantic stack to syn-
thesize information during the parse. In
our example, when E+T is reduced, we
could add together the values associ-
ated with E and T, pushing the sum on
the stack along with the E replacing the
E+T:
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In YACC, the grammar file can specify a union of types for the semantic stack, so that
information of any form can be synthesized during the parse.
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Synthesized attributes

With YACC, a segment of C code can
be associated with each production.
Given a rule

A 1 2

the segment of C code can refer to
the semantic stack values of symbols as
follows:

Rule Symbol Semantic Value

1 $1

2 $2
...

$k
$$

so that a typical rule looks like

A 1 2

$$ = $3 + ($2);

B C da

A

B

E

F
G

When “a B C d” is reduced to A, infor-
mation previously contributed to B and
C can be incorporated into the infor-
mation synthesized for A. Without global
storage, information computed at a tree
node is a pure function of information
computed at ’s descendents.

More generally, one can reference any value still on the stack. In our example,this
include information associated with F and G. Such grammars are called L-attributed.
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Evaluating infix expressions

S E $
printf("Answer is %d n",$1);

E E + T
$$ = $1 + $3;

T
$$ = $1;

T T F
$$ = $1 $3;

F
$$ = $1;

F ( E )
$$ = $2;

const
$$ = $1;

E

TE

a a ( a

F

E

E T

T F

F

+*+

T

a )

F

T

F

5 + 6 ( 7 + 8 )

Notice how the unit productions ( ) lead to simple copying of values up the
parse tree. While these rules participate in disambiguating the grammar, they are
not always conducive to semantic processing.

Copyright c 1994 Ron K. Cytron. All rights reserved – 86 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Another example

Num D $
printf("Answer: %d n",$1);

D D d
$$ = 10 $1 $2;

d
$$ = $1;

Applied to the string “347$”

1
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d
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State d $ D
1 Goto

State 3 Goto
State 2

2 Goto
State 5 Goto

State 4
3 Reduce

by rule 1 Reduce
by rule 1

4
5 Reduce

by rule 2 Reduce
by rule 2

Note: grammar is LR(0)
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Grammars and semantic processing

There are usually many unambiguous grammars that generate a given programming
language. In planning for semantic processing, it is often convenient to rewrite the
grammar so that reductions and stack activity are conducive to the required actions.

Consider the grammar:

Num x D
D

D D d
d

Interpretation: a string of digits rep-
resents a base-10 number, unless the
string is preceded by an ‘x’, in which
case the string represents a base-8
number.

String Number
3 4 7 347
x 3 4 7 231

Num

x

d

d

d

D

D

D

We could compute the number by passing the list of digits up the tree, forming the
answer at Num. We would prefer to compute the number as we reduce the digits,
but this grammar’s parse trees have the base information in the wrong place.
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Rewriting the grammar

Num x OctD $
printf("Answer: %d n",$2)

DecD $
printf("Answer: %d n",$1)

DecD DecD d
$$ = 10 $1 $2;

d
$$ = $1;

OctD OctD d
$$ = 8 $1 $2;

d
$$ = $1;

State d x $ DecD OctD
1 Goto

State 4 Goto
State 2

2 Goto
State 6 Goto

State 5
3 Goto

State 8 Goto
State 7

4 Reduce
by rule 4

Reduce
by rule 4

5 Goto
State 10 Goto

State 9
6 Reduce

by rule 6 Reduce
by rule 6

7
8 Reduce

by rule 3 Reduce
by rule 3

9
10 Reduce

by rule 5 Reduce
by rule 5

Note: grammar is LR(0)
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d

d
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OctD

OctD

Num

$

Num

$
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d

d
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DecD
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Another change!

Suppose we want the base itself to be
part of the input:

String Number
3 4 7 347

x 8 3 4 7 231
x 9 3 4 7 286

One possibility is to use a global vari-
able:

Num x B D $
printf("Answer: %d n",$3);

Skip D $
printf("Answer: %d n",$2);

B d
Base = $1;

Skip
Base = 10;

D D d
$$ = Base $1 $2;

d
$$ = $1;

Num

$

d

d

d

x B

d

D

D

D

Note that the reduction B d is neces-
sary to set the global variable. In the
LR parse, this is the first reduction, so
the base will indeed be set when the
first D D d rule is applied. But global
variables are not very clean, especially
if constructs could be nested so that
global variables get overwritten.
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Arriving at a good grammar

Let’s engineer the tree we would like to
see, and then construct the appropriate
grammar. In the tree shown to the right,
it’s possible to synthesize the baseup the
tree.

At each reduction, we could know how
to compute the new value to pass up
the tree.

Num

d

d

D

D

D

B

Num D $
printf("Answer: %d n",$1.value);

D D d
$$.value = $1.base $1.value $2;
$$.base = $1.base;

B
$$.base = $1;

B x d
$$ = $2;

$$ = 10;
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Back to declarations

The running example of converting a string of digits to a number is actually an
abstraction of processing variable declarations in C.

Num

$

d

d

d

x B

d

D

D

D

B D

D

D

int

w

x

y

Decls

Wewould like to enter the variables in the symbol table, along with their types, as we
parse the input. Rewriting the ANSI C grammar to accomplish this is a good exercise.

Note that PASCAL has its type information at the end, and so a right recursive rule can
similarly accommodate that form of syntax.
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Back to symbol tables

An attributed grammar allows semantic equations whose terms depend on synthe-
sized and inherited attributes. A classical use of attribute grammar systems is for the
synthesis and use of type information.

As the declarations are parsed, a “sym-
bol table” is synthesized up the parse
tree. While processing the code of a
procedure, this symbol and those from
outer scopes are available as an inher-
ited attribute.

int a;
float b; a+b+c

While attribute grammars offer a clean mechanism for expressing semantics, such
systems are usually slower than those involving only synthesized attributes, and one
must still get the equations “right”. The Cornell Program Synthesizer is a popular and
robust system for developing compilers based on attribute grammars [41, 31, 32].
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