
Type checking

L vs. R values

=

X +

Y *

&

W

*

Z

The actual meaning of the identifier is
dependent on its context.

Type compatibility

=

X +

Y Z

The meaning of in the above program
depends on the types of Y, Z, and X.
In languages that allow operator over-
loading, even the meaning of be-
comes suspect.

Notice the dual role of the operator (in the C language), which is nicely disam-
biguated using the proper grammar.
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Left and right values of identifiers

Named for their interpretation with respect to “ ”, the left value of an identifier is its
location while the right value is the contents of the identifier.

L vs. R values

=

X +

Y *

&

W

*

Z

The positioning of identifiers with respect
to various operators inC indicates which
value is desired:

X= The storage location of X
=Y The value stored at Y
Z The value at Z,

treated as a storage location
& W The address of W,

treated as a value
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C left and right values

Form Expects Produces
a=b LV(a), RV(b) RV

c RV(c) LV
&d LV(d) RV

S L = R
R

L id
R

R L
& L
int

This grammarproduces structures where
the interpretation of left and right values
is clear.

Moreover, the rule R L is applied when
a left value “becomes” a right value
through dereferencing.

The grammar correctly precludes strings
like “3=x” and “&z=y”.

Table construction for this grammar fails for SLR because “ ” can follow an R.

But there’s no sentential form that begins “R=”; the R must be preceded by an as
in “ R=”. The LR(1) construction can create a suitable parse table. The grammar is
also LALR(1) (YACC can handle this grammar).
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Examples

x=y

S

L = R

x L

y
Push x
Push y
Fetch
Store

3=&y

S

L = R

& y* 3
Push 3
Push y
Store

The and & have no effect on code generation: they merely change the type of an
expression. The language design is biased towards the most prevalent “x=y” form.
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Examples

x=y

S

L = R

* R

L

x

y

L

Push x
Fetch
Push y
Fetch
Store

x= y

S

L = R

* R

L

x

L

* R

L

y
Push x
Fetch
Push y
Fetch
Fetch
Store
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More on left and right values

Unfortunately, the syntactic rules for C do not allow a grammar-based approach to
left and right value disambiguation. However, the rules related to , &, and can
be applied just as easily to the parse tree, using attribute grammars or an additional
(bottom-up) pass over the tree.

SetV( ): asserts the left or right
valuedness of .

ExpectLV( ): expects that is a
left value.

ExpectRV( ): expects that is a
right value.

Convert( ): attempts to convert
into a left or right value.

As our grammar indicates, the only con-
version that makes sense is a left to right
value conversion, which is basically a
dereference. In a call-by-reference
language, however, a right value could
become a left value by introducing a
temporary. Show below are the parse
trees before and after the extra bottom-
up pass.

S

=

*

*

y

x

Form Expects Produces
a=b LV(a), RV(b) RV

c RV(c) LV
&d LV(d) RV

Use

Use

Use

S

=

*

*

y

x

Copyright c 1994 Ron K. Cytron. All rights reserved – 104– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Data types and compatible operations

The type checking phase of a compiler is traditionally responsible for establishing the
semantic well-formedness of operations and data. Where language standards allow
flexibility (some would say sloppiness) with respect to type consistency, compilers
are charged with introducing implicit or explicit conversion operations to allow
operations on otherwise unsuitable data.

Most languages offer a host of basic
types, which are usually (though not
always) supported by target instruction
sets:

integers;

floating point;

Boolean-valued true false ;

character.

Most languages also allow the introduc-
tion of new types based on old ones:

tuples (records, structs);

maps (functions, arrays);

sets.

Proponents of strongly-typed languages, where data and operations must adhere
rigidly to type consistency, claim that when soundly checked at compile-time, their
programs are less likely to contain bugs.
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Type checking

As with left and right value determination, type checking can be performed as a
bottom-up pass over the parse (or abstract syntax) tree.

A straightforward (i.e., highly localized)
scheme operates as follows. At the
tree’s leaves are found the atomic ele-
ments such as constants, identifiers, and
function calls. Each of these asserts its
type, based on syntactic (“x” vs. ‘x’) or
contextual (declared) information.

At each internal node

1. the subtrees of are checked for
type compatibility: this depends on
the operation contained in ;

2. conversion operations are inserted
as necessary;

3. the type of is determined.

5.3 x foo(y)

+

A B
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Simple type checking

int float char
int int float int
float float float float
char int float int

int float char
int int int int
float float float float
char char char char

The arithmetic operators tend to find the grandest type suitable for performing the
operation, while the assignment operators insist that the assigned valuematches the
type of its destination.
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Name vs. structural type equivalence

typedef int t
int x
t y
...
x = (int) y

enum a=1, b=2, c=3 foo;
...
foo = foo + 1;
M[(int) foo] = ‘x’;

The C language has cast operations, that assert the type of an expression. But
conversions can also occur in uncast expressions, which can lead to confusion.

Are the above casts necessary? It depends onwhether we regard type equivalence
as a structural property or as a property of the name used in the declaration. In the
above examples, x, y, and foo are all structurally represented as an integer.

The use of on foo could also be problematic, if an enum data type cannot be the
target of .

Pointers are an interesting example, since they are all structurally the same. Good
language design and programming practice suggest distinguishing between point-
ers to different types.

C castigates those who fail to cast between pointers of different types.
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Representing types [33]

The lineage of a type can be represented without reference to specific type names.
A bit-vector representation is convenient for construction and for comparison:

Each of the types extenders is assigned
a bit pattern from bits:

Type Pattern
ptr 01

array 10
func 11

So that a pointer to type is represented
as

01

Note that this scheme does not track
array index types or function parameter
types.

Wisely leaving one pattern free, we now
assign the base types:

Type Pattern
void 0000
char 0001
int 0010
float 0011

Declaration Type representation
int x 0010

int x[] 01 01 10 0010
char ( ( x())[])() 11 01 10 01 11 0001

The last entry is a function that returns a pointer to an array of pointers to functions
that return characters.
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