
3 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

Actually, I don’t think any software developer
is truly content to ship code that falls below
the bar. The truth is that most developers sim-
ply don’t know how to reach that bar or don’t
believe reaching it is possible. All too often
they commit to deadlines that they later find they
can’t meet, and so, through high-stress heroics,
they wind up compromising quality to avoid be-
ing overly late.

In this article, I’ll discuss how test-driven de-
velopment can help software developers achieve
a higher degree of professionalism. TDD isn’t a
silver bullet and won’t suddenly transform you
into a sterling professional. It does, however,
play a significant role.

The three laws of TDD
TDD practitioners follow these three laws:

■ You may not write production code unless
you’ve first written a failing unit test.

■ You may not write more of a unit test than
is sufficient to fail.

■ You may not write more production code
than is sufficient to make the failing unit
test pass.

These three laws lock you into a tight loop
in which you first write a portion of a unit test
that fails, and then you write just enough pro-
duction code to make that test pass. This loop
is perhaps two minutes long and almost always
ends in success.1

Following these laws perfectly doesn’t always
make sense. Sometimes you’ll write a larger test.
Sometimes you’ll write extra production code.
Sometimes you’ll write tests after you’ve written
the code to make them pass. Sometimes it’ll take
more than two minutes to go around the loop.
The goal isn’t perfect adherence to the laws—it’s
to decrease the interval between writing tests and
production code to a matter of minutes.

focus
Professionalism and
Test-Driven Development

P
rofessional software developers ship clean, flexible code that
works—on time. It seems to me that this statement is the mini-
mum standard for professional behavior for software developers.
Yet, in my travels as a software consultant, I’ve met many soft-

ware developers who don’t set the bar this high and instead ship late,
buggy, messy, and bloated code.

test-driven development

Robert C. Martin, Object Mentor

Test-driven
development
is a discipline that
helps professional
software developers
ship clean, flexible
code that works,
on time.

Counterintuition
In my frequent lectures and courses, I’ve found

that many developers consider TDD to be coun-
terintuitive. The extremely short cycles between
writing a test and making it pass go against their
practice of writing whole modules and testing
them manually afterward. They also argue that
all that test writing would be too much work.

However, intuition isn’t always the best guide
to professional behavior. Take, for example, the
case of Ignaz Semmelweis, who in 1847 achieved
a six-fold drop in his maternity ward’s mortality
rate by simply having doctors wash their hands
before examining pregnant women:

His observations went against the current
scientific opinion of the time, which blamed
diseases (among other quite odd causes) on
an imbalance of the basic “four humours”
in the body, a theory known as dyscrasia. It
was also “argued” that even if his findings
were correct, washing one’s hands each time
before treating a pregnant woman, as Sem-
melweis advised, would be too much work.
Nor were doctors eager to admit that they
had caused so many deaths.2

Certainly the implications of TDD aren’t as
significant to software professionalism as sterile
procedure is to medical professionalism. None-
theless, parallels exist. TDD changes the way
programmers work minute by minute, and it
profoundly affects the work’s results.

Impediments
Of course, not every environment is condu-

cive to a strict interpretation of the three laws. If
you must do batch compiles or download your
software into an embedded device, it’s difficult
to get around that loop every two minutes. You
might be modifying vast quantities of hard-to-
test legacy code. You might be using a third-
party software package that doesn’t provide
easy test access, such as a COTS system or one
of the many Web frameworks. There’s no end to
the reasons why TDD isn’t practiced, given the
plethora of impediments.

The solutions to these impediments aren’t
within this article’s scope. I daresay you’ll find
some of them in other articles in this issue. Oth-
ers you’ll find on the Web or in books. Still oth-
ers you might need to invent for yourself. You’ll
always find plenty of impediments to convince
you not to write tests, but TDD is an attitude as
well as a discipline. The TDD attitude doesn’t

yield to the impediments; rather, it finds a way
to deal with them and write the tests anyway.

This might seem too extreme, and of course,
some tests can’t or shouldn’t be written. But
the attitude still holds. Those of us who follow
the discipline of TDD don’t yield lightly.

Benefits
If you follow the TDD discipline and atti-

tude, you’ll write dozens of tests per day, hun-
dreds of tests per month, and thousands of tests
per year. Experience shows that these tests will
cover more than 90 percent of the production
code. They should be kept in one place and
should be easy to run. Executing them shouldn’t
take more than a few minutes.

Over the last few years, Micah Martin and
I’ve been working on an application named Fit-
Nesse (www.fitnesse.org). FitNesse is a Web-
based application using a Front Controller that
defers to servlets that direct views. Downloaded
tens of thousands of times, FitNesse consists of
45,000 lines of Java code in nearly 600 files. Al-
most 20,000 of those lines and 200 of those
files are unit tests. Over 1,100 specific test cases
contain many thousands of assertions, giving
FitNesse test coverage of over 90 percent (as
measured by Clover, http://cenqua.com/clover).
These tests execute at the touch of an IDE (in-
tegrated development environment) button in
approximately 30 seconds.

These tests, along with the convenience of
easily executing them, have benefits that far
exceed simple software verification.

Flexibility
Why don’t developers clean up code? They’re

afraid that they’ll break it. The old maxim, “If it
ain’t broke, don’t fix it!” is a common attitude
among software developers.

TDD alleviates this fear because you can
check any change to the software almost in-
stantly. If the tests all pass, it’s unlikely that the
change broke something unexpected. The tests
make small changes virtually risk free. We found
with FitNesse that even large, sweeping changes
were low risk. This was likely because we im-
plemented large changes as a sequence of small
changes with test-runs in between.

So, TDD lets us clean up messy code without
the fear that we’ll break something. Using TDD
also means that we can change the behavior of
one part of the system without risking side ef-
fects in other parts. In short, having a quick and

M a y / J u n e 2 0 0 7 I E E E S O F T W A R E 3 3

Why don’t
developers

clean up code?
They’re afraid

that they’ll
break it.

convenient high-coverage test suite enhances
our ability to create flexible designs.

In our experience with FitNesse, we’ve made
sweeping architectural and requirements changes
with little impact on the rest of the system. By
breaking changes into a sequence of tiny steps
and keeping tests passing between each step,
we’ve added and changed major features, and al-
tered existing architectural structures with virtu-
ally no backlash from the user community due to
hidden defects or side effects. The tests have
made us fearless about cleaning up and improv-
ing our code.

Documentation
How do you learn a third-party framework

such as Spring or Hibernate? The manuals cer-
tainly help, but the real learning comes by study-
ing (and using) the code examples and sample
projects that are typically in the back of those
manuals.

The unit tests that TDD causes us to write
are much like the material in the back of a man-
ual. Each unit test is an isolated snippet of code
that explains how some part of the overall sys-
tem works. If you want to know how to create
a certain object, there’s a unit test that creates it.
If you want to know how to call a certain API
function, there’s a unit test that calls it. You de-
scribe anything you want to do with the system
in a test.

These tests are unambiguous documents, writ-
ten in a language that programmers understand.
They’re so formal that they execute, and because
they’re executed all the time, they can’t get out of
sync with the application. They’re low-level de-
sign documents that describe the system’s struc-
ture and interactions so completely that if you
lost the production code, you could recreate it by
examining the unit tests and writing the code
that makes them pass.

Our experience with FitNesse has justified
this view, although not without some issues.
We do find that reading the unit tests is a good
way to understand a module. The tests are gen-
erally short, easy-to-understand, and descrip-
tive snippets of code.

Unfortunately, some FitNesse tests suffer
from nonlocal-isms. They derive from base
classes that derive from other base classes, each
containing utility functions that the tests find
useful. Although this is generally good design
and reduces redundancy, it makes the tests
harder to read.

Some FitNesse tests suffer from huge setup
functions that try to be all things to all test
cases. These setups make individual tests harder
to understand because keeping track of every-
thing that a setup function did is difficult.

Some FitNesse tests are downright bloated.
They try to test too much in a single function
or to move the system through too many state
changes in one session. These tests are tough
to read and understand. Their documentation
ability is limited.

In short, FitNesse taught us that you need to
design tests to be good documents. You need to
expend effort to keep them local and readable.
You can’t treat tests as second-class code. They
must be kept to the same level of code quality
as the production code.

Minimal debugging
If you’re following the three laws within

reason and you’re operating in a cycle that’s
just a few minutes long, then you’re never
more than a few minutes from seeing all the
tests run. This means that you’ll detect almost
any bug that creeps into the system within
minutes. You don’t need a debugger to find
the bug. You don’t really need to do much de-
bugging at all. You know where the bug is be-
cause you just added it!

Of course, it’s not really that easy. Some tests
take longer to run than others, forcing a parti-
tioning strategy for running the tests. For exam-
ple, even the 30 seconds it takes to run FitNesse
tests is too long to wait during the normal TDD
cycle, so I usually restrict the tests I run to the
package I’m modifying. This shrinks the test time
to 1 or 2 seconds but means that I only run the
whole suite every half-hour or so. So, some bugs
could wait 30 minutes before they’re discovered.

Even so, in the last three years, Micah and I
haven’t used a debugger with FitNesse more
than a few dozen times. When we do, it’s al-
most always in the context of a failing unit test,
making the cause of the problem localized and
repeatable, so the session ends quickly. I can’t
remember a single instance of casting a net of
break points or blindly single-stepping through
the code in the hope that we’d get a clue to
what was going on.

Indeed, in FitNesse’s entire history there hasn’t
been a release that was delayed for quality is-
sues. It’s never had the kind of haunting bug
that thwarts delivery schedules and makes hash
out of project plans. In 45,000 lines of code,

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Tests must be
kept to the same

level of code
quality as the
production

code.

we’ve never released a fatal, or even a very sig-
nificant, bug.

Other companies have had similar results.
Both Sabre and Workshare have reported a 10�
reduction in defects to the field and signifi-
cantly increased productivity.3,4

Joel Spolsky once said that debugging is
hard to estimate and can take 100 to 200 per-
cent of the coding time.5 Whether or not his fig-
ures are accurate, we can all agree that debug-
ging is a huge unknown in any software
schedule. TDD reduces that unknown by mak-
ing sure that we discover defects early and that
the causes are localized. In short, TDD makes
our schedules more predictable by reducing de-
bugging’s variability.

Better design
If we follow the three laws within reason,

we’ll write most of our code in response to a
failing unit test. This means that most of our
code will be, by definition, testable. But you
can’t test a function if that function calls others
that have unknown or deleterious effects. So,
you must decouple the function you’re calling
and test it independently of the other functions
it calls.

This might sound hard to do, but it’s really
just good object-oriented design. OOD lets you
decouple functions from each other, and TDD
enforces that decoupling. This results in a highly
modular and deeply decoupled software struc-
ture—in other words, a good design.

Good designs aren’t free, and TDD doesn’t
guarantee good designs. However, TDD pro-
vides powerful impetus to decouple, forcing de-
velopers to think through their designs in ways
that they otherwise might not.

Early in FitNesse’s development, we were cer-
tain we’d need a back-end database. We didn’t
know if it would be MySQL or something else,
and we didn’t want to decide too early. So, we
avoided the issue by creating simple mock data-
access functions. Our unit tests used these mocks
by passing them to the core FitNesse modules.
We hid the mocks behind an interface so that Fit-
Nesse wouldn’t know that the data-accessors
were mocked. Later we needed to test things that
simple mocks couldn’t support. So, we created a
simple in-memory database that hid behind the
same interface. FitNesse was and is able to use
this without knowing it. (FitNesse still uses an in-
memory database for most of its test cases, which
is a reason why the unit tests run in 30 seconds.)

Still later, we needed true persistence, so we created
a simple flat-file database and hid it behind the
same interface.

It turned out that the flat-file system sufficed,
delivering high performance and good reliabil-
ity. It was also convenient having flat files to in-
spect and manage. So in the end, we didn’t im-
plement the back-end MySQL database.

A year or so later, a FitNesse user needed to
put his FitNesse pages into a MySQL database.
FitNesse’s highly decoupled design, necessitated
by the mocks, made it easy for him to implement
the data access interfaces with a back-end data-
base. He got FitNesse up and running with My-
SQL in less than a day! So much for the notion
that you need to decide on databases up front
and that they’re hard to put in later. FitNesse still
ships with a plug-in for MySQL based on that
user’s work.

Make no mistake; FitNesse has design issues
that I think need improvement. TDD didn’t
turn FitNesse into a design utopia. On the other
hand, the deep commitment we made to TDD
at the project’s start has resulted in highly de-
coupled code. Peter Kriens blogged, “When I
inspected the code, my hands itched… . The
code looked so clean and so easy to bundlefy
that I could not resist. Turning it into a bundle
was indeed trivial; the makers of FitNesse pro-
vided a very clean configuration and start/stop
interface” (see the full text of Peter’s blog to see
some of his complaints about the design).6

TDD and professionalism
Let’s think back on my definition of a soft-

ware professional: professional software de-
velopers ship clean, flexible code that works—
on time.

Clean code
TDD can’t force you to write clean code, but

it can help eliminate the fear that cleaning your
code will break it. The ability to quickly run a
full suite of tests means that you can feel safe
cleaning up any messes that you find—or make.
One quick test will tell you if your improve-
ments are doing more harm than good. Follow-
ing TDD means that you’re freer to follow an-
other professional discipline: “Always leave the
code in a better state than when you found it.”

Flexible code
Nothing, in my experience, makes code more

flexible than the sure knowledge that when you

M a y / J u n e 2 0 0 7 I E E E S O F T W A R E 3 5

modify it, it won’t break. TDD provides that
sure knowledge. That surety is certainly not
complete. Bugs can still slip through the net of
tests. Indeed, you often hear that you can’t prove
code correct by testing it. Although this argu-
ment is correct, it misses the point that surety is
a continuum. When you run a suite of tests that
covers 90+ percent of the code and you see all
those tests pass, you’re very sure that the code
works. It’s that level of surety, far more than any
design or architectural structure, that makes the
code flexible.

Code that works
Of all the statements in the definition of pro-

fessionalism, this is the most important. Again,
you can’t be completely sure it works, but a pro-
fessional will perform due diligence to the best
of his or her ability. Later changes can inadver-
tently break code that worked once, but TDD
significantly mitigates this problem without
greatly increasing the due diligence.

When I run unit tests (and acceptance tests)
on FitNesse, I know it works. Indeed, passing
these tests is the only criterion for release. We
don’t have a quality-assurance cycle after “code
complete.” We continuously run the unit and
acceptance tests during development. So long as
they keep passing, we know we can make a re-
lease at any time.

Not all systems can depend solely on auto-
mated tests the way FitNesse does. Some man-
ual, exploratory, system, and live-data testing is
generally necessary. Even so, programmers
should expect QA to find zero defects. No pro-
fessional programmer should ever release code
to QA and expect a list of bugs back.

On time
TDD can’t guarantee that you’ll make all

your dates. What it can do is eliminate vari-
ables. It’s much easier to accurately estimate a
task when you know you won’t be spending
much time debugging. It’s much easier to know

and communicate a task’s status when you can
see a fraction of the tests passing. It’s much eas-
ier to know when you can release if you keep all
your tests passing at all times. In short, TDD
can give you the surety and the information to
make being on time a realistic goal.

I wear a green band on my wrist that says
“Test First” (see http://butunclebob.com/
ArticleS.UncleBob.GreenWristBand). It’s

there to remind me that I have obligations to
my customers and my coworkers:

■ A professional doesn’t ship code he or she
is uncertain of.

■ A professional writes clean, flexible code
that works.

■ A professional is on time.

My green band reminds me that TDD’s dis-
ciplines are a huge help in meeting professional-
ism’s requirements and that it would therefore
be unprofessional of me not to follow them.

References
1. R. Martin, “The Bowling Game Kata,” June 2005;

www.butunclebob.com/files/downloads/Bowling%
20Game%20Kata.ppt.

2. “Ignaz Semmelwiess,” Wikipedia entry, Mar. 2007;
http://en.wikipedia.org/wiki/Ignaz_Semmelweis.

3. G. Anthes, “Sabre Takes Extreme Measures,” Computer-
world, 29 Mar. 2004; www.computerworld.com/
developmenttopics/development/story/0,10801,91646,00.
html.

4. D. Putman, “Workshare Technology and eXtreme
Programming (XP),” 2000; www.objectmentor.com/
resources/articles/workshare.zip.

6. J. Spolsky, “Painless Software Schedules,” Joel on Soft-
ware, Mar. 2000; www.joelonsoftware.com/articles/
fog0000000245.html.

7. P. Kriens, “Why is Software So Brittle?” OSGi Alliance
blog, Aug. 2006; www.osgi.org/blog/2006/08/why-is-
software-so-brittle.html.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors
Robert C. Martin (Uncle Bob) is founder and president of Object Mentor in Gurnee, Illi-
nois. His research interests include process improvement and object-oriented software design.
He’s published more than 100 articles and is a regular speaker at international conferences
and trade shows. He served three years as editor in chief of the C++ Report, and he was the
first chairman of the Agile Alliance. Contact him at unclebob@objectmentor.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

