
ANSI-C Bounded Model Checker
User Manual

Edmund Clarke
Daniel Kroening
August 13, 2003

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We describe a tool that formally verifies ANSI-C programs. The tool implements a
technique called Bounded Model Checking (BMC). In BMC, the transition relation for
a complex state machine and its specification are jointly unwound to obtain a Boolean
formula, which is then checked for satisfiability by using a SAT procedure. The tool
supports all ANSI-C integer operators and all pointer constructs allowed by the ANSI-
C standard, including dynamic memory allocation, pointer arithmetic, and pointer type
casts.

This research was sponsored by the Semiconductor Research Corporation (SRC) under con-
tract no. 99-TJ-684, the National Science Foundation (NSF) under grant no. CCR-9803774,
the Office of Naval Research (ONR), the Naval Research Laboratory (NRL) under contract no.
N00014-01-1-0796, and by the Defense Advanced Research Projects Agency and the Army Re-
search Office (ARO) under contract no. DAAD19-01-1-0485.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of SRC, NSF,
ONR, NRL, DOD, ARO, or the U.S. government.

Keywords: ANSI-C, Bounded Model Checking, Pointers

Chapter 1

Introduction

1.1 Bounded Model Checking for ANSI-C

Many safety-critical software systems are legacy designs, i.e., written in a low level
language such as ANSI-C or even assembly language, or at least contain components
that are written in this manner. Very often performance requirements enforce the use of
these languages. These systems are a bigger security and safety problem than programs
written in high level languages.

The verification of low level ANSI-C code is challenging due to extensive use of
arithmetic, pointers and pointer arithmetic, and bit-wise operators.

We describe a tool that formally verifies ANSI-C programs. The properties checked
include pointer safety and array bounds, and user-provided assertions. The tool imple-
ments a technique called Bounded Model Checking (BMC). In BMC, the transition
relation for a complex state machine and its specification are jointly unwound to obtain
a Boolean formula, which is then checked for satisfiability by using a SAT procedure.
If the formula is satisfiable, a counterexample is extracted from the output of the SAT
procedure. If the formula is not satisfiable, the program can be unwound more to de-
termine if a longer counterexample exists. The tool checks that sufficient unwinding is
done to ensure that no longer counterexample can exist by means ofunwinding asser-
tions.

A design goal of the tool is to check conformance of the program with the ANSI-C
standard [1]. Thus, architecture specific extensions of C are rejected by the tool. This
ensures that the program shows the same behavior on all ANSI-C compliant compilers
and architectures.

1.2 A Short Tutorial

1.2.1 First Steps

Like a compiler,CBMCtakes the name of.c files on the command line.CBMCthen
translates the program and merges the function definitions from the various.c files,

1

just like a linker. But instead of producing a binary for execution,CBMCperforms
symbolic simulation on the program. By default, it then prints the equations obtained
from the symbolic simulation.

As an example, consider the following simple program, namedfile1.c :

int puts(const char *s) { }

int main(int argc, char **argv) {
int i;

if(argc>=1)
puts(argv[1]);

}

Of course, this program is faulty, as theargv array might have only one element,
and then the array accessargv[1] is out of bounds. Now, runCBMCas follows:

cbmc file1.c

CBMCwill print the equations it generates from the program. Note that it prints a
comment together with the equations, in this case ”arrayargv upper bound” together
with the location of the faulty array access.CBMCprints the equation since the built-in
simplifier is not able to determine its validity. In these cases,CBMCallows passing the
equation to a stronger solver using the option--decide :

cbmc file1.c --decide

With this option,CBMCtransforms the equation you have seen before into CNF and
passes it to a SAT solver. It can now detect that the equation is actually not valid, and
thus, there is a bug in the program. It prints a counterexample trace, i.e., a program
trace that ends in a state which violates the property. In case of the example, it ends in
the faulty array access. It also shows the values the input variables must have for the
bug to occur. In this example,argc must be one to trigger the out-of-bounds array
access. If you change the condition in the example toargc>=2 , the bug is fixed and
CBMCwill report a successful verification run.

1.2.2 Verifying Modules

In the example above, we used a program that starts with amain function. However,
CBMCis aimed at embedded software, and these kinds of programs usually have dif-
ferent entry points. Furthermore,CBMCis also useful for verifying program modules.
Consider the following example, calledfile2.c :

int array[10];

int sum() {
unsigned i, sum;

sum=0;

2

for(i=0; i<10; i++)
sum+=array[i];

}

In order to set the entry point to thesum function, run

cbmc file2.c --function sum

1.2.3 Loop Unwinding

You will note thatCBMCunwinds thefor loop in the program. AsCBMCperforms
Bounded Model Checking, all loops have to have a finite upper run-time bound in order
to guarantee that all bugs are found.CBMCactually checks that enough unwinding is
performed. As an example, considerbinsearch.c :

int binsearch(int x) {
int a[16];
signed low=0, high=16;

while(low<high) {
signed middle=low+((high-low)>>1);

if(a[middle]<x)
high=middle;

else if(a[middle]>x)
low=middle+1;

else // a[middle]=x !
return middle;

}

return -1;
}

If you runCBMCon this function, you will notice that the unwinding does not stop.
The built-in simplifier is not able to determine a run time bound for this loop. The
unwinding bound has to be given as a command line argument:

cbmc binsearch.c --function binsearch --unwind 5 --decide

CBMCnot only verifies the array bounds (note that this actually depends on the
result of the right shift), but also checks that enough unwinding is done, i.e., it proves
a run-time bound. For any lower unwinding bound, there are traces that require more
loop iterations. Thus,CBMCwill produce an appropriate counterexample.

1.2.4 Unbounded Loops

However,CBMCcan also be used for programs with unbounded loops. In this case,
CBMCis used for bug hunting only;CBMCdoes not attempt to find all bugs. Consider
the following program:

3

_Bool nondet_bool();
_Bool LOCK = 0;

_Bool lock() {
if(nondet_bool()) {

assert(!LOCK);
LOCK=1;
return 1; }

return 0;
}

void unlock() {
assert(LOCK);
LOCK=0;

}

int main() {
unsigned got_lock = 0;
int times;

while(times > 0) {
if(lock()) {

got_lock++;
/* critical section */

}

if(got_lock!=0)
unlock();

got_lock--;
times--;

} }

Thewhile loop in themain function has no (useful) run-time bound. Thus, the
–unwind parameter has to be used in order to prevent infinite unwinding. However,
you will note thatCBMCwill detect that not enough unwinding is done and aborts with
an unwinding assertion violation.

In order to disable this test, runCBMCwith the parameter--no-unwinding-
assertions . For an unwinding bound of one, no bug is found. But already for
a bound of two,CBMCdetects a trace that violates an assertion. Without unwinding
assertions,CBMCdoes not prove the program correct, but it can be helpful to find
program bugs.

1.2.5 A Note About the ANSI-C Library

The ANSI-C library that comes with any C compiler is usually not usable forCBMC.
It usually comes as binary and not as source code, and furthermore usually contains
architecture dependent code. In case of the GNU C Library, even the prototypes in the

4

.h file contain code that is not compliant with the ANSI-C standard.CBMCships with
prototypes that are standard compliant. You need to define this path as include path for
the ANSI-C pre-processor.

E.g., assuming thebash shell is used andgcc is the pre-processor, this statement
adjusts the path accordingly:

export C_INCLUDE_PATH=/path-to-cprover/examples/ansi-c-lib/

This directory only contains the prototypes, no implementation of the library func-
tions is currently provided.

1.3 Outline

In chapter 2, we describe the ANSI-C language features supported byCBMC. In chapter
3, we describe howCBMCcan be used to check conformance of hardware designs with
an ANSI-C specification. Chapter 4 describes the command line interface.

5

Chapter 2

ANSI-C Language Features

2.1 Basic Datatypes

CBMCsupports the scalar data types as defined by the ANSI-C standard, including
bool . By default int is 32 bits wide,short int is 16 bits wide, andchar

is 8 bits wide. Using a command line option, these default widths can be changed.
By default,char is signed. Since some architectures use an unsignedchar type, a
command line option allows to change this setting.

There is also support for the floating point data typesfloat , double , andlong
double . By default, CBMCuses fixed-point arithmetic for these types. Variables
of type float have by default 32 bits (16 bits integer part, 16 bits fractional part),
variables of typedouble andlong double have 64 bits.

In addition to the types defined by the ANSI-C standard,CBMCsupports the fol-
lowing Microsoft C extensions: int8 , int16 , int32 , int64 . These types
define a bit vector with the given number of bits.

2.2 Operators

2.2.1 Boolean Operators

CBMCsupports all ANSI-C Boolean operators on scalar variablesa, b:

Operator Description

!a negation
a && b and
a || b or

2.2.2 Integer Arithmetic Operators

CBMCsupports all integer arithmetic operators on scalar variablesa, b:

6

Operator Description

-a unary minus, negation
a+b sum
a-b subtraction
a*b multiplication
a/b division
a%b remainder

a<<b bit-wise left shift
a>>b bit-wise right shift
a&b bit-wise and
a|b bit-wise or
aˆb bit-wise xor

a< b relation
a<=b relation
a> b relation
a>=b relation

Note that the multiplication, division, and reminder operators are very expensive
with respect to the size of the equation that is passed to the SAT solver. Furthermore,
the equations are hard to solve for all SAT solvers known to us.

As an example, consider the following program:

int main() {
unsigned char a, b;
unsigned int result=0, i;

a=nondet_uchar();
b=nondet_uchar();

for(i=0; i<8; i++)
if((b>>i)&1)

result+=(a<<i);

assert(result==a*b);
}

The program nondeterministically selects two 8-bit unsigned values, and then uses
shift-and-add to multiply them. It then asserts that the result (i.e., the sum) matches
a*b . Although the resulting SAT instance has only about 1400 variables, it takes 12
minutes to solve using Chaff.

Properties Checked Optionally, CBMCallows checking for arithmetic overflow in
case of signed operands. In case of the division and the remainder operator,CBMC
checks for division by zero. This check can be disabled using a command line option.

As an example, the following program nondeterministically selects two unsigned
integersa andb. It then checks that either of them is non-zero and then computes the
inverse ofa+b :

7

int main() {
unsigned int a, b, c;

a=nondet_uint();
b=nondet_uint();

if(a>0 || b>0)
c=1/(a+b);

}

However, due to arithmetic overflow when computing the sum, the division can
turn out to be a division by zero.CBMCgenerates a counterexample as follows for the
program above:

Initial State
--

c=0 (00000000000000000000000000000000)

State 1 file div_by_zero.c line 4 function main
--

a=4294967295 (11111111111111111111111111111111)

State 2 file div_by_zero.c line 5 function main
--

b=1 (00000000000000000000000000000001)

Failed assertion: division by zero file div_by_zero.c
line 8 function main

2.2.3 Floating Point Arithmetic Operators

CBMCsupports the following operators on variables of the typesfloat , double , and
long double :

Operator Description

-a unary minus, negation
a+b sum
a-b subtraction
a*b multiplication

a< b relation
a<=b relation
a> b relation
a>=b relation

Division is currently not supported. Note that the multiplication operator is very
expensive with respect to the size of the equation that is passed to the SAT solver.
Furthermore, the equations are hard to solve for all SAT solvers known to us.CBMC
also type conversions to and from integer types.

8

2.2.4 The Comma Operator

CBMCsupports the comma operatora, b . The operands are evaluated for potential
side effects. The result of the operator is the right operand.

2.2.5 Type Casts

CBMChas full support for arithmetic type casts. As an example, the expression(un-
signed char)i for an integeri is guaranteed to be between 0 and 255 in case of
an eight bit character type.

Properties Checked For the unsigned data types, the ANSI-C standard requires
modulo semantics, i.e., that no overflow exception occurs. Thus, overflow is not
checked. For signed data types, an overflow exception is permitted. Optionally,CBMC
checks for such arithmetic overflows.

2.2.6 Side Effects

CBMCallows all side effect operators with their respective semantics. This includes
the assignment operators (=, +=, etc.), and the pre- and post- increment and decrement
operators.

As an example, consider the following program fragment:

unsigned int i, j;

i=j++;

After the execution of the program, the variablei will contain the initial value of
j , and j will contain the initial value ofj plus one. CBMCgenerates the following
equation from the program:

i1 = j0

j1 = j0 + 1

CBMCperforms the implicit type cast as required by the ANSI-C standard. As an
example, consider the following program fragment:

char c;
int i;
long l;

l = c = i;

The value ofi is converted to the type of the assignment expressionc=i , that is,
char type. The value of this expression is then converted to the type of the outer
assignment expression, that is,long int type.

9

Ordering of Evaluation The ANSI-C standard allows arbitrary orderings for the
evaluations of expressions and the time the side-effect becomes visible. The only ex-
ceptions are the operators&&, || , and the trinary operator?: . For the Boolean oper-
ators, the standard requires strict evaluation from left to right, and that the evaluation
aborts once the result is known. The operands of the expressionc ? x : y must
be evaluated as follows: first,c is evaluated. Ifc is true, x is evaluated, andy other-
wise.

As an example, assume that a pointerp in the following fragment may point to
eitherNULL or a valid, active object. Then, aif statement as follows is valid, since
the evaluation must be done from left to right, and ifp points to NULL, the result of
the Boolean and is known (false) and the evaluation aborts beforep is dereferenced.

if(p!=NULL && *p==5) {
. . .

For other operators, such as addition, no such fixed ordering exists. As an example,
consider the following fragment:

int g;

int f() {
g=1;
...

}

...
g=2;

if(f()+g==1) {
...

In this fragment, a global variableg is assigned to by a functionf() , and just before
an if statement. Furthermore,g is used in an addition expression in the condition of
the if statement together with a call tof() . If f() is evaluated first, the value of
g in the sum will be one, while it is two ifg is evaluated first. The actual result is
architecture dependent.

Properties Checked CBMCmodels this problem as follows: One option allows set-
ting a fixed ordering of evaluation for all operators. The other option allows checking
for such artifacts:CBMCasserts that no side-effect affects the value of any variable
that is evaluated with equal priority. This includes changes made indirectly by means
of pointers. In the example, this is realized by write-protecting the variableg during
the execution off . This rules out programs that show architecture dependent behavior
due to the ordering of evaluation. While such programs are still valid ANSI-C pro-
grams, we do not believe that programs showing architecture dependent behavior are
desirable.

10

2.2.7 Function calls

CBMCsupports functions by inlining. No modular approach is done.CBMCpreserves
the locality of the parameters and the non-static local variables by renaming.

As an example, the following program calls the functionsf() and g() twice.
While f() uses a static variable, which is not renamed between calls,g() uses a true
local variable, which gets a new value for each call.

int f() {
static int s=0;

s++;

return s;
}

int g() {
int l=0;

l++;

return l;
}

int main() {
assert(f()==1); // first call to f
assert(f()==2); // second call to f
assert(g()==1); // first call to g
assert(g()==1); // second call to g

}

Recursion is implemented by finite unwinding, as done forwhile loops. CBMC
checks that enough unwinding is done by means of anunwinding assertion(section
2.3.6 provides more details).

2.3 Control Flow Statements

2.3.1 Conditional Statement

CBMCallows the use of the condition statement as described in the ANSI-C standard.

Properties Checked CBMCgenerates a warning if the assignment operator is used as
condition of a control flow statement such asif or while .

11

2.3.2 return

The return statement without value is transformed into an equivalentgoto state-
ment. The target is the end of the function. Thereturn statement with value is
transformed into an assignment of the value returned and thegoto statement to the
end of the function.

Properties Checked CBMCenforces that functions with a non-void return type return
a value by means of the return statement. The execution of the function must not end
by reaching the end of the function. This is realized by insertingassert(FALSE);
at the end of the function.CBMCreports an error trace if this location is reachable.

As an example, consider the following fragment:

int f() {
int c=nondet_int();

if(c!=1)
return c;

}

int main() {
int i;
i=f();

}

In this fragment,f() may exit without returning a value.CBMCproduces the
following counterexample:

State 1 file no-return.c line 2 function f
--

c=1 (00000000000000000000000000000001)

Failed assertion: end-of-function assertion
file no-return.c line 6 function f

2.3.3 goto

While only few C programs make use ofgoto statements,CBMCprovides limited
support for such programs. We distinguish forward and backward jumps. In case of
forward jumps, the same technique as used for loops is applied: the loop is unwound
a given number of times, and then we check that this number of times is sufficient by
replacing thegoto statement byassert(FALSE); .

2.3.4 break and continue

The break andcontinue statements are replaced by equivalentgoto statements
as described in the ANSI-C standard.

12

2.3.5 switch

CBMCprovides limited support forswitch statements. The following restrictions are
enforced:

• CBMCdoes not allow ”fall-through”. A construct such as

switch(i) {
case 1: j++;
case 2: j++; break;

}

is not permitted.

• CBMCdoes not allowswitch targets withinif or loop statements.

2.3.6 Loops

In Bounded Model Checking, the transition system is unwound up to a finite depth.
In case of C programs, this means thatfor andwhile are unwound up to a certain
depth. In many cases,CBMCis able to automatically detect the maximum number of
times a loop can be executed. This includeswhile loops and loops with modifications
to the loop counter inside the loop body, even when done indirectly using a pointer.

However, in case of loops that have no pre-set bound, e.g., loops iterating on dy-
namic data structures, the user must specify a bound by means of the--unwind
command line argument.CBMCwill then unwind the loops up to that bound and check
that the number is large enough by means of anunwinding assertion.

2.4 Non-Determinism

CBMCallows to model user-input by means of non-deterministic choice functions. The
names of these functions have the prefixnondet . The value range generated is de-
termined by the return type of the function. As an example,

int nondet_int();

returns a nondeterministically chosen value of typeint . The functions are built-in,
i.e., the prototype is sufficient.CBMCwill evaluate all traces arising from all possible
choices.

2.5 Assumptions and Assertions

CBMCchecks assertions as defined by the ANSI-C standard: Theassert statement
takes a Boolean condition, andCBMCchecks that this condition istrue for all runs of
the program. The logic for assertions is the usual ANSI-C expression logic.

13

In addition to theassert statement,CBMCprovides theassume statement. The
assume statement restricts the program traces that are considered and allows assume-
guarantee reasoning. As an assertion, an assumption takes a Boolean expression. In-
tuitively, one can consider theassume statement to abort the programsuccessfullyif
the condition is false. If the condition is true, the execution continues.

As an example, the following function first nondeterministically picks an integer
value. It then assumes that the integer is in a specific range and returns the value.

int one_to_ten() {
int value=nondet_int();
assume(value>=1 && value<=10);
return value;

}

Note that the assume statement is not retro-active with respect to assertions. E.g.,

assert(value<10);
assume(value==0);

may fail, while

assume(value==0);
assert(value<10);

passes.
When using theassume statement, it must be ensured that there still exists a pro-

gram trace that satisfies the condition. Otherwise, any property will pass vacuously.
This should be checked my replacing the property byfalse. If no counterexample is
produced, the assumptions eliminate all program paths.

2.6 Arrays

CBMCallows arrays as defined by the ANSI-C standard. This includes multi-dimensional
arrays.

Dynamic Arrays The ANSI-C standard allows arrays with non-constant size as long
as the array does not have static storage duration, i.e., is a local variable. Even though
such a construct has a potentially huge state space,CBMCprovides full support for
arrays with non-constant size. The size of the Boolean equation that is generated does
not depend on the array size, but rather on the number of read or write accesses to the
array.

Properties Checked CBMCchecks both lower and upper bound of arrays, even for
arrays with dynamic size. As an example, consider the following fragment:

unsigned size=nondet_uint();

14

char a[size];

a[10]=0;

In this fragment, an arraya is defined, which has a nondeterministically chosen
size. The code then accesses the array element with index 10.CBMCproduces a coun-
terexample with an upper array bound error on arraya. The trace shows a value for
size less then 10.

2.7 Structures

CBMCallows arbitrary structure types. The structures may be nested, and may contain
arrays.

The sizeof operator applied to a structure type yields the sum of the sizes of
the components. However, the ANSI-C standard allows arbitrary padding between
components. In order to reflect this padding, thesizeof operator should return the
sum of the sizes of the componentsplus a nondeterministically chosen non-negative
value.

Recursive Structures Structures may be recursive by means of pointers to the same
structure. As an example, consider the following fragment:

struct nodet {
struct nodet *n;
int payload;

};

int main() {
unsigned i;
struct nodet *list=(void *)0;
struct nodet *new_node;

for(i=0; i<10; i++) {
new_node=malloc(sizeof(*new_node));
new_node->n=list;
list=new_node;

}
}

The fragment builds a linked list with ten dynamically allocated elements.

Structures with Dynamic Array The last component of an ANSI-C structure may
be an incomplete array (an array without size). This incomplete array is used for dy-
namic allocation. This is described in section 2.10.

15

2.8 Unions

CBMCallows the use of unions to use the same storage for multiple data types. Inter-
nally, CBMCactually shares the literals used to represent the variables values among
the union members.

Properties Checked CBMCdoes not permit the use of unions for type conversion,
as this would result in architecture dependent behavior. Specifically, if a memberx is
read, this member must have been used for writing to the union the last time.

2.9 Pointers

2.9.1 The Pointer Data Type

Pointers are commonly used in ANSI-C programs. In particular, pointers are required
for call by reference and for dynamic data structures.CBMCprovides extensive support
for programs that use pointers according to rules set by the ANSI-C standard, including
pointer type casts and pointer arithmetic.

The size of a pointer, e.g.,sizeof(void *) is by default 4 bytes. This can be
adjusted using a command line option.

Conversion of pointers from and to integers The ANSI-C standard does not pro-
vide any guarantees for the conversion of pointers into integers. However,CBMCen-
sures that the conversion of the same address into an integer yields the same integer.
The ANSI-C standard does not guarantee that the conversion of a pointer into an integer
and then back yields a valid pointer.CBMCdoes not allow this construct.

2.9.2 Pointer Arithmetic

CBMCsupports the ANSI-C pointer arithmetic operators. As an example, consider the
following fragment:

int array[10], *p;

int main() {
array[1] = 1;
p = &array[0];
p++;

assert(*p == 1);
}

2.9.3 The Relational Operators on Pointers

The ANSI-C standard allows comparing to pointers using the relational operators<=,
<, >=, <.

16

Properties Checked The standard restricts the use of these operators to pointers that
point to the same object.CBMCenforces this restriction by means of an automatically
generated assertion.

2.9.4 Pointer Type Casts

CBMCprovides full support for pointer type casts as described by the ANSI-C standard.
As an example, it is a common practice to convert a pointer to, e.g., an integer into a
pointer tovoid and then back:

int i;
void *p;

p=&i;
. . .
*((int *)p)=5;

Note that pointer type casts are frequently used for architecture specific type con-
versions, e.g., to write an integer byte-wise into a file or to send it over a socket:

int i;
char *p;

p=(char *)&i;

for(j=0; j<4; j++) {
/* write *p */
p++;

}

The result is architecture-dependent. In particular, it exposes the endianess of the ar-
chitecture.CBMCdoes not allow these constructs. It encourages to use architecture-
independent constructs instead, e.g., using the shift operators.

Properties Checked CBMCchecks that the type of the object being accessed matches
the type of the dereferencing expression. For example, the following fragment uses a
void * pointer to store the addresses of bothchar andint type objects:

int nondet_int();

void *p;
int i;
char c;

int main() {
int input1, input2, z;

17

input1=nondet_int();
input2=nondet_int();

p=input1? (void *)&i : (void *)&c;

if(input2)
z=*(int *)p;

else
z=*(char *)p;

}

CBMCproduces the following counterexample:

Initial State
--

c=0 (00000000)
i=0 (00000000000000000000000000000000)
p=NULL

State 1 file line 10 function main
--

input1=0 (00000000000000000000000000000000)

State 2 file line 11 function main
--

input2=1 (00000000000000000000000000000001)

State 3 line 13 function main
--

p=&c

Failed assertion: dereference failure (wrong object type)
line 16 function main

Note that the ANSI-C standard allows the conversion of pointers to structures to
another pointer to a prefix of the same structure. As an example, the following program
performs a valid pointer conversion:

typedef struct {
int i;
char j;

} s;

typedef struct {
int i;

} prefix;

18

int main() {
s x;
prefix *p;

p=(prefix *)&x;

p->i=1;
}

2.9.5 String Constants

ANSI-C implements strings of characters as an array. Strings are then often represented
by means of a pointer pointing to the array. Array bounds violations of string arrays are
the leading cause of security holes in Internet software such as servers or web browsers.

CBMCprovides full support for string constants, usable either in initializers or as
a constant. As an example, the following fragment contains a string arrays , which is
initialized using a string constant. Then, a pointerp is initialized with the address ofs ,
and the second character ofs is modified indirectly by dereferencingp. The program
then asserts this change tos .

char s[]="abc";

int main() {
char *p=s;

/* write to p[1] */
p[1]=’y’;

assert(s[1]==’y’);
}

Properties Checked CBMCperforms bounds checking for string constants as well as
for normal arrays. In the following fragment, a pointerp is pointing to a string constant
of length three. Then, an inputi is used as address of an array index operation.CBMC
asserts that the inputi is not greater than four (the string constant ends with an implicit
zero character).

char *p="abc";

void f(unsigned int i) {
char ch;

/* results in bounds violation with i>4 */
ch=p[i];

}

19

In addition to that,CBMCchecks that string constants are never written into by
means of pointers pointing to them.

2.9.6 Pointers to Functions

CBMCallows pointers to functions, and calls through such a pointer. The function
pointed to may depend on nondeterministically chosen inputs. As an example, the
following fragment contains a table of three function pointers. The program uses a
function argument to index the table and then calls the function. It then asserts that the
right function was called.

int global;

int f() { global=0; }
int g() { global=1; }
int h() { global=2; }

typedef int (*fptr)();
fptr table[] = { f, g, h };

void select(unsigned x) {
if(x<=2) {

table[x]();
assert(global==x);

}
}

2.10 Dynamic Memory

CBMCallows programs that make use of dynamic memory allocation, e.g., for dy-
namically sized arrays or data structures such as lists or graphs. As an example, the
following fragment allocates a variable number of integers usingmalloc , writes one
value into the last array element, and then deallocates the array:

void f(unsigned int n) {
int *p;

p=malloc(sizeof(int)*n);

p[n-1]=0;

free(p);
}

Properties Checked Optionally, CBMCchecks array bounds of dynamically allo-
cated arrays, and it checks that a pointer pointing to a dynamic object is pointing to an

20

active object (i.e., that the object has not yet been freed and that it is not a static object).
Furthermore,CBMCchecks that an object is not freed more than once.

In addition to that,CBMCcan check that all dynamically allocated memory is deal-
located before exiting the program, i.e.,CBMCcan prove the absence of ”memory
holes”.

As an example, the following fragment dynamically allocates memory, and stores
the address of that memory in a pointerp. Depending on an inputi , this pointer is
redirected to a local variabley . The memory pointed to byp is then deallocated using
free . CBMCdetects that there is an illegal execution trace in case that the inputi is
true.

void f(_Bool i) {
int *p;
int y;

p=malloc(sizeof(int)*10);

if(i) p=&y;

/* error if p points to y */
free(p);

}

21

Chapter 3

Hardware Verification using
ANSI-C as a Reference

3.1 Introduction

A common hardware design approach employed by many companies is to first write
a quick prototype that behaves like the planned circuit in a language like ANSI-C.
This program is then used for extensive testing and debugging, in particular of any
embedded software that will later on be shipped with the circuit. An example is the
hardware of a cell phone and its software. After testing and debugging of the program,
the actual hardware design is written using hardware description languages like VHDL
or Verilog.

Thus, there are two implementations of the same design: one written in ANSI-C,
which is written for simulation, and one written in register transfer level HDL, which
is the actual product. The ANSI-C implementation is usually thoroughly tested and
debugged.

Due to market constraints, companies aim to sell the chip as soon as possible,
i.e., shortly after the HDL implementation is designed. There is usually little time for
additional debugging and testing of the HDL implementation. Thus, an automated, or
nearly automated way of establishing the consistency of the HDL implementation is
highly desirable.

This motivates the verification problem: we want to verify the consistency of the
HDL implementation, i.e., the product, using the ANSI-C implementation as a refer-
ence [2]. Establishing the consistency does not require a formal specification. How-
ever, formal methods to verify either the hardware or software design are still desirable.

Related Work There have been several attempts in the past to tackle the problem.
In [3], a tool for verifying the combinational equivalence of RTL-C and an HDL is
described. They translate the C code into HDL and use standard equivalence checkers
to establish the equivalence. The C code has to be very close to a hardware description
(RTL level), which implies that the source and target have to be implemented in a very

22

similar way. There are also variants of C specifically for this purpose. The System C
standard defines a subset of C++ that can be used for synthesis [4]. Other variants of
ANSI-C for specifying hardware are Spec C and Handel C, among others.

The concept of verifying the equivalence of a software implementation and a syn-
chronous transition system was introduced by Pnueli, Siegel, and Shtrichman [5]. The
C program is required to be in a very specific form, since a mechanical translation is
assumed.

In [6], Currie, Hu, and Rajan transform DSP assembly language into an equation
for the Stanford Validity Checker. However, problems involving bit vector overflow are
not detected and while loops are not supported. The symbolic execution of programs
for comparison with RTL is common practice [7, 8].

The previous work focuses on a small subset of ANSI-C that is particularly close to
register transfer language. Thus, the designer is often required to rewrite the C program
manually in order to comply with these constraints. We extend the methodology to
handle the full set of ANSI-C language features. This is a challenge in the presence of
complex, dynamic data structures and pointers that may dynamically point to multiple
objects. Furthermore, our methodology allows arbitrary loop constructs.

3.2 A small Tutorial

The following Verilog module implements a 4-bit counter:

module main(clk);

input clk;
reg [3:0] counter;

initial counter=0;

always @(posedge clk)
counter=counter+1;

endmodule

CBMCcan take Verilog modules as the one above as additional input. The trace
produced by the Verilog module is provided to the C program by means of arrays.
For the example above, the following C fragment is the declaration of the array that
corresponds to the trace values of thecounter register:

extern const unsigned int counter[];

Note that the array has no size specification. However, asCBMCperforms Bounded
Model Checking, the size of the array must be bounded. As it is desirable to change
the bound to adjust it to the available computing capacity, the bound is given on the
command line and not as part of the C program. This makes it easy to use only one C
program for arbitrary bounds. The actual bound is available in the C program using the
following declaration:

extern const unsigned int bound;

23

Also note that the array declaration above declares an array with constant members.
Thus, the C program can only read the trace values and not modify them. We will later
on describe how to drive inputs of the Verilog module within the C program.

As described in previous chapters, assertions can be used to verify properties of the
Verilog trace. As an example, the following program checks two values of the trace of
the counter module:

extern const unsigned int bound;
extern const unsigned int counter[];

int main() {
assert(counter[5]==5);
assert(counter[16]==0);

}

The followingCBMCcommand line checks these assertions with a bound of 20:

cbmc counter.c counter.v --module main --bound 20 --decide

The module name given must match the name of the top module in the Verilog file.
Multiple Verilog files can be given on the command line.

The --bound parameter is not to be confused with the--unwind parameter.
While the --unwind parameter specifies the maximum unwinding depth for loops
within the C program, the--bound parameter specifies the number of times the tran-
sition relation of the Verilog module is to be unwound.

Counterexamples For the given example, the verification is successful. If the first
assertion is changed to

assert(counter[5]==0);

and the bound on the command line is changed to 6,CBMCwill produce a counterex-
ample.CBMCproduces two traces: One for the C program, which matches the traces
described earlier, and a separate trace for the Verilog module. The values of the regis-
ters in the Verilog module are also shown in the C trace as part of the initial state.

Initial State
--

bound=6 (00000000000000000000000000000110)
counter= 0, 1, 2, 3, 4, 5, 6

Failed assertion: assertion line 6 function main

Transition system state 0
--

counter=0 (0000)

Transition system state 1
--

counter=1 (0001)

Transition system state 2
--

counter=2 (0010)

Transition system state 3
--

counter=3 (0011)

24

Transition system state 4
--

counter=4 (0100)

Transition system state 5
--

counter=5 (0101)

Transition system state 6
--

counter=6 (0110)

Using the Bound The following program is using the bound variable to check the
counter value in all cycles:

extern const unsigned int bound;
extern const unsigned int counter[];

int main() {
unsigned cycle;

for(cycle=0; cycle<=bound; cycle++)
assert(counter[cycle]==(cycle & 15));

}

CBMCperforms array bounds checking on the trace arrays. Thus, care must be
taken to prevent access to the trace arrays beyond the bound.

Synchronizing Inputs The example above is trivial as there is only one possible
trace. The initial state is deterministic, and there is only one possible transition, so the
verification problem can be solved by mere testing. Consider the following Verilog
module:

module main(clk, i);

input clk;
input i;
reg [3:0] counter;

initial counter=0;

always @(posedge clk)
if(i)

counter=counter+1;

endmodule

Using the C program above will fail, as the Verilog module is free to use zero as
value for the inputi . This implies that the counter is not incremented. The C program
has to read the value of the inputi in order to be able to get the correct counter value:

extern const unsigned int bound;
extern const unsigned int counter[];
extern const unsigned _Bool i[];

int main() {
unsigned cycle;
unsigned C_counter=0;

for(cycle=0; cycle<=bound; cycle++) {

25

assert(counter[cycle]==(C_counter & 15));
if(i[cycle]) C_counter++;

}
}

Similarly, the C model has to synchronize on the choice of the initial value of
registers if the Verilog module does not perform initialization.

Restricting the Choice of Inputs The C program can also restrict the choice of in-
puts of the Verilog module. This is useful for adding environment constraints. As an
example, consider a Verilog module that has a signalreset as an input, which is
active-low. The following C fragment drives this input to be active in the first cycle,
and not active in any subsequent cycle:

assume(resetn[0]==0);

for(i=1; i<=bound; i++)
assume(resetn[i]);

Mapping Variables within the Module Hierarchy Verilog modules are hierarchi-
cal. Theextern declarations shown above only allow reading the values of signals
and registers that are in the top module. In order to read values from sub-modules,
CBMCuses structures.

As an example, consider the following Verilog file:

module counter(clk, increment);

input clk;
input [7:0] increment;
reg [7:0] counter;

initial counter=0;

always @(posedge clk)
counter=counter+increment;

endmodule

module main(clk);

input clk;

counter c1(clk, 1);
counter c2(clk, 2);

endmodule

The file has two modules: a main module and a counter module. The counter mod-
ule is instantiated twice within the main module. A reference to the registercounter
within the C program would be ambiguous, as the two module instances have separate
instances of the register.CBMCuses the following data structures for this example:

/* unwinding bound */

extern const unsigned int bound;

/*
Module verilog::main

*/

26

extern const _Bool clk[];

/*
Module verilog::counter

*/

struct counter {
_Bool clk;
unsigned char increment;
unsigned char counter;

};

extern const struct counter c1[];
extern const struct counter c2[];

int main() {
assert(c1[5].counter==5);
assert(c2[5].counter==10);

}

Themain function reads both counter values for cycle 5. A deeper hierarchy (mod-
ules in modules) is realized by using structure members. Writing these data structures
for large Verilog designs is error prone, and thus,CBMCcan automatically generate
them. The declarations above are generated using the command line

cbmc --gen-interface --module main hierarchy.v

Mapping Verilog Vectors to Arrays or Scalars In Verilog, a definition such as

wire [31:0] x;

can be used for arithmetic (e.g.,x+10) and as array of Booleans (e.g.,x[2]). ANSI-
C does not allow both, so when mapping variables from Verilog to C, the user has to
choose one option for each such variable. As an example, the C declaration

extern const unsigned int x[];

will allow usingx in arithmetic expressions, while the C declaration

extern const _Bool x[][32];

will allow accessing the individual bits ofx using the syntaxx[cycle][bit] . The
--gen-interface option ofCBMCwill generate the first variant if the vector has
the same size as one of the standard integer types, and the second option if not so. This
choice can be changed by adjusting the declaration accordingly.

27

Chapter 4

Command Line Interface

This chapter describes the command line interface ofCBMC. Like a C compiler,CBMC
takes the names of the.c source files as arguments. Additional options allow to cus-
tomize the behavior ofCBMC.

Option Description

--program-only only show program expression
--function name set main function name
--no-simplify do not simplify
--all-claims keep all claims
--unwind nr unwind nr times
--unwindset nr unwind given loop nr times
--claims-only only show claims
--decide run decision procedure
--dimacs generate CNF in DIMACS format
--document-subgoals generate subgoals documentation
--remove-assignments remove unrelated assignments
--no-substitution do not perform substitution
--no-simplify-if do not simplify ?:
--no-assertions ignore assertions
--no-unwinding-assertions do not generate unwinding assertions
--no-bounds-check do not do array bounds check
--no-div-by-zero-check do not do division by zero check
--no-pointer-check do not do pointer check
--bound nr number of transitions
--module name module to unwind
--counterexample file write counterexample to file

28

Bibliography

[1] International Organization for Standardization.ISO/IEC 9899:1999: Program-
ming languages — C. International Organization for Standardization, Geneva,
Switzerland, 1999.

[2] Carl Pixley. Guest Editor’s Introduction: Formal Verification of Commercial Inte-
grated Circuits.IEEE Design & Test of Computers, 18(4):4–5, 2001.

[3] Luc Séméria, Andrew Seawright, Renu Mehra, Daniel Ng, Arjuna Ekanayake, and
Barry Pangrle. RTL C-based methodology for designing and verifying a multi-
threaded processor. InProc. of the 39th Design Automation Conference. ACM
Press, 2002.

[4] http://www.systemc.org.

[5] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (CVT)- au-
tomatic verification of a compilation process.Int. Journal of Software Tools for
Technology Transfer (STTT), 2(2):192–201, 1998.

[6] David W. Currie, Alan J. Hu, and Sreeranga Rajan. Automatic formal verification
of dsp software. InProceedings of the 37th Design Automation Conference (DAC
2000), pages 130–135. ACM Press, 2000.

[7] Kiyoharu Hamaguchi. Symbolic simulation heuristics for high-level design de-
scriptions with uninterpreted functions. InInternational Workshop on High-Level
Design, Validation, and Test, pages 25–30. IEEE, 2001.

[8] C. Blank, H. Eveking, J. Levihn, and G. Ritter. Symbolic simulation techniques —
state-of-the-art and applications. InInternational Workshop on High-Level Design,
Validation, and Test, pages 45–50. IEEE, 2001.

29

