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1. INTRODUCTION
A security policy defines execution that, for one reason or another, has been
deemed unacceptable. For example, a security policy might concern

—access control, and restrict what operations principals can perform on
objects,

—information flow, and restrict what principals can infer about objects
from observing system behavior, or
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—availability, and restrict principals from denying others the use of a
resource.

To date, general-purpose security policies, like those above, have at-
tracted the most attention. But application-dependent and special-purpose
security policies are increasingly important.1 A system to support mobile
code, like Java [Gong 1997], might prevent information leakage by enforc-
ing a security policy that bars messages from being sent after files have
been read. To support electronic commerce, a security policy might prohibit
executions in which a customer pays for a service but the seller does not
provide that service. And finally, electronic storage and retrieval of intel-
lectual property is governed by rights-management schemes that restrict
not only the use of stored materials but also the use of any derivatives
[Stefik 1996].

The value of application-dependent and special-purpose security policies
is perhaps best explained in terms of the Principle of Least Privilege
[Saltzer and Schroeder 1975], which holds that each principal be accorded
the minimum access needed to accomplish its task. Clearly, richer notions
of “minimum access” allow the Principle of Least Privilege to discriminate
better between those actions that should and those that should not be
allowed. Application-dependent security policies can depend on an applica-
tion’s state along with the semantics of that application’s abstractions, so
richer prescriptions for “minimum access” now become useful. In contrast,
operating system abstractions—the traditional vocabulary for security pol-
icies—constitute a coarse basis for prescribing “minimum access,” often
forcing security policies to be approximations for what is desired.

The practicality of any security policy depends on whether that policy is
enforceable and at what cost. This paper addresses those questions for the
class of enforcement mechanisms that work by monitoring execution steps
of some system, herein called the target, and terminating2 the target’s
execution if it is about to violate the security policy being enforced. We call
this class EM, for Execution Monitoring. EM includes security kernels,
reference monitors, firewalls, and most other operating system and hard-
ware-based enforcement mechanisms that have appeared in the literature.
Our targets may be objects, modules, processes, subsystems, or entire
systems; the execution steps monitored may range from fine-grained ac-
tions (such as memory accesses) to higher-level operations (such as method
calls) to operations that change the security-configuration and thus restrict
subsequent execution.

Mechanisms that use more information than would be available only
from observing the steps of a target’s execution are, by definition, excluded
from EM. Information provided to an EM mechanism is thus insufficient to

1For example, see [Null and Wong 1992; Woo and Lam 1992; Jajodia et al. 1997; Edjlali et al.
1998; Pandey and Hashii 1998; Evans and Twyman 1999; Grimm and Bershad 1999].
2The case where instead of terminating the target, an attempt to violate the policy causes
substitution of an acceptable execution step for an unacceptable one is not materially
different. This is discussed in Section 4.
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predict future steps the target might take, alternative possible executions,
or all possible target executions. Therefore, compilers and theorem-provers,
which analyze a static representation of a target to deduce information
about all of its possible executions, are not EM mechanisms. The availabil-
ity of information about future execution, about possible alternative execu-
tions, or about all possible target executions gives power to an enforcement
mechanism. How much power remains an open question.

Also outside EM are mechanisms that modify a target before executing it.
The modified target must be equivalent to the original, except for aborting
executions that violate the security policy of interest. A definition for
equivalent is thus required to analyze this class of mechanisms.

A formal characterization of what can and cannot be accomplished using
mechanisms in EM has both practical and theoretical utility. Clearly, such
a characterization can inform system builders’ selections of enforcement
mechanisms by circumscribing the intrinsic limits of reference monitors
and derivative mechanisms. From a theoretical perspective, the character-
ization constitutes a first step toward a taxonomy of security policies that is
based on a mathematical semantics of programs. Two other classes in that
taxonomy might come from relaxing EM’s defining restrictions: (i) a class of
enforcement mechanisms that have access to some (perhaps incomplete)
representation of the target, and (ii) a class of enforcement mechanisms
that modify the target before execution.

We proceed as follows. In Section 2, a precise characterization is given for
security policies that can be enforced using mechanisms in EM. An autom-
ata-based formalism for specifying those security policies is the subject of
Section 3. Mechanisms in EM for enforcing security policies specified by
automata are described in Section 4. Section 5 discusses some pragmatic
issues related to specifying and enforcing security policies as well as the
application of our enforcement mechanisms to safety-critical systems. The
appendix contains a summary of the notation used in the paper.

2. CHARACTERIZING EM ENFORCEMENT MECHANISMS

We represent target executions by finite and infinite sequences, where C
denotes a universe of all possible finite and infinite sequences. The manner
in which executions are represented is irrelevant here. Finite and infinite
sequences of atomic actions, of higher-level system steps, of program states,
or of state/action pairs are all plausible alternatives. A target S defines a
subset SS of C corresponding to the executions of S.

A characterization of EM enforceable security policies is interesting only
if the definition being used for security policy is broad enough so that it
does not exclude things usually considered security policies.3 Also, the
definition must be independent of how EM is defined, for otherwise the
characterization of EM-enforceable security policies would be a tautology,
hence uninteresting. We therefore adopt the following.

3However, there is no harm in being liberal about what is considered a security policy.
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Definition of Security Policy: A security policy is specified by giving a
predicate on sets of executions. A target S satisfies security policy 3 if
and only if 3~SS! equals true.

These definitions are broad4 (giving at least as much power for defining
computations that are disallowed by security policies as for specifying the
computations that are possible by targets) and correspond to the intuition
that security policies rule out target executions that are deemed unaccept-
able.

Given a security policy 3 and sets S and P of executions, note we do not
require that if S satisfies 3 and P,S holds, then P satisfies 3. Imposing
such a requirement on security policies disqualifies interesting candidates.
For instance, the requirement precludes information flow (as defined
informally in Section 1) from being considered a security policy—universe
C of all finite and infinite state sequences satisfies information flow
(because, for this set of sequences, the value of no state component is
correlated with others), but a subset P containing only those executions in
which the value of a variable x in each execution is correlated with the
value of y (say) might violate an information flow policy.

Safety Properties and EM Enforceability

By definition, enforcement mechanisms in EM work by monitoring execu-
tion of the target. Thus, any security policy 3 that can be enforced using a
mechanism from EM must be specified by a predicate of the form

3~P!: ~@s [ P: 3̂~s!! (1)

where 3̂ is a predicate on (individual) executions. 3̂ formalizes the criteria
used by the enforcement mechanism for deciding whether or not to termi-
nate an execution that would otherwise violate the policy being enforced. In
Alpern and Schneider [1985] and the literature on linear-time concurrent
program verification, a set of executions is called a property if set member-
ship is determined by each element alone and not by other members of the
set. Using that terminology, we conclude from (1) that a security policy
must be a property in order for that policy to have an enforcement
mechanism in EM.

Not every security policy is a property. Some security policies cannot be
defined using the criteria that individual executions must each satisfy in
isolation. For example, the information flow policy discussed above charac-
terizes sets that are not properties (as proved in McLean [1994]5). Whether
information flows from variable x to y in a given execution depends, in

4The definitions clearly subsume the noninterference-based definition of security policy in
Goguen and Meseguer [1982].
5McLean acknowledged James Gray III as pointing out this limitation for dealing with
security in frameworks based on our property abstraction.
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part, on what values y takes in other possible executions (and whether
those values are correlated with the value of x). A predicate to specify such
sets of executions cannot be constructed using only predicates defined on
single executions in isolation.

Not every property is EM enforceable. Enforcement mechanisms in EM
cannot base decisions on possible future execution, since that information
is, by definition, not available to such a mechanism, and this further
restricts what security policies can be enforced by EM mechanisms. Con-
sider security policy 3 of (1), and suppose s9 is the prefix of some finite or

infinite execution s where 3̂~s! 5 true and 3̂~s9! 5 false hold. Because
execution of a target might terminate before s9 is extended into s, an
enforcement mechanism for 3 must prohibit s9 (even though superse-

quence s satisfies 3̂).
We can formalize this requirement as follows. For s a finite or infinite

execution having i or more steps, and t9 a finite execution, let

s@..i# denote the prefix of s involving its first i steps

t9s denote execution t9 followed by execution s

and define P2 to be the set of all finite prefixes of elements in set P of
finite and/or infinite sequences. Then, the above requirement for 3—that 3
is prefix closed—is:

~@t9 [ C2: ¬3̂~t9! f ~@s [ C: ¬3̂~t9s!!! (2)

Finally, note that any execution rejected by an enforcement mechanism
must be rejected after a finite period. This is formalized by:

~@s [ C: ¬3̂~s! f ~?i: ¬3̂~s@..i#!!! (3)

Security policies satisfying (1), (2), and (3) are safety properties [Lamport
1977], properties stipulating that no “bad thing” happens during any
execution. Formally, a property G is defined in Lamport [1985] to be a
safety property if and only if, for any finite or infinite execution s,

s [y G f ~?i: ~@t [ C: s@..i#t [y G!! (4)

holds. This means that G is a safety property if and only if G can be
characterized using a set of finite executions that are prefixes of all
executions excluded from G. Clearly, a security policy 3 satisfying (1), (2),
and (3) has such a set of finite prefixes—the set of prefixes t9 [ C2 such

that ¬3̂~t9! holds—so 3 is satisfied by sets that are safety properties
according to (4).

The above analysis of enforcement mechanisms in EM has established:
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Non EM-Enforceable Security Policies: If the set of executions for a
security policy 3 is not a safety property, then an enforcement mecha-
nism from EM does not exist for 3.

Obviously, the contrapositive holds as well: EM enforcement mechanisms
enforce security policies that are safety properties. But, as discussed later
in Section 4, the converse—that all safety properties have EM enforcement
mechanisms—does not hold.

One consequence of our Non EM-Enforceable Security Policies result is
that ruling-out additional executions never causes an EM-enforceable
policy to be violated, since ruling-out executions never invalidates a safety
property. Thus, an EM enforcement mechanism for any security policy 39
satisfying 39 f 3 also enforces security policy 3. However, a stronger
policy 39 might proscribe executions that do not violate 3, so using 39 is
not without potentially significant adverse consequences. The limit case,
where 39 specifies the empty set, illustrates this problem.

Second, our Non EM-Enforceable Security Policies result implies that
EM mechanisms compose in a natural way. When multiple EM mecha-
nisms are used in tandem, the policy enforced by the aggregate is the
conjunction of the policies that are enforced by each mechanism in isola-
tion. This is attractive because it enables complex policies to be decomposed
into conjuncts, with a separate mechanism used to enforce each of the
component policies.

Revisiting the three application-independent security policies described
in Section 1, we find:

—Access control defines safety properties. The set of proscribed partial
executions contains those partial executions ending with an unacceptable
operation being attempted.

—Information flow does not define sets that are properties (as argued
above), so it does not define sets that are safety properties. Not being
safety properties, there are no EM enforcement mechanisms for exactly
this policy.6

—Availability, if taken to mean that no principal is forever denied use of
some given resource, is not a safety property—any partial execution can
be extended in a way that allows a principal to access the resource, so the
defining set of proscribed partial executions that every safety property
must have is absent. In Gligor [1984], availability is defined to rule out
all denials in excess of MWT seconds (for some predefined Maximum
Waiting Time parameter MWT). This is a safety property; the defining
set of partial executions contains prefixes ending in intervals that exceed
MWT seconds during which a principal is denied use of a resource.

6Mechanisms from EM purporting to prevent information flow do so by enforcing a security
policy that implies, but is not equivalent to, the absence of information flow. And, there do
exist security policies that both imply restrictions on information flow and define sets that are
safety properties.
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3. SECURITY AUTOMATA

Enforcement mechanisms in EM work by terminating target execution that

is described by a finite prefix s9 such that ¬3̂~s9! holds, for a predicate 3̂
defined by the policy being enforced. In addition, we established in Section

2 that the set of executions satisfying 3̂ must be a safety property. Those

being the only constraints on 3̂, we conclude that recognizers for sets of
executions that are safety properties can serve as the basis for enforcement
mechanisms in EM.

A class of Büchi automata [Eilenberg 1974] that accept safety properties
was introduced (although not named) in Alpern and Schneider [1987]. We
shall herein refer to these recognizers as security automata; they are
similar to ordinary non-deterministic finite-state automata [Hopcroft and
Ullman 1969]. Formally, a security automaton is defined by:

—a countable set Q of automaton states,

—a countable set Q0 # Q of initial automaton states,

—a countable set I of input symbols, and

—a transition function7, d: ~Q 3 I ! 3 2Q.

Set I of input symbols is dictated by the security policy being enforced and
the manner in which target executions are being represented; the symbols
in I might correspond to system states, atomic actions, higher-level actions
of the system, or state/action pairs.

To process a sequence s1s2· · · of input symbols, the current state Q9 of
the security automaton starts equal to Q0 and the sequence is read one
input symbol at a time. As each input symbol si is read, the security
automaton changes Q9 to

ø
q[Q9

d~q, si!.

If Q9 is ever the empty set, then the input is rejected; otherwise the input is
accepted. Notice that this acceptance criterion means that a security
automaton can accept sequences that have infinite length as well as those
having finite length.

Figure 1 depicts a security automaton for a security policy that prohibits
execution of Send operations after a FileRead has been executed. In this
diagram, the automaton states are represented by the two nodes labeled
qnfr (for “no file read”) and qfr (for “file read”). Initial states of the
automaton are represented in the diagram by nodes with unlabeled incom-
ing edges, so automaton state qnfr is the only initial automaton state.
Transition function d is specified in terms of edges labeled by transition

7Notation 2Q denotes the power set for set Q.
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predicates, which are Boolean-valued effectively computable total functions
with domain I. Let pij denote the predicate that labels the edge from node
qi to node qj. Then, the security automaton, upon reading an input symbol
s, changes Q9 to

$qjqi [ Q9 ∧ pij~s!%

where pij~s! is true if and only if input symbol s satisfies predicate pij.
In Figure 1, transition predicate not FileRead is assumed to be satisfied

by input symbols (system execution steps) that are not file read operations,
and transition predicate not Send is assumed to be satisfied by input
symbols that are not message-send operations. Since no transition is
defined from qfr for input symbols corresponding to message-send execution
steps, the security automaton in Figure 1 rejects inputs in which a Send
follows a FileRead.

Diagrams like Figure 1 are impractical to draw and hard to understand if
set Q of automaton states is large or transition function d is complex. We
can avoid these difficulties by encoding current state Q9 for an automaton
in multiple variables and by using guarded commands [Dijkstra 1975] to
describe the transition function for the security automaton. Guarded com-
mand

B 3 S (5)

specifies that the state transition defined by program fragment S occurs
whenever predicate B is satisfied by the current input symbol and the
current state of the automaton. In (5), B is called the guard, and it is a
predicate that can refer only to the current input symbol and to the
variables encoding the current state of the automaton; S is called the
command, and it is a computation that updates (only) the variables
encoding the current state of the automaton.

To illustrate this alternative notation for security automata, Figure 2
gives a specification for the same security policy as given in Figure 1. The
state vars section of this specification introduces the variables that encode
the current state of the security automaton. The transitions section gives
a list of guarded commands that define the transition function. In Figure 2,

qnfr qfr
FileRead

not FileRead not Send

Fig. 1. No Send after FileRead.
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state—a two-valued variable with initial value 0—encodes the current
state of the security automaton, and each of the three guarded commands
corresponds to a single edge in the diagram of Figure 1.

As a second example, Figure 3 specifies a security automaton for a simple
model of access control introduced in Lampson [1974]. PRINS is a universe
of principals, OBJS is a universe of objects, and RIGHTS is a universe of
rights. The current state of this security automaton is characterized by a
set P of principals, a set O of objects, and a set A of the rights that
principals have to objects. A principal p has right r to object o if and only if
^p, o, r& [ A holds.

Transitions in the security automaton of Figure 3 are specified using
predicates defined on the input symbols that correspond to a next step of
the target’s execution:

Oper(p, o, r): Principal p invoked an operation involving object o and
requiring right r to that object.

AddRight~ p, p9, r9, o9!: Principal p invoked an operation to add right r9
to object o9 for principal p9.

RmvRight~ p, p9, r9, o9!: Principal p invoked an operation to remove
right r9 to object o9 for principal p9.

AddP~ p, p9!: Principal p invoked an operation to create a principal
named p9.

RmvP~ p, p9!: Principal p invoked an operation to delete the principal
named p9.

AddO~ p, o9!: Principal p invoked an operation to create an object named o9.

RmvO~ p, o9!: Principal p invoked an operation to delete object o9.

The transitions specify whether the next step of the target’s execution is
permitted by the access control policy being defined. The first guarded
command asserts that a principal must have the necessary right in order to
invoke an operation involving an object implemented by the target. The
second and third guarded commands specify a (simplified) policy for grant-
ing and revoking rights to principals for objects—the second (third)
guarded command asserts that only principals having the cntrl right for an

Fig. 2. Alternative specification for policy: No Send after FileRead.
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object o can grant (remove) rights to other principals for accessing o. The
remaining four guarded commands specify a policy regarding creation and
deletion of principals and objects:

—Every principal is also an object.

—The principal that creates a principal (object) is given the cntrl right for
that principal (object).

—A principal must have the corresponding cntrl right in order to delete a
principal or object.

It ought to be clear that more realistic policies are easily accommodated by
modifying the guarded commands of Figure 3.

Two things are worth noting about this access control example. First,
leverage results from employing a suitable representation (namely sets P,
O, and A which together encode an access control matrix) for the current
state of the automaton. Imagine how awkward it would be to try and
describe changes to access rights in terms of a flat set of uninterpreted
automaton states. Second, our method of specifying security policies al-
lows—but does not force—a distinction between security-configuration
changes (i.e., changing A when access rights are added and deleted) and
accesses to objects implemented by the target system. And, we would argue
that there is no value in forcing such a distinction, although this view is not
universally held [Gligor et al. 1998].

Fig. 3. Access control.
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As a final illustration, we turn to electronic commerce. We might, for
example, desire that a service provider be prevented from engaging in
actions other than delivering service for which a customer has paid. This
requirement is a security policy; it can be formalized in terms of the
following predicates on input symbols, if input symbols represent operation
executions:

pay~C!: customer C requests and pays for service

serve~C!: customer C is rendered service

The security policy of interest proscribes executions in which the service
provider executes an operation that does not satisfy serve~C! after having
engaged in an operation that satisfies pay~C!. A security automaton for
this policy is defined in Figure 4.

Notice, the security automaton of Figure 4 does not stipulate that
payment guarantees service—it only limits what the service provider can
do once a customer has made payment. In particular, the security policy
that is specified allows a service provider to stop executing (i.e., stop
producing input symbols) rather than rendering a paid-for service. We
cannot specify the stronger security policy (that service be guaranteed after
payment) because that is not a safety property—there is no defining set of
proscribed partial executions.

4. USING SECURITY AUTOMATA FOR ENFORCEMENT

Any security automaton can serve as the basis for an enforcement mecha-
nism in EM. The target is executed in tandem with a simulation of the
security automaton.8 In particular, initialization or creation of the target
causes an initialized instance of the security automaton simulation to be
created. And, each step that the target is about to take generates an input
symbol, which is sent to that simulation:

(i) If the automaton can make a transition on that input symbol, then the
target is allowed to perform that step and the automaton state is
changed according to its transition function.

8A similar approach—developed independently—for integrating software components whose
behaviors need to be reconciled is outlined in Marchukov and Sullivan [1999].

Fig. 4. Security automaton for fair transaction.
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(ii) If the automaton cannot make a transition on that input symbol, then
the target is terminated (for having attempted to violate the security
policy).

Implicit in this approach are some assumptions.

Bounded Memory. The memory that can be devoted to simulating a
security automaton will, of necessity, be finite—real computers have finite
memories. Recall from Section 3 that our security automata can have an
infinite (countable) number of automaton states.

Infinite sets of automaton states are necessary for recognizing certain
safety properties, because whether a given prefix should be rejected might
depend on all of the input symbols in that prefix. The ever-larger prefixes
produced as execution proceeds thus require ever-larger sets of states to
encode needed information about the past. For example, a safety property
stipulating that, at each step of execution, the value of some target variable
x equals the sum of its values in preceding states requires (to store the sum
of the past values of x) a state variable that grows without bound.

Security policies of concern in real systems do not seem to require large
amounts of storage and, in fact, are enforced today using mechanisms that
use only modest amounts of storage; a security automaton to specify such a
policy would also require only a modest-sized set of automaton states. We
see no reason to expect application-specific or special-purpose security
policies to be different. So, restricting the state vars for a security
automaton to a finite amount of storage is not, in practice, a limitation.

Target Control. Implicit in (ii) is the assumption that the target can be
terminated by the enforcement mechanism. Specifically, we assume that
the enforcement mechanism has sufficient control over the target to stop
further automaton input symbols from being produced. This control re-
quirement is subtle and makes certain security policies—even though they
characterize sets that are safety properties—unenforceable using mecha-
nisms from EM.

For example, recall from Section 2 the definition of availability in Gligor
[1998]:

Real-Time Availability: One principal cannot be denied use of a re-
source for more than MWT seconds.

Sets satisfying Real-Time Availability are safety properties—the “bad
thing” is an interval of execution spanning more than MWT seconds during
which some principal is denied the resource. The input symbols of a
security automaton for Real-Time Availability will therefore encode time,
and a new input symbol is produced whenever time increases.

While individual clocks might be stopped, the passage of time cannot be
stopped. So the target cannot be stopped from producing input symbols as
time passes. Real-Time Availability simply cannot be enforced by running
an automaton simulation in tandem with a target, because targets cannot
provide the necessary controls to the enforcement mechanism. And since
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the other mechanisms in EM are no more powerful, we conclude that
Real-Time Availability cannot be enforced using any mechanism in EM.
Change the specification from “MWT seconds” to “MWT execution steps”
and the target can be prevented from violating the policy by stopping
execution, resulting in an EM-enforceable security policy.

Enforcement Mechanism Integrity. A target that corrupts a security
automaton simulation can subvert an enforcement mechanism built on that
simulation. Input to the enforcement mechanism must correspond to target
execution, and state transitions must follow the automaton’s transition
function. Ensuring that input to the enforcement mechanism is both correct
and complete is a question of target instrumentation and monitoring. The
“complete mediation” requirement associated with reference monitors is
one way to discharge this assumption. Ensuring that the target does not
interfere with automaton transitions is a matter of isolation—the enforce-
ment mechanism must be isolated from the target. Isolation of our enforce-
ment mechanism is accomplished if, for example, the state vars and
transitions for the security automaton are not writable by the target.

Automaton Simulation Pragmatics

Two mechanisms are involved in the above security-automaton based
implementation of an enforcement mechanism.

Automaton Input Read: A mechanism to determine that an input
symbol has been produced by the target and then to forward that symbol
to the security automaton simulation.

Automaton Transition: A mechanism to determine whether the secu-
rity automaton can make a transition on a given input and then to
perform that transition.

How these are implemented determines the cost of the enforcement mech-
anism. For example, when the automaton’s input symbols are the set of
target states and its transition predicates are arbitrary state predicates, a
new input symbol is produced each time any component of the target’s state
changes. Since the program counter is a state component and it changes
each time a machine-language instruction is executed or an interrupt
occurs, the enforcement mechanism must be involved in executing each
target instruction. That could be quite costly.

For security policies where the target’s production of automaton input
symbols coincides with occurrences of hardware traps, an automaton-based
enforcement mechanism can be supported quite cheaply by incorporating it
into the trap handler. One example is implementing an enforcement
mechanism for access control policies on operating system objects, such as
files. Here, the target is a file and the production of input symbols coincides
with invocations of system operations (i.e., file access operations). The
production of input symbols now coincides with occurrences of system-call
traps.
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A second example where hardware traps can be exploited arises in
implementing memory protection. A security automaton for a typical mem-
ory protection policy would expect an input symbol for each memory
reference. But most of these input symbols would cause no change to the
security automaton’s state. Input symbols that do not cause automaton
state transitions need not be forwarded to the automaton, and that justifies
the following optimization of Automaton Input Read:

Automaton Input Read Optimization: Input symbols are not for-
warded to the security automaton if the state of the automaton just after
the transition would be the same as it was before the transition.

Given this optimization, the production of automaton input symbols for
memory protection can be made to coincide with occurrences of traps. The
target’s memory-protection hardware—base/bounds registers or page and
segment tables—is initialized so that a trap occurs when an input symbol
should be forwarded to the memory protection automaton. Memory refer-
ences that do not cause traps are effectively filtered and thus never cause a
state transition or undefined transition by the automaton. Note, however, if
this optimization is used, then a target can subvert the enforcement
mechanism by corrupting the filter that selects whether to forward an
input symbol to the security automaton.

Finally, inexpensive implementation of our automata-based enforcement
mechanisms is also possible when programs are executed by a software-
implemented virtual machine. The virtual machine instruction-processing
cycle is augmented so that it produces input symbols and makes automaton
transitions according to either an internal or an externally specified
security automaton. For example, the Java virtual machine [Lindholm and
Yellin 1997] could easily be augmented to implement the Automaton Input
Read and Automaton Transition Mechanisms for input symbols that corre-
spond to method invocations.

Beyond EM Enforcement Mechanisms

Response to Violations. Termination of a target that is about to violate a
security policy might seem draconian. Yet, by definition, this is how an EM
mechanism responds to an attempted violation. Why not simply notify the
target that an erroneous execution step has been attempted? The target
could then substitute another step and its execution might then continue.

In terms of our security automata framework, notifying a target is
equivalent to having the security automaton extend that target’s execution
(rather than truncating that execution). And some—but not all—security
policies do allow input prefixes to be extended in this manner. A security
policy that does not enjoy this attribute is the variant of Real-Time
Availability given in Section 2 where MWT bounds the number of execution
steps (not seconds) that elapse before an action is taken. Various other
safety properties also do not allow execution prefixes to be extended,
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although their practical significance as security policies is an open ques-
tion.

EM was defined to truncate execution for generality. Expanding EM to
include enforcement mechanisms that handle violations by notifying the
target or by truncating its execution would not change the set of security
policies that are EM enforceable. Modifying EM to require enforcement
mechanisms that handle violations by necessarily notifying the target
would shrink the set of security policies that are EM enforceable, and with
no apparent gain.

Program Modification. The overhead of enforcement can be reduced by
merging the enforcement mechanism into the target. One such scheme is
software-based fault isolation (SFI), also known as “sandboxing” [Wahbe et
al. 1993; Small 1997]. SFI implements memory protection but does so
without hardware assistance. Instead, a program is edited before it is
executed, and only such edited programs are executed by the target.
(Usually, it is the object code that is edited.) The edits insert instructions to
check and/or modify the values of operands, so that illegal memory refer-
ences are never attempted.

SFI is not in EM because SFI involves modifying the target, and such
modifications are not permitted of enforcement mechanisms in EM. But
viewed in our framework, the inserted instructions for SFI can be seen to
implement Automaton Input Read by copying code for Automaton Transi-
tion in line before each target instruction that produces an input symbol.
Generalizing, nothing prevents the SFI approach from being used with
arbitrary security automata, thereby enforcing any EM-enforceable secu-
rity policy. Trust must be placed in the tools used to modify the target,
however.

Our SASI (Security Automata SFI Implementation) prototypes for Intel’s
x86 object code and SUN’s JVM (Java Virtual Machine) explored the use of
an SFI-like approach for EM-enforceable policies [Erlingsson and Schnei-
der 1999]. Each of our prototypes merges the simulation of a security
automaton into the object code for the program that is the target. New
variables—accessible only to the code added for SASI—represent the cur-
rent state of a security automaton, and new code—that cannot be circum-
vented—simulates automaton state transitions. The new code also causes
the target system to halt whenever the automaton rejects its input (because
the current automaton state does not allow a transition for the next target
instruction). Analysis of a target allows simplification of the code inserted
for simulating a security automaton. Each inserted copy of the automaton
simulation is a candidate for simplification based on the context in which
that code appears. By using partial evaluation [Jones et al. 1993] on the
guards as well as by using the automaton structure, irrelevant tests and
updates to the security automaton state can be removed.

Program Analysis. There is no need for any run-time enforcement mech-
anism if the target can be analyzed and proved not to violate the security
policy of interest. This approach has been employed for a security policy
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like what SFI was originally intended to address in proof carrying code
(PCC) [Necula 1997]. With PCC, a proof is supplied along with a program,
and this proof comes in a form that can be checked mechanically before
running that program. The security policy will not be violated if, before the
program is executed, the accompanying proof is checked and found to be
correct. The original formulation of PCC required that proofs be con-
structed by hand. This restriction can be relaxed. For certain security
policies, a compiler can automatically produce PCC from programs written
in high-level, type-safe programming languages [Morrisett et al. 1998;
Necula and Lee 1998].

To extend PCC for security policies that are specified by arbitrary
security automata, a method is needed to extract proof obligations for
establishing that a program satisfies the property given by such an
automaton. Such a method does exist—it is described in Alpern and
Schneider [1989].

5. DISCUSSION

The utility of a formalism partly depends on the ease with which it can be
read and written. Users of the formalism must be able to translate informal
requirements into the formalism. With security automata, establishing the
correspondence between transition predicates and informal requirements
on system behavior is crucial and can require a detailed understanding of
the target. The automaton of Figure 1, for example, only captures the
informal requirement that messages are not sent after a file is read if it is
impossible to send a message unless transition predicate Send is true and it
is impossible to read a file unless transition predicate FileRead is true.
There might be many ways to send messages—some obvious and others
buried deep within the bowels of the target. All must be identified and
included in the definition of Send; a similar obligation accompanies transi-
tion predicate FileRead.

The general problem of establishing the correspondence between infor-
mal requirements and some purported formalization of those requirements
is not new to software engineers. The usual solution is to analyze the
formalization, being alert to inconsistencies between the results of the
analysis and the informal requirements. We might use a formal logic to
derive consequences from the formalization; we might use partial evalua-
tion to analyze what the formalization implies about one or another
scenario, a form of testing; or, we might (manually or automatically)
transform the formalization into a prototype and observe its behavior in
various scenarios.

Success with proving, testing, or prototyping as a way to gain confidence
in a formalization depends upon two things. The first is deciding what
aspects of a formalization to check, and this is largely independent of the
formalism. But the second, having the means to do those checks, not only
depends on the formalism but largely determines the usability of that
formalism. To do proving, we require a logic whose language includes the
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formalism; to do testing, we require a means of evaluating a formalization
in one or another scenario; and to do prototyping, we must have some way
to transform a formalization into a computational form.

As it happens, a rich set of analytical tools does exist for security
automata, because security automata are a class of Büchi automata that
are widely used in computer-aided program verification tools. Existing
formal methods based either on model checking or on theorem proving can
be employed to analyze a security policy that has been specified as a
security automaton. And, testing or prototyping a security policy that is
specified by a security automaton is just a matter of running the automa-
ton.

Guidelines for Structuring Security Automata

Real system security policies are best given as collections of simpler
policies, a single large monolithic policy being difficult to comprehend. The
system’s security policy is then the result of composing the simpler policies
in the collection by taking their conjunction. To employ such a separation of
concerns when security policies are specified by security automata, we
must be able to compose security automata in an analogous fashion. Given
a collection of security automata, we must be able to construct a single
conjunction security automaton for the conjunction of the security policies
specified by the automata in the collection. That construction is not
difficult: An execution is rejected by the conjunction security automaton if
and only if it is rejected by any automaton in the collection.

Beyond comprehensibility, there are other advantages to specifying sys-
tem security policies as collections of security automata. First, having a
collection allows different enforcement mechanisms to be used for the
different automata (hence the different security policies) in the collection.
Second, security policies specified by distinct automata can be enforced by
distinct system components, something that is attractive when all of a
given security automaton’s input symbols correspond to events at a single
system component. Benefits that accrue from having the source of all of an
automaton’s input symbols be a single component include:

—Enforcement of a component’s security policy involves trusting only
that component.

—The overhead of an enforcement mechanism is lower because commu-
nication between components can be reduced.

For example, the security policy for a distributed system might be specified
by giving a separate security automaton for each system host. Then, each
host would itself implement the Automaton Input Read and Automaton
Transitions mechanisms for only the security automata concerning that
host.

Application to Safety-Critical Systems

The idea that security kernels might have application in safety-critical
systems is eloquently justified in Rushby [1989] and continues to interest
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researchers such as Wika and Knight [1995]. Safety-critical systems are,
for the most part, concerned with enforcing properties that are safety
properties (in the sense of Lamport [1985]), so it is natural to expect an
enforcement mechanism for safety properties to have application in this
class of systems. And, we see no impediments to using security automata or
our security-automata based enforcement mechanisms for enforcing safety
properties in safety-critical systems.

The justification given in Rushby [1989] for using security kernels in
safety-critical systems involves a characterization of what types of proper-
ties can be enforced by a security kernel. As do we in this paper, Rushby
[1989] concludes that safety properties but not liveness properties9 are
enforceable. However, the arguments given in Rushby [1989] are informal
and are coupled to the semantics of kernel-supported operations. The
essential attributes of enforceability, which we isolate and formalize by
equations (1), (2), and (3), are neither identified nor shown to imply that
only safety properties can be enforced.

In addition, because Rushby [1989] concerns kernelized systems, the
notion of property is restricted there to being sequences of kernel-provided
functions. By allowing security automata to have arbitrary sets of input
symbols, our results can be seen as generalizing those of Rushby [1989].
And the generalization is a useful one, because it applies to enforcement
mechanisms that are not part of a kernel. Thus, we can now extend the
central thesis of Rushby [1989], that kernelized systems have application
beyond implementing security policies, to justify the use of enforcement
mechanisms from EM when building safety-critical systems.

APPENDIX: SUMMARY OF NOTATION

C: The set of all finite and infinite sequences.

S: A target.

SS: The set of executions possible by target S.

3: A predicate specifying a security policy.

S: A set of executions.

P: A set of executions.

3̂: A predicate on executions used in defining security policy 3.

s: A finite or infinite execution.

s9: A finite execution.

t: A finite or infinite execution

9A liveness property is a property that stipulates some “good thing” happens during any
execution. See Alpern and Schneider [1987] for a formal definition.
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t9: A finite execution.

s@..i#: The prefix of s involving its first i steps.

t9s: Finite execution t9 followed by execution s.

P2: The set of all finite prefixes of elements in set P.

G: A set of executions that is a safety property.

Q: The set of automaton states.

Q0: The set of initial automaton states.

I: The set of automaton input symbols.

d: The automaton next-state transition function.

Q9: The current state of a security automaton.
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