
Journal of Computer Security draft printout, (22 Feb 1999), 1{20IOS Press 1
A SOUND TYPE SYSTEM FOR SECURE FLOWANALYSISDennis VolpanoComputer Science DepartmentNaval Postgraduate SchoolMonterey, California 93943, U.S.A.Geo�rey SmithSchool of Computer ScienceFlorida International UniversityMiami, Florida 33199, U.S.A.Cynthia IrvineComputer Science DepartmentNaval Postgraduate SchoolMonterey, California 93943, U.S.A.AbstractEnsuring secure information
ow within programs in the context of multiple sensi-tivity levels has been widely studied. Especially noteworthy is Denning's work insecure
ow analysis and the lattice model [6][7]. Until now, however, the soundnessof Denning's analysis has not been established satisfactorily. We formulate Denning'sapproach as a type system and present a notion of soundness for the system that canbe viewed as a form of noninterference. Soundness is established by proving, withrespect to a standard programming language semantics, that all well-typed programshave this noninterference property.Keywords: type systems, program security, soundness proofs1. IntroductionThe problem of ensuring secure information
ow within systems having multiplesensitivity levels has been studied extensively, beginning with the early work of Belland LaPadula [3]. This was extended by the lattice-model work of Denning [5][6][7]who pioneered program certi�cation, an e�cient form of static analysis that couldbe easily incorporated into a compiler to verify secure information
ow in programs.Denning's analysis has been characterized as an extension of an axiomatic logic forprogram correctness by Andrews and Reitman [1]. Other more recent e�orts havebeen aimed at extending the analysis to properly handle language features like

2 D. Volpano, G. Smith, C. Irvineprocedures [15][16] and nondeterminism [2], while others have focused on integrityanalysis only [18][19].So far there has not been a satisfactory treatment of the soundness of Den-ning's analysis. After all, we want to be assured that if the analysis succeeds for agiven program on some inputs, then the program in some sense executes securely.Denning provides intuitive arguments only in [7][8]. Although a more rigorous ac-count of information
ow in terms of classical information theory is given in [8], noformal soundness proof is attempted. Andrews and Reitman [1] do not address thesoundness of their
ow logic at all. Soundness is considered in �rb�k [18], but thetreatment depends on an \instrumented semantics" where every value is taggedwith a security class. These classes are updated for values at run time accordingto Denning's certi�cation conditions. A similar approach is taken by Mizuno andSchmidt [17]. However, these approaches are unsatisfactory. By modifying the se-mantics in this way, there is no longer any basis for justifying the soundness of theanalysis. Proving soundness in this framework essentially amounts to proving thatthe analysis is consistent with the instrumented semantics. But then it is fair toask whether class tags are updated correctly in the instrumented semantics. Thereis no justi�cation for tag manipulation in the semantics.We take a type-based approach to the analysis. The certi�cation conditions ofDenning's analysis [7][8] are formulated as a simple type system for a deterministiclanguage. A type system is basically a formal system of type inference rules formaking judgments about programs. They are usually used to establish the typecorrectness of programs in a strongly-typed language, for example, Standard ML[20]. However, they are not limited to reasoning about traditional forms of typecorrectness. They can be regarded, in general, as logical systems in which to reasonabout a wide variety of program properties. In our case, the property of interest issecure information
ow.Characterizing the analysis as a type system has many advantages. It servesas a formal speci�cation that cleanly separates the security policies from the al-gorithms for enforcing them in programs. The separation also admits a notionof soundness for the analysis that resembles traditional noninterference [9]. Intu-itively, soundness states that variables in a well-typed program do not \interfere"with variables at lower security levels. This is formalized as a type soundnesstheorem and proved. It is interesting to point out that the soundness proof jus-ti�es a more
exible treatment of local variables|in some cases, there is an im-plicit
ow to a local variable, but the
ow is actually harmless, so it need notbe rejected. The secure
ow typing rules merge some traditional type correctnessconcerns with secure-
ow enforcement. Upward information
ows are easily ac-commodated through subtyping. And �nally, though not addressed in this paper,the type system can be automated, using standard type inference techniques, toanalyze programs for secure
ows.We begin with an overview of Denning's lattice model followed by an informaltreatment of the type system. Examples are given to show how the typing rulesare used. Then we turn our attention to a formal treatment of the type system andprove a soundness theorem with respect to a standard semantics for the language.Other soundness e�orts will then be discussed along with language extensions andsome directions for future research.

A Sound Type System for Secure Flow Analysis 32. The Lattice Model of Information FlowThe lattice model is an extension of the Bell and LaPadula model [3]. In this model,an information
ow policy is de�ned by a lattice (SC;�), where SC is a �nite setof security classes partially ordered by �. SC may include secrecy classes, like low(L) and high (H), as well as integrity classes, like trusted (T) and untrusted (U),where L � H and T � U . There may be combinations of them as well, like HT.Every program variable x has a security class denoted by x. It is assumed thatx can be determined statically and that it does not vary at run time. If x and yare variables and there is a
ow of information from x to y then it is a permissible
ow i� x � y.Every programming construct has a certi�cation condition. It is a purely syn-tactic condition relating security classes. Some of these conditions control explicit
ows while others control implicit
ows . For example, the statement y := x hasthe condition x � y, that is, the
ow of information from the security class of xto that of y must be permitted by the
ow policy. This is an example of a con-dition controlling an explicit
ow. The conditions for other constructs, such as ifstatements and while loops, control implicit
ows. For example, there is alwaysan implicit
ow from the guard of a conditional to its branches. For instance, inthe statement if x > y then z := w else i := i+ 1there is an implicit
ow from x and y to z and i. So the statement has thecerti�cation condition x� y � z
 i where � and
 denote least upper bound andgreatest lower bound operators respectively. The lattice property makes it possibleto enforce these conditions using a simple attribute grammar with synthesizedattributes only.3. An Informal Treatment of the Type SystemA type system consists of a set of inference rules and axioms for deriving typingjudgments. A typing judgment, for our purposes, has the form
 ` p : �This judgment asserts that program (or program phrase) p has type � with respectto identi�er typing
. An identi�er typing is a map from identi�ers to types; itgives the types of any free identi�ers of p. A judgment follows from the type systemif it is the last in a sequence of judgments where each judgment in the sequence isan axiom or one that follows from preceding judgments by a type inference rule.For example, consider a simple type system for integer-valued expressions. Itmight contain the following three rules: an axiom
 ` i : int , which asserts thatevery integer literal i has type int , an inference rule
 ` x : � if
(x) = �giving us the type of any free identi�er x, and the inference rule
 ` e : int ;
 ` e0 : int
 ` e+ e0 : int

4 D. Volpano, G. Smith, C. Irvinefor deducing the types of expressions of the form e + e0. In inference rules, thejudgments above the horizontal line are hypotheses and the judgment below theline is the conclusion. So if
(z) = int , then
 ` z + 1 : intis a judgment that follows from the type system. We say z + 1 is well typed withrespect to
 in this case and that it has type int . But if
(z) = bool then thejudgment no longer follows from the system and we say z+1 is not well typed withrespect to
.The preceding example illustrates a traditional type system. Our secure
owtype system is also composed of types and type inference rules, but now the rulesenforce secure
ow as opposed to data type compatibility. The rules allow secure-
ow judgments to be made for expressions and commands in a block-structured,deterministic language.3.1. Secure Flow TypesThe types of our system are strati�ed into two levels. At one level are the datatypes , denoted by � , which are the security classes of SC . We assume that SCis partially ordered by �. At the other level are the phrase types , denoted by�. These include data types, which are the types given to expressions, variabletypes of the form � var , and command types of the form � cmd . As one wouldexpect, a variable of type � var stores information whose security class is � orlower. More novelly, a command c has type � cmd only if it is guaranteed thatevery assignment within c is made to a variable whose security class is � or higher.This is a con�nement property, needed to ensure secure implicit
ows. We extendthe partial order � to a subtype relation which we denote �. The subtype relationis antimonotonic (or contravariant) in the types of commands, meaning that if� � � 0 then � 0 cmd � � cmd . As usual, there is a type coercion rule that allows aphrase of type � to be assigned a type �0 whenever � � �0.3.2. Secure Flow Typing RulesThe typing rules guarantee secure explicit and implicit
ows as do certi�cationrules in the lattice model. Consider, for example, the typing rule for assignment:
 ` e : � var ;
 ` e0 : �
 ` e := e0 : � cmdThis rule essentially says that in order to ensure that the explicit
ow from e0 toe is secure, e0 and e must agree on their security levels, which is conveyed by �appearing in both hypotheses of the rule. Note, however, that an upward
ow frome0 to e is still allowed; if e : H var and e0 : L, then with subtyping, the type of e0can be coerced up to H and the rule applied with � = H .11 Keep in mind that secrecy and integrity are treated uniformly in our type system[4][11], as they are in the lattice model. Examples throughout the paper will begiven for secrecy only, but they could alternatively be stated for integrity.

A Sound Type System for Secure Flow Analysis 5Notice that in the preceding typing rule, the entire assignment is given type� cmd . The reason for this is to control implicit
ows. Here is a simple example.Suppose x is either 0 or 1 and considerif x = 1 then y := 1 else y := 0Although there is no explicit
ow from x to y, there is an implicit
ow because xis indirectly copied to y. To ensure that such implicit
ows are secure, we use thefollowing typing rule for conditionals:
 ` e : �;
 ` c : � cmd ;
 ` c0 : � cmd
 ` if e then c else c0 : � cmdThe intuition behind the rule is that c and c0 are executed in a context whereinformation of level � is implicitly known. For this reason, c and c0 may onlyassign to variables of level � or higher. Although the rule requires the guard e andbranches c and c0 to have the same security level, namely � , it does not preventan implicit upward
ow from e to branches c and c0. Again subtyping can be usedto establish agreement, but unlike the case with assignment statements, there arenow two ways to get it. The type of e can be coerced to a higher level, or thetypes of the branches can be coerced to lower levels using the antimonotonicity ofcommand types. In some situations both kinds of coercions are necessary. Observethat no coercions will lead to agreement if there is downward
ow from e. Thetyping rule must reject the conditional in this case.For example, suppose
(x) =
(y) = H var . By the preceding typing rulefor assignment, we have
 ` y := 1 : H cmd and
 ` y := 0 : H cmd . Thismeans that each statement can be placed in a context where high information isimplicitly known through the guard of a conditional statement. An example isif x = 1 then y := 1 else y := 0. With � = H , the secure
ow typing rule forconditionals gives
 ` if x = 1 then y := 1 else y := 0 : H cmdSo the statement is well typed, as is expected, knowing that since x and y are highvariables, the implicit
ow from x to y is secure. The resulting type H cmd assuresus that no low variable is updated in either branch (no write down). This wouldpermit the entire statement to be used where high information again is implicitlyknown. Now if
(x) = L var , then the implicit
ow is still secure, but establishingthis fact within the type system now requires subtyping. One option is to use theantimonotonic subtyping of command types where H cmd � L cmd since L � H .Each branch then is coerced from type H cmd to L cmd so that we can let � = Land get
 ` if x = 1 then y := 1 else y := 0 : L cmdOn the other hand, we might coerce the type of x upward from L to H and let� = H instead. Then once again the conditional has type H cmd . This would beour only choice if we had to successfully type the conditional, say, as the branchof yet another conditional whose guard is high. And �nally, if
(x) = H var and
(y) = L var , then the conditional is not well typed, which is what we would expectsince now the implicit
ow is downward.

6 D. Volpano, G. Smith, C. Irvineif x = 1 thenletvar y := 1 in celseletvar y := 0 in c0Figure 1. An implicit
ow from x to y3.3. Local Variable DeclarationsOur core language includes a construct for declaring local variables. A local vari-able, say x, in our language is declared asletvar x := e in cIt creates x initialized with the value of expression e. The scope and lifetime of x iscommand c. The initialization can cause an implicit
ow, but it is always harmless.Consider, for instance, the program fragment in Figure 1, for some commandsc and c0. If x is high and each instance of y is low, then it might appear as thoughthe program should be rejected because there is a downward implicit
ow from xto y. But if c and c0 do not update any low variables, that is, each can be typedas high commands, then the program is actually secure, despite the downward
ow. The contents of x cannot be \laundered" via y. To see this, suppose x ishigh. Then the rule for typing conditionals given above forces c and c0 to be typedas high commands. By the con�nement property, then, neither c nor c0 has anyassignments to low variables and thus y cannot be assigned to any low variables.3.4. Type SoundnessWe prove two interesting security lemmas for our type system, namely SimpleSecurity and Con�nement. Simple Security applies to expressions and Con�nementto commands. If an expression e can be given type � in our system, then SimpleSecurity says, for secrecy, that only variables at level � or lower in e will havetheir contents read when e is evaluated (no read up). For integrity, it says thatevery variable in e stores information at integrity level � . On the other hand, if acommand c can be given type � cmd , then Con�nement says, for secrecy, that novariable below level � is updated in c (no write down). For integrity, it states thatevery variable assigned to in c can indeed be updated by information at integritylevel � .These two lemmas are used to prove the type system is sound. Soundness isformulated as a kind of noninterference property. Intuitively, it says that variablesin a well-typed program do not interfere with variables at lower security levels. Thatis, if a variable v has security level � , then one can change the initial values of anyvariables whose security levels are not dominated by � , execute the program, andthe �nal value of v will be the same, provided the program terminates successfully.3.5. Type InferenceIt is possible to check automatically whether a program is well typed by usingstandard techniques of type inference. While a detailed discussion of type inferenceis beyond the scope of this paper, the basic idea is to use type variables to represent

A Sound Type System for Secure Flow Analysis 7unknown types and to collect constraints (in the form of type inequalities) that thetype variables must satisfy for the program to be well typed. In this way, one canconstruct a principal type for the program that represents all possible types thatthe program can be given.4. A Formal Treatment of the Type SystemWe consider a core block-structured language described below. It consists ofphrases, which are either expressions e or commands c:(phrases) p ::= e j c(expressions) e ::= x j l j n j e+ e0 j e� e0 j e = e0 j e < e0(commands) c ::= e := e0 j c; c0 j if e then c else c0 jwhile e do c j letvar x := e in cMetavariable x ranges over identi�ers, l over locations (addresses), and n overinteger literals. Integers are the only values. We use 0 for false and 1 for true, andassume that locations are well ordered.There are no I/O primitives in the language. All I/O is done through freelocations in a program. That is, if a program needs to \read input" then it doesso by dereferencing an explicit location in the program. Likewise, a program thatneeds to \write output" does so by an assignment to an explicit location. Locationsmay also be created during program execution due to local variable declarations.So a partially-evaluated program may contain newly-generated locations as well asthose used for I/O.The types of the core language are strati�ed as follows.(data types) � ::= s(phrase types) � ::= � j � var j � cmdMetavariable s ranges over the set SC of security classes, which is assumed to bepartially ordered by �. Type � var is the type of a variable and � cmd is the typeof a command.The typing rules for the core language are given in Figure 2. We omit typingrules for some of the expressions since they are similar to rule (arith). Typingjudgments have the form �;
 ` p : �where � is a location typing and
 is an identi�er typing . The judgment means thatphrase p has type �, assuming � prescribes types for locations in p and
 prescribestypes for any free identi�ers in p. An identi�er typing is a �nite function mappingidenti�ers to � types;
(x) is the � type assigned to x by
. Also,
[x : �] is amodi�ed identi�er typing that assigns type � to x and assigns type
(x0) to anyidenti�er x0 other than x. A location typing is a �nite function mapping locationsto � types. The notational conventions for location typings are similar to those foridenti�er typings.The remaining rules of the type system constitute the subtyping logic and aregiven in Figure 3. Properties of the logic are established by the following lemmas.

8 D. Volpano, G. Smith, C. Irvine(int) �;
 ` n : �(var) �;
 ` x : � var if
(x) = � var(varloc) �;
 ` l : � var if �(l) = �(arith) �;
 ` e : �;�;
 ` e0 : ��;
 ` e+ e0 : �(r-val) �;
 ` e : � var�;
 ` e : �(assign) �;
 ` e : � var ;�;
 ` e0 : ��;
 ` e := e0 : � cmd(compose) �;
 ` c : � cmd ;�;
 ` c0 : � cmd�;
 ` c; c0 : � cmd(if) �;
 ` e : �;�;
 ` c : � cmd ;�;
 ` c0 : � cmd�;
 ` if e then c else c0 : � cmd(while) �;
 ` e : �;�;
 ` c : � cmd�;
 ` while e do c : � cmd(letvar) �;
 ` e : �;�;
[x : � var] ` c : � 0 cmd�;
 ` letvar x := e in c : � 0 cmdFigure 2. Typing rules for secure information
owLemma 4.1 (Structural Subtyping) If ` � � �0, then either(a) � is of the form � , �0 is of the form � 0, and � � � 0,(b) � is of the form � var and �0 = �, or(c) � is of the form � cmd , �0 is of the form � 0 cmd , and � 0 � � .Proof. By induction on the height of the derivation of ` � � �0. If the derivationends with rule (base) then (a) is true by the hypothesis of the rule. If it ends with(reflex), then � = �0. So if � is of the form � , then (a) holds since � is re
exive.And if � is of the form � var or � cmd , then (b) or (c) hold, respectively.Now suppose the derivation ends with rule (trans). Then there is a �00 suchthat ` � � �00 and ` �00 � �0 by the hypotheses of the rule. There are three cases:1. If � is of the form � , then by induction �00 is of the form � 00 and � � � 00. So by

A Sound Type System for Secure Flow Analysis 9(base) � � � 0` � � � 0(reflex) ` � � �(trans) ` � � �0; ` �0 � �00` � � �00(cmd�) ` � � � 0` � 0 cmd � � cmd(subtype) �;
 ` p : �;` � � �0�;
 ` p : �0Figure 3. Subtyping rulesinduction again, �0 is of the form � 0 and � 00 � � 0. And since � is transitive,� � � 0.2. If � is of the form � var , then by induction �00 = �. So by induction again,�0 = �00, and hence �0 = �.3. If � is of the form � cmd , then by induction �00 is of the form � 00 cmd and� 00 � � . So by induction again, �0 is of the form � 0 cmd and � 0 � � 00. So, since� is transitive, � 0 � � .Finally, suppose the derivation ends with (cmd�). Then � is of the form� cmd , �0 is of the form � 0 cmd , and ` � 0 � � by the hypothesis of the rule.By induction, � 0 � � . tuLemma 4.2 � is a partial order.Proof. Re
exivity and transitivity follow directly from rules (reflex) and(trans). Antisymmetry follows from Lemma 4.1 and the antisymmetry of �. tu5. The Formal SemanticsThe soundness of our type system is established with respect to a natural semanticsfor closed phrases in the core language. We say that a phrase is closed if it hasno free identi�ers. A closed phrase is evaluated relative to a memory �, which isa �nite function from locations to values. The contents of a location l 2 dom(�)is the value �(l), and we write �[l := n] for the memory that assigns value n tolocation l, and value �(l0) to a location l0 6= l; note that �[l := n] is an update of �if l 2 dom(�) and an extension of � otherwise.The evaluation rules are given in Figure 4. They allow us to derive judgmentsof the form � ` e) n for expressions and � ` c) �0 for commands. Thesejudgments assert that evaluating closed expression e in memory � results in integern and that evaluating closed command c in memory � results in a new memory �0.Note that expressions cannot cause side e�ects and commands do not yield values.

10 D. Volpano, G. Smith, C. Irvine(base) � ` n) n(contents) � ` l) �(l) if l 2 dom(�)(add) � ` e) n; � ` e0) n0� ` e+ e0) n+ n0(update) � ` e) n; l 2 dom(�)� ` l := e) �[l := n](sequence) � ` c) �0; �0 ` c0) �00� ` c; c0) �00(branch) � ` e) 1; � ` c) �0� ` if e then c else c0) �0� ` e) 0; � ` c0) �0� ` if e then c else c0) �0(loop) � ` e) 0� ` while e do c) �� ` e) 1;� ` c) �0;�0 ` while e do c) �00� ` while e do c) �00(bindvar) � ` e) n;l is the �rst location not in dom(�);�[l := n] ` [l=x]c) �0� ` letvar x := e in c) �0 � lFigure 4. The evaluation rulesWe write [e=x]c to denote the capture-avoiding substitution of e for all freeoccurrences of x in c, and let �� l be memory � with location l deleted from its do-main. Note the use of substitution in rule (bindvar), which governs the evaluationof letvar x := e in c. A new location l is substituted for all free occurrences of x inc. The result [l=x]c is then evaluated in the extended memory �[l := n], where n isthe value of e. By using substitution, we avoid having to introduce an environmentmapping x to l. One can view [l=x]c as a partially-evaluated command, perhapscontaining other free locations.6. Type SoundnessWe now establish the soundness of the type system with respect to the semanticsof the core language. The soundness theorem states that if �(l) = � , for somelocation l, then one can arbitrarily alter the initial value of any location l0 such

A Sound Type System for Secure Flow Analysis 11(r-val0) �;
 ` e : � var ;� � � 0�;
 ` e : � 0(assign0) �;
 ` e : � var ;�;
 ` e0 : �;� 0 � ��;
 ` e := e0 : � 0 cmd(if0) �;
 ` e : �;�;
 ` c : � cmd ;�;
 ` c0 : � cmd ;� 0 � ��;
 ` if e then c else c0 : � 0 cmd(while0) �;
 ` e : �;�;
 ` c : � cmd ;� 0 � ��;
 ` while e do c : � 0 cmdFigure 5. Syntax-directed typing rulesthat �(l0) is not a subtype of � , execute the program, and the �nal value of l willbe the same provided the program terminates successfully.To facilitate the soundness proof, we introduce a syntax-directed set of typingrules. The rules of this system are just the rules of Figure 2 with rules (r-val),(assign), (if), and (while) replaced by their syntax-directed counterparts in Fig-ure 5. The subtyping rules in Figure 3 are not included in the syntax-directedsystem. We shall write judgments in the syntax-directed system as �;
 `s p : �.The bene�t of the syntax-directed system is that the last rule used in the deriva-tion of a typing �;
 `s p : � is uniquely determined by the form of p and of �. Forexample, if p is a while loop, then the derivation can only end with rule (while0),as opposed to (while) or (subtype) in the original system. The syntax-directedrules also suggest where a type inference algorithm should introduce coercions.Next we establish that the syntax-directed system is actually equivalent to ouroriginal system. First we need another lemma:Lemma 6.1 If �;
 `s p : � and ` � � �0, then �;
 `s p : �0.Proof. By induction on the height of the derivation of �;
 `s p : �.If the derivation ends with �;
 `s n : � by rule (int), then by Lemma 4.1 �0 isof the form � 0, and �;
 `s n : � 0 by rule (int).If the derivation ends with �;
 `s e : � var either by rule (var) or (varloc),then �0 = � by Lemma 4.1.If the derivation ends with �;
 `s e+ e0 : � by rule (arith), then �;
 `s e : �and �;
 `s e0 : � . By Lemma 4.1, �0 is of the form � 0. So by induction, �;
 `s e : � 0

12 D. Volpano, G. Smith, C. Irvineand �;
 `s e0 : � 0. Thus, �;
 `s e + e0 : � 0 by rule (arith). The cases where thederivation ends with rule (compose) or (letvar) are similar.If the derivation ends with �;
 `s e : � by rule (r-val0), then there is a type� 00 such that �;
 `s e : � 00 var and � 00 � � . By Lemma 4.1, �0 is of the form � 0 and� � � 0. Since � is transitive, � 00 � � 0 and so �;
 `s e : � 0 by rule (r-val0).If the derivation ends with �;
 `s e := e0 : � cmd by rule (assign0), thenthere is a type � 00 such that �;
 `s e : � 00 var , �;
 `s e0 : � 00 and � � � 00. ByLemma 4.1, �0 is of the form � 0 cmd and � 0 � � . Since � is transitive, � 0 � � 00and so �;
 `s e := e0 : � 0 cmd by (assign0). Derivations ending with (if0) and(while0) are handled similarly. tuEquivalence is now expressed by the following theorem.Theorem 6.2 �;
 ` p : � i� �;
 `s p : �.Proof. If �;
 `s p : �, then it is easy to see that �;
 ` p : �, because each use ofthe syntax-directed rules (r-val0), (assign0), (if0), or (while0) can be simulatedby a use of (r-val), (assign), (if), or (while), followed by a use of (subtype).For example, a use of (assign0)�;
 ` e : � var ;�;
 ` e0 : �;� 0 � ��;
 ` e := e0 : � 0 cmdcan be simulated by using (assign) to show �;
 ` e := e0 : � cmd , using (base)and (cmd�) to show ` � cmd � � 0 cmd , and using (subtype) to show �;
 ` e :=e0 : � 0 cmd .Now suppose that �;
 ` p : �. We will prove that �;
 `s p : � by induction onthe height of the derivation of �;
 ` p : �.If the derivation ends with (int), (var) or (varloc), then �;
 `s p : � isimmediate, and it follows directly by induction if the derivation ends with (arith),(compose) or (letvar).If the derivation ends with (r-val), (assign), (if), or (while), then �;
 `p : � follows by an application of the corresponding syntax-directed rule, using thefact that � is re
exive.Finally, suppose the derivation of �;
 ` p : � ends with (subtype). Thenby the hypotheses of this rule, there is a type �0 such that �;
 ` p : �0 and` �0 � �. By induction, �;
 `s p : �0. Thus, �;
 `s p : � by Lemma 6.1. tuFrom now on, we shall assume that all typing derivations are done in thesyntax-directed type system, and therefore shall take ` to mean `s .As �nal preparation, we establish the following properties of the type systemand semantics.Lemma 6.3 (Simple Security) If � ` e : � , then for every l in e, �(l) � � .Proof. By induction on the structure of e. Suppose � ` l : � by rule (r-val0).Then there is a type � 0 such that � ` l : � 0 var and � 0 � � . Now �(l) = � 0 by rule(varloc), so �(l) � � .

A Sound Type System for Secure Flow Analysis 13Suppose � ` e+e0 : � . Then � ` e : � and � ` e0 : � . By two uses of induction,�(l) � � , for every l in e, and for every l in e0. So �(l) � � for every l in e+ e0. tuSimple security applies to both secrecy and integrity. In the case of secrecy, itsays that only locations at level � or lower will have their contents read when e isevaluated (no read up). So if L � H and � = L, then e can be evaluated withoutreading any H locations.In the case of integrity, it says that if e has integrity level � , then every locationin e stores information at integrity level � . For example, if T � U , where T istrusted and U untrusted, and � = T , then the lemma states that every location ine stores trusted information.Lemma 6.4 (Con�nement) If �;
 ` c : � cmd , then for every l assigned to in c,�(l) � � .Proof. By induction on the structure of c. Suppose �;
 ` l := e : � cmd by(assign0). Then there is a type � 0 such that �;
 ` l : � 0 var , �;
 ` e : � 0 and� � � 0. By rule (varloc), �(l) = � 0, so �(l) � � .The lemma follows directly by induction if c is the composition of two com-mands or a letvar command.Suppose �;
 ` while e do c0 : � cmd by (while0). Then there is a type � 0such that �;
 ` e : � 0, �;
 ` c0 : � 0 cmd and � � � 0. By induction, �(l) � � 0for every l assigned to in c0. So, since � is transitive, �(l) � � for every lassigned to in c0 and hence for every l assigned to in while e do c0. The casewhen c is a conditional is handled similarly. tuCon�nement applies to both secrecy and integrity as well. In the case ofsecrecy, it says that no location below level � is updated in c (no write down). Forintegrity, it states that every location assigned to in c can indeed be updated byinformation at integrity level � . So, for example, if � = U , then the lemma saysthat no trusted location will be updated when c is evaluated.The following lemma is a straightforward variant of a lemma given in [10].Lemma 6.5 (Substitution) If �;
 ` l : � var and �;
[x : � var] ` c : � 0 cmd , then�;
 ` [l=x]c : � 0 cmd .Lemma 6.6 If � ` c) �0, then dom(�) = dom(�0).Lemma 6.7 If � ` c) �0, l 2 dom(�), and l is not assigned to in c, then�(l) = �0(l).The preceding two lemmas can be easily shown by induction on the structureof the derivation of � ` c) �0. Now we are ready to prove the soundness theorem.Theorem 6.8 (Type Soundness) Suppose(a) � ` c : �,(b) � ` c) �0,(c) � ` c) �0,(d) dom(�) = dom(�) = dom(�), and(e) �(l) = �(l) for all l such that �(l) � � .Then �0(l) = �0(l) for all l such that �(l) � � .

14 D. Volpano, G. Smith, C. IrvineProof. By induction on the structure of the derivation of � ` c) �0. Herewe show just three cases: (update), (loop), and (bindvar). The remainingevaluation rules are treated similarly.(update). Suppose the evaluation under � ends with� ` e) n;l 2 dom(�)� ` l := e) �[l := n]and the evaluation under � ends with� ` e) n0;l 2 dom(�)� ` l := e) �[l := n0]and the typing ends with an application of rule (assign0):� ` l : �2 var ;� ` e : �2;�1 � �2� ` l := e : �1 cmdThere are two cases:1. �2 � � . By the Simple Security Lemma, �(l0) � �2 for every l0 in e. Since � istransitive, �(l0) � � for every l0 in e. Thus, by hypothesis (e), �(l0) = �(l0) forevery l0 in e, so n = n0. Therefore, �[l := n](l0) = �[l := n0](l0) for all l0 suchthat �(l0) � � .2. �2 6� � . By rule (varloc), �(l) = �2, so �(l) 6� � . So by hypothesis (e),�[l := n](l0) = �[l := n0](l0) for all l0 such that �(l0) � � .(loop). Suppose � ` while e do c) �0, � ` while e do c) �0, and thetyping derivation ends with an application of rule (while0):� ` e : �2;� ` c : �2 cmd ;�1 � �2� ` while e do c : �1 cmdAgain there are two cases:1. �2 � � . By the Simple Security Lemma, �(l) � �2 for every l in e. Since �is transitive, �(l) � � for every l in e. Thus, by hypothesis (e), �(l) = �(l)for every l in e, and hence � ` e) n and � ` e) n. Therefore, either theevaluation under � ends with� ` e) 0� ` while e do c) �

A Sound Type System for Secure Flow Analysis 15and under � with � ` e) 0� ` while e do c) �or it ends under � with � ` e) 1;� ` c) �1;�1 ` while e do c) �2� ` while e do c) �2and under � with � ` e) 1;� ` c) �1;�1 ` while e do c) �2� ` while e do c) �2In the �rst case, �(l) = �(l) for all l such that �(l) � � by hypothesis (e), sowe're done. In the second case, by induction, �1(l) = �1(l) for all l such that�(l) � � . By Lemma 6.6, dom(�) = dom(�1) and dom(�) = dom(�1). Soby hypothesis (d), dom(�1) = dom(�1) = dom(�). Thus, by induction again,�2(l) = �2(l) for all l such that �(l) � � .2. �2 6� � . By the Con�nement Lemma, �(l) � �2 for every l assigned to in c.Thus, for every l assigned to in c, �(l) 6� � since otherwise we would have�2 � � since � is transitive. So if l 2 dom(�) and �(l) � � , then l is notassigned to in c, and hence is not assigned to in while e do c. By Lemma 6.7,we have �0(l) = �(l) and �0(l) = �(l) for all l such that �(l) � � . Therefore,�0(l) = �0(l) for all l such that �(l) � � by hypothesis (e).(bindvar). Suppose the evaluation under � ends with� ` e) n;l is the �rst location not in dom(�);�[l := n] ` [l=x]c) �0� ` letvar x := e in c) �0 � land, since dom(�) = dom(�), the evaluation under � ends with� ` e) n0;l is the �rst location not in dom(�);�[l := n0] ` [l=x]c) �0� ` letvar x := e in c) �0 � land the typing ends with an application of rule (letvar):� ` e : �1;�; [x : �1 var] ` c : �2 cmd� ` letvar x := e in c : �2 cmd

16 D. Volpano, G. Smith, C. IrvineClearly �[l : �1] ` l : �1 var by (varloc). By hypothesis (d) and since l 62 dom(�),we have l 62 dom(�). Thus, �[l : �1]; [x : �1 var] ` c : �2 cmd . So by Lemma 6.5,�[l : �1] ` [l=x]c : �2 cmd . Also, dom(�[l := n]) = dom(�[l := n0]) = dom(�[l : �1]).To apply induction, we just need to show that�[l := n0](l0) = �[l := n](l0)for all l0 such that �[l : �1](l0) � � . If l0 6= l then it follows by hypothesis (e).Otherwise, if l0 = l, then we must show n = n0 if �1 � � . By the SimpleSecurity Lemma, �(l00) � �1 for every l00 in e. So, if �1 � � , then �(l00) � �for every l00 in e, since � is transitive. Thus by hypothesis (e), �(l00) = �(l00) forevery l00 in e, hence n = n0. So by induction, �0(l00) = �0(l00) for all l00 such that�[l : �1](l00) � � . Therefore, �0 � l(l00) = �0 � l(l00) for all l00 such that �(l00) � � . tu7. DiscussionThe early work of Denning [5][6][7] and Andrews and Reitman [1] treated sound-ness intuitively. More recently, Mizuno and Schmidt [17] and �rb�k [18] haveattempted to give rigorous soundness proofs for Denning-style secure
ow analy-sis. However, both of these works take as their starting point an \instrumentedsemantics", in which every value is tagged with a security class at runtime; thesecurity tags are updated at runtime in accordance with Denning's certi�cationconditions. Soundness then amounts to the issue of whether their static
ow anal-ysis is consistent with the instrumented semantics. But this approach begs thequestion of whether the
ow analysis embodied in the instrumented semantics is,in fact, correct.In contrast, we use a completely standard semantics for the language, andthe type soundness theorem gives a precise operational characterization of thesigni�cance of the
ow analysis: it tells us that altering the initial values of locationsof type � cannot a�ect the �nal values of any locations of type � 0, provided that� 6� � 0. This approach allows us to adopt typing rules whose correctness is notintuitively obvious. For example, our (letvar) rule allows the program of Figure 1to be typed with x : H and y : L, even though there is an implicit
ow from x toy. But this is not a problem, because our soundness theorem assures us that theimplicit
ow is harmless. If we had instead used an instrumented semantics, thenour (letvar) rule would essentially be incorporated into the semantics, where itscorrectness would have to be taken on faith.Banâtre et al. [2] also take a noninterference approach to soundness, but theyconsider a nondeterministic language. They associate with a program variable v,a set called the security variable of v, denoted �v. Roughly speaking, it is the set ofall variables whose values can in
uence the value of v, either directly or indirectly.They describe an axiomatic, information
ow logic for deducing whether a variableis a member of �v, for some variable v. For example, one can deduce that`1 fx 62 �zg y := z fx 62 �ygA soundness proposition (Proposition 1, p. 58 [2]) is given that basically says thatif x 62 �y, for a given program, then executing the program with any two initial

A Sound Type System for Secure Flow Analysis 17values of x will produce the same sets of �nal values for y, as long as the programmay terminate successfully under both initial values. However, the proposition isactually false. The problem is that their language is nondeterministic and althoughthere may be an execution path that leads to successful termination, other pathsmay not terminate. So it is possible to get di�erent sets of �nal values for y. Forinstance, consider the statement[true ! y := 1tutrue ! �[x = 1 ! skip]; y := 2]The statement is a nondeterministic alternative statement with two guards, each ofwhich is true. The body of the second guard is a repetitive statement with just oneguard, that being x = 1. If S denotes this statement, then one can show, using the
ow logic, that `1 fInitg S fx 62 �yg, where Init is de�ned as 8x; y: x 6= y) x 62 �y.Yet, the set of �nal values for y when x = 0 is y = 1 and y = 2, and when x = 1 isjust y = 1 because the loop does not terminate.Denning has used concepts such as uncertainty (entropy) from informationtheory to formalize the notion of information
ow in programs [8]. Basically, ifa program, executed in state s, yields a state s0, then the execution causes aninformation
ow from x to y if new information about x in state s is availablefrom y in state s0. In other words, we are more certain about the contents ofx knowing y after execution than knowing y before. In this setting, soundnessseems to require an information-theoretic characterization. It is unclear how such acharacterization could be proved with respect to a standard programming languagesemantics. Such a semantics does not make explicit notions like uncertainty. Wehave demonstrated that it is possible to formulate and prove soundness withoutresorting to information theory to get a handle on intuitive ideas like information
ow. All that one needs to know about what kind of security is guaranteed by ourtype system is captured entirely by the type soundness theorem.7.1. Core Language ExtensionsThe core language we consider has been kept simple, perhaps even emasculate, tobetter explain our basic proof technique. Although one can imagine many ways toextend the language, there is an obligation to also extend the type system and toprove that well-typed programs preserve the security properties of interest. Manyinteresting research questions arise. For instance, are there extensions of the typesystem to handle other features like concurrency and nondeterminism? If so, whatis the proper notion of soundness, or, in other words, what security guarantees canbe made for all well-typed programs?Some extensions have straightforward typing rules whose soundness can beshown with only minor changes to the soundness theorem. Two examples areprocedures and arrays. Adding arrays is fairly easy with variables already in thelanguage. Procedures, though, require a bit more e�ort, depending on callingconventions. We have extended the core language with procedures in the style of

18 D. Volpano, G. Smith, C. IrvineAda 83. A procedure has the formproc(in x1, inout x2, out x3) cwhere c is a command. We limit the number of parameters to three, one for eachkind of parameter-passing mode, only to simplify the discussion. Procedure typeshave the form � proc(�1; �2 var ; �3 acc)where acc is a new antimonotonic type constructor that stands for acceptor inthe spirit of Forsythe [21]. An acceptor is a variable that can be assigned tobut not evaluated. This is true of out parameters in Ada 83 but not Ada 95;consequently, acc is not antimonotonic in Ada 95. Type � comes from typingcommand c as � cmd , assuming x1, x2 and x3 have types �1, �2 var and �3 accrespectively. Mode in requires a small change in the type soundness theorem butthe proof methodology is basically the same.Other language features pose more serious problems for our type soundnesstheorem. One is the idea of explicit type casting within programs. Palsberg and�rb�k [19] propose a system for integrity analysis in programs. They introduce acast operator called trust that can be used to explicitly coerce an untrusted valueto a trusted value. (Note that the opposite coercion, from trusted to untrusted,can always be made implicitly, since T � U .) While such a coercion seems usefulpragmatically, including it in the language rules out our type soundness theorem.It seems quite di�cult to characterize what is being guaranteed by the
ow analysiswith such a coercion.Another source of di�culty is the proper treatment of nondeterminism. Ob-serve, for instance, that if we try to extend the core language with a primitiverandom number generator rand() and allow an assignment such as z := rand()to be well typed when z is low, then the soundness theorem no longer holds. (Ex-ecuting this assignment twice from the same memory may produce di�erent �nalvalues for z.) A weakness of traditional noninterference is that it is unable to modelsecurity in nondeterministic systems [13][14]. So perhaps it is not surprising thatnondeterministic language features also cause a problem. As mentioned above,Banâtre et al. encountered di�culty when attempting to prove a form of noninter-ference for nondeterministic programs. New security models, such as GeneralizedNoninterference [12] should be explored as potential notions of type soundness fornew type systems that deal with nondeterministic programs.8. SummaryWe have formulated Denning's secure
ow analysis as a type system and provedit sound with respect to a standard programming language semantics for a coredeterministic language. The type system cleanly separates the speci�cation ofsecure
ow analysis from its implementation. We expect the core language andtype system to serve as a basis for provably-secure programming languages.9. AcknowledgmentsThis material is based upon activities supported by the National Security Agencyand by the National Science Foundation under Agreements No. CCR-9400592 and

A Sound Type System for Secure Flow Analysis 19CCR-9414421. Any opinions, �ndings, and conclusions or recommendations ex-pressed in this publication are those of the authors and do not necessarily re
ectthe views of the National Science Foundation. We would like to thank the refereesfor their helpful comments.10. References[1] G. Andrews, R. Reitman, \An Axiomatic Approach to Information Flow in Pro-grams", ACM Transactions on Programming Languages and Systems 2, 1, (1980),56{76.[2] J. Banâtre, C. Bryce, D. Le M�etayer, \Compile-time Detection of Information Flowin Sequential Programs", pp. 55{73 in Proceedings of the European Symposium onResearch in Computer Security, Lecture Notes in Computer Science 875, SpringerVerlag, Berlin, 1994.[3] D. Bell, L. LaPadula, Secure Computer System: Mathematical Foundations andModel, MITRE Corp. Technical Report M74-244, 1973.[4] K. Biba, Integrity Considerations for Secure Computer Systems, MITRE Corp.Technical Report ESD-TR-76-372, 1977.[5] D. Denning, Secure Information Flow in Computer Systems, Purdue UniversityPh.D. Thesis, 1975.[6] D. Denning, \A Lattice Model of Secure Information Flow", Communications ofthe ACM 19, 5, (1976), 236{242.[7] D. Denning, P. Denning, \Certi�cation of Programs for Secure Information Flow",Communications of the ACM 20, 7, (1977), 504{513.[8] D. Denning, Cryptography and Data Security, Addison-Wesley, 1983.[9] J. Goguen, J. Meseguer, \Security Policies and Security Models", pp. 11{20 inProceedings of the 1982 IEEE Symposium on Security and Privacy, 1982.[10] R. Harper, \A Simpli�ed Account of Polymorphic References", Information Pro-cessing Letters 51, (1994), 201{206.[11] T. Lunt, P. Neumann, D. Denning, R. Schell, M. Heckman, W. Shockley, SecureDistributed Data Views Security Policy and Interpretation for DMBS for a ClassA1 DBMS, Rome Air Development Center Technical Report RADC-TR-89-313,Vol I, 1989.[12] D. McCullough, \Speci�cations for Multi-level Security and a Hook-up Property",in Proceedings of the 1987 IEEE Symposium on Security and Privacy, 1987.[13] D. McCullough, \Noninterference and the Composability of Security Properties",pp. 177{186 in Proceedings of the 1988 IEEE Symposium on Security and Privacy,1988.[14] J. McLean, \Security Models and Information Flow", pp. 180{187 in Proceedingsof the 1990 IEEE Symposium on Security and Privacy, 1990.[15] M. Mizuno, \A Least Fixed Point Approach to Inter-Procedural Information FlowControl", pp. 558{570 in Proceedings of the 12th National Computer SecurityConference, 1989.[16] M. Mizuno, A. Oldehoeft, \Information Flow Control in a Distributed Object-Oriented System with Statically-Bound Object Variables", pp. 56{67 in Proceed-ings of the 10th National Computer Security Conference, 1987.

20 D. Volpano, G. Smith, C. Irvine[17] M. Mizuno, D. Schmidt, \A Security Flow Control Algorithm and its DenotationalSemantics Correctness Proof", Formal Aspects of Computing 4, 6A, (1992), 722{754.[18] P. �rb�k, \Can You Trust Your Data?", pp. 575{589 in Proceedings of the 1995Theory and Practice of Software Development Conference, Lecture Notes in Com-puter Science 915, 1995.[19] J. Palsberg, P. �rb�k, \Trust in the �-calculus", in Proceedings of the 1995 StaticAnalysis Symposium, Lecture Notes in Computer Science 983, 1995.[20] L. Paulson, ML for the Working Programmer, Cambridge, 1991.[21] J. Reynolds, Preliminary Design of the Programming Language Forsythe, CarnegieMellon University Technical Report CMU-CS-88-159, 1988.

