| 
0102
 03
 04
 05
 06
 07
 08
 09
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 
 | // Exercise 1.5.13
package algs15;
import java.util.Arrays;
import stdlib.*;
/* **************************************************************************
 *  Compilation:  javac WeightedQuickUnionPathCompressionUF.java
 *  Execution:  java WeightedQuickUnionPathCompressionUF < input.txt
 *  Dependencies: StdIn.java StdOut.java
 *
 *  Weighted quick-union with path compression.
 *
 *  % java WeightedQuickUnionPathCompressionUF < largeUF.txt
 *  WeightedQuickUnionPathCompressionUF # components: 6 [4.375000]
 *
 ****************************************************************************/
public class XWeightedCompressionUF implements UF {
  private final int[] id;    // id[i] = parent of i
  private final int[] sz;    // sz[i] = number of objects in subtree rooted at i
  private int count;   // number of components
  // Create an empty union find data structure with N isolated sets.
  public XWeightedCompressionUF(int N) {
    count = N;
    id = new int[N];
    sz = new int[N];
    for (int i = 0; i < N; i++) {
      id[i] = i;
      sz[i] = 1;
    }
  }
  // Return the number of disjoint sets.
  public int count() {
    return count;
  }
  // Are objects p and q in the same set?
  public boolean connected(int p, int q) {
    return find(p) == find(q);
  }
  
  // Return component identifier for component containing p
  public int find(int p) {
    int root = p;
    while (root != id[root])
      root = id[root];
    while (id[p] != root) {
      int newp = id[p];
      id[p] = root;
      if (TestUF.SHOW_COMPRESSION_STEPS) { StdOut.format("%2d %2d> %2d%s\n", p, root, this.count(), this); toGraphviz(); }
      p = newp;
    }
    return root;
  }
  // Replace sets containing p and q with their union.
  public void union(int p, int q) {
    int pid = find(p);
    int qid = find(q);
    if (pid == qid) return;
    // make smaller root point to larger one
    // in the case of a tie, p is the champion
    if   (sz[pid] < sz[qid]) { id[pid] = qid; sz[qid] += sz[pid]; }
    else                     { id[qid] = pid; sz[pid] += sz[qid]; }
    count--;
  }
  public String toString() { return Arrays.toString (id); }
  public void toGraphviz() { GraphvizBuilder.ufToFile (id); }
  public static void main(String[] args) {
    boolean print = true;
    StdIn.fromFile ("data/tinyUF.txt"); 
    //StdIn.fromFile ("data/mediumUF.txt"); print = false;
    //StdIn.fromFile ("data/largeUF.txt"); print = false;
    int N = StdIn.readInt();
    XWeightedCompressionUF uf = new XWeightedCompressionUF(N);
    if (print) { uf.toGraphviz(); StdOut.println("   : " + uf); }
    // read in a sequence of pairs of integers (each in the range 0 to N-1),
    // calling find() for each pair: If the members of the pair are not already
    // call union() and print the pair.
    Stopwatch sw = new Stopwatch ();
    while (!StdIn.isEmpty()) {
      int p = StdIn.readInt();
      int q = StdIn.readInt();
      if (uf.connected(p, q)) continue;
      uf.union(p, q);
      if (print) { StdOut.println(p + " " + q + ": " + uf); uf.toGraphviz(); }
    }
    StdOut.format("XWeightedCompressionUF # components: %d [%f]", uf.count(), sw.elapsedTime ());
  }
}
 |