| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 
 | // Exercise 3.1.16 3.1.17 3.1.30 (Solution published at http://algs4.cs.princeton.edu/)
package algs31;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac BinarySearchST.java
 *  Execution:    java BinarySearchST
 *  Dependencies: StdIn.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/31elementary/tinyST.txt
 *
 *  Symbol table implementation with binary search in an ordered array.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java BinarySearchST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 *************************************************************************/
public class BinarySearchST<K extends Comparable<? super K>, V> {
  private static final int INIT_CAPACITY = 2;
  private K[] keys;
  private V[] vals;
  private int N = 0;
  // create an empty symbol table with default initial capacity
  public BinarySearchST() { this(INIT_CAPACITY); }
  // create an empty symbol table with given initial capacity
  @SuppressWarnings("unchecked")
  public BinarySearchST(int capacity) {
    keys = (K[]) new Comparable[capacity];
    vals = (V[]) new Object[capacity];
  }
  // resize the underlying arrays
  @SuppressWarnings("unchecked")
  private void resize(int capacity) {
    if (capacity <= N) throw new IllegalArgumentException ();
    K[] tempk = (K[]) new Comparable[capacity];
    V[] tempv = (V[]) new Object[capacity];
    for (int i = 0; i < N; i++) {
      tempk[i] = keys[i];
      tempv[i] = vals[i];
    }
    vals = tempv;
    keys = tempk;
  }
  // is the key in the table?
  public boolean contains(K key) { return get(key) != null; }
  // number of key-value pairs in the table
  public int size() { return N; }
  // is the symbol table empty?
  public boolean isEmpty() { return size() == 0; }
  // return the value associated with the given key, or null if no such key
  public V get(K key) {
    if (isEmpty()) return null;
    int i = rank(key);
    if (i < N && keys[i].compareTo(key) == 0) return vals[i];
    return null;
  }
  // return the number of keys in the table that are smaller than given key
  public int rank(K key) {
    int lo = 0, hi = N-1;
    while (lo <= hi) {
      int m = lo + (hi - lo) / 2;
      int cmp = key.compareTo(keys[m]);
      if      (cmp < 0) hi = m - 1;
      else if (cmp > 0) lo = m + 1;
      else return m;
    }
    return lo;
  }
  // Search for key. Update value if found; grow table if new.
  public void put(K key, V val)  {
    if (val == null) { delete(key); return; }
    int i = rank(key);
    // key is already in table
    if (i < N && keys[i].compareTo(key) == 0) {
      vals[i] = val;
      return;
    }
    // insert new key-value pair
    if (N == keys.length) resize(2*keys.length);
    for (int j = N; j > i; j--)  {
      keys[j] = keys[j-1];
      vals[j] = vals[j-1];
    }
    keys[i] = key;
    vals[i] = val;
    N++;
    //assert check();
  }
  // Remove the key-value pair if present
  public void delete(K key)  {
    if (isEmpty()) return;
    // compute rank
    int i = rank(key);
    // key not in table
    if (i == N || keys[i].compareTo(key) != 0) {
      return;
    }
    for (int j = i; j < N-1; j++)  {
      keys[j] = keys[j+1];
      vals[j] = vals[j+1];
    }
    N--;
    keys[N] = null;  // to avoid loitering
    vals[N] = null;
    // resize if 1/4 full
    if (N > 0 && N == keys.length/4) resize(keys.length/2);
    //assert check();
  }
  // delete the minimum key and its associated value
  public void deleteMin() {
    if (isEmpty()) throw new Error("Symbol table underflow error");
    delete(min());
  }
  // delete the maximum key and its associated value
  public void deleteMax() {
    if (isEmpty()) throw new Error("Symbol table underflow error");
    delete(max());
  }
  /* ***************************************************************************
   *  Ordered symbol table methods
   *****************************************************************************/
  public K min() {
    if (isEmpty()) return null;
    return keys[0];
  }
  public K max() {
    if (isEmpty()) return null;
    return keys[N-1];
  }
  public K select(int k) {
    if (k < 0 || k >= N) return null;
    return keys[k];
  }
  public K floor(K key) {
    int i = rank(key);
    if (i < N && key.compareTo(keys[i]) == 0) return keys[i];
    if (i == 0) return null;
    else return keys[i-1];
  }
  public K ceiling(K key) {
    int i = rank(key);
    if (i == N) return null;
    else return keys[i];
  }
  public int size(K lo, K hi) {
    if (lo.compareTo(hi) > 0) return 0;
    if (contains(hi)) return rank(hi) - rank(lo) + 1;
    else              return rank(hi) - rank(lo);
  }
  public Iterable<K> keys() {
    return keys(min(), max());
  }
  public Iterable<K> keys(K lo, K hi) {
    Queue<K> queue = new Queue<>();
    if (lo == null && hi == null) return queue;
    if (lo == null) throw new Error("lo is null in keys()");
    if (hi == null) throw new Error("hi is null in keys()");
    if (lo.compareTo(hi) > 0) return queue;
    for (int i = rank(lo); i < rank(hi); i++)
      queue.enqueue(keys[i]);
    if (contains(hi)) queue.enqueue(keys[rank(hi)]);
    return queue;
  }
  /* ***************************************************************************
   *  Check internal invariants
   *****************************************************************************/
  private boolean check() {
    return isSorted() && rankCheck();
  }
  // are the items in the array in ascending order?
  private boolean isSorted() {
    for (int i = 1; i < size(); i++)
      if (keys[i].compareTo(keys[i-1]) < 0) return false;
    return true;
  }
  // check that rank(select(i)) = i
  private boolean rankCheck() {
    for (int i = 0; i < size(); i++)
      if (i != rank(select(i))) return false;
    for (int i = 0; i < size(); i++)
      if (keys[i].compareTo(select(rank(keys[i]))) != 0) return false;
    return true;
  }
  /* ***************************************************************************
   *  Test client
   *****************************************************************************/
  public static void main(String[] args) {
    StdIn.fromFile("data/tiny.txt");
    BinarySearchST<String, Integer> st = new BinarySearchST<>();
    for (int i = 0; !StdIn.isEmpty(); i++) {
      String key = StdIn.readString();
      st.put(key, i);
    }
    for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
  }
}
 |