| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 
 | // Exercise 3.1.5 (Solution published at http://algs4.cs.princeton.edu/)
package algs31;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac SequentialSearchST.java
 *  Execution:    java SequentialSearchST
 *  Dependencies: StdIn.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/31elementary/tinyST.txt
 *
 *  Symbol table implementation with sequential search in an
 *  unordered linked list of key-value pairs.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java SequentialSearchST < tiny.txt
 *  L 11
 *  P 10
 *  M 9
 *  X 7
 *  H 5
 *  C 4
 *  R 3
 *  A 8
 *  E 12
 *  S 0
 *
 *************************************************************************/
public class SequentialSearchST<K, V> {
  private int N;           // number of key-value pairs
  private Node<K,V> first;      // the linked list of key-value pairs
  // a helper linked list data type
  private static class Node<K,V> {
    public final K key;
    public V val;
    public Node<K,V> next;
    public Node(K key, V val, Node<K,V> next)  {
      this.key  = key;
      this.val  = val;
      this.next = next;
    }
  }
  // return number of key-value pairs
  public int size() { return N; }
  // is the symbol table empty?
  public boolean isEmpty() { return size() == 0; }
  // does this symbol table contain the given key?
  public boolean contains(K key) {
    return get(key) != null;
  }
  // return the value associated with the key, or null if the key is not present
  public V get(K key) {
    for (Node<K,V> x = first; x != null; x = x.next) {
      if (key.equals(x.key)) return x.val;
    }
    return null;
  }
  public V getR(K key) {
    return getR(key, first);
  }
  private V getR(K key, Node<K,V> x) {
    if (x == null) return null;
    if (key.equals (x.key)) return x.val;
    return getR(key, x.next);
  }
  // add a key-value pair, replacing old key-value pair if key is already present
  public void put(K key, V val) {
    if (val == null) { delete(key); return; }
    for (Node<K,V> x = first; x != null; x = x.next)
      if (key.equals(x.key)) { x.val = val; return; }
    first = new Node<>(key, val, first);
    N++;
  }
  // remove key-value pair with given key (if it's in the table)
  public void delete(K key) {
    first = delete(first, key);
  }
  // delete key in linked list beginning at Node<K,V> x
  // warning: function call stack too large if table is large
  private Node<K,V> delete(Node<K,V> x, K key) {
    if (x == null) return null;
    if (key.equals(x.key)) { N--; return x.next; }
    x.next = delete(x.next, key);
    return x;
  }
  // return all keys as an Iterable
  public Iterable<K> keys()  {
    Queue<K> queue = new Queue<>();
    for (Node<K,V> x = first; x != null; x = x.next)
      queue.enqueue(x.key);
    return queue;
  }
  /* *********************************************************************
   * Test client
   **********************************************************************/
  public static void main(String[] args) {
    StdIn.fromString ("S E A R C H E X A M P L E");
    SequentialSearchST<String, Integer> st = new SequentialSearchST<>();
    for (int i = 0; !StdIn.isEmpty(); i++) {
      String key = StdIn.readString();
      st.put(key, i);
    }
    for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
  }
}
 |