| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 
 | // Exercise 3.2.6 3.2.32 3.2.33 (Solution published at http://algs4.cs.princeton.edu/)
package algs32;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac BST.java
 *  Execution:    java BST
 *  Dependencies: StdIn.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/32bst/tinyST.txt
 *
 *  A symbol table implemented with a binary search tree.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java BST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 *************************************************************************/
public class BST<K extends Comparable<? super K>, V> {
  private Node<K,V> root;             // root of BST
  private static class Node<K extends Comparable<? super K>,V> {
    public final K key;       // sorted by key
    public V val;             // associated data
    public Node<K,V> left, right;  // left and right subtrees
    public int N;             // number of nodes in subtree
    public Node(K key, V val, int N) {
      this.key = key;
      this.val = val;
      this.N = N;
    }
  }
  // is the symbol table empty?
  public boolean isEmpty() { return size() == 0; }
  // return number of key-value pairs in BST
  public int size() { return size(root); }
  // return number of key-value pairs in BST rooted at x
  private int size(Node<K,V> x) {
    if (x == null) return 0;
    else return x.N;
  }
  /* *********************************************************************
   *  Search BST for given key, and return associated value if found,
   *  return null if not found
   ***********************************************************************/
  // does there exist a key-value pair with given key?
  public boolean contains(K key) {
    return get(key) != null;
  }
  // return value associated with the given key, or null if no such key exists
  public V get(K key) { return get(root, key); }
  private V get(Node<K,V> x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) return get(x.left, key);
    else if (cmp > 0) return get(x.right, key);
    else              return x.val;
  }
  /* *********************************************************************
   *  Insert key-value pair into BST
   *  If key already exists, update with new value
   ***********************************************************************/
  public void put(K key, V val) {
    if (val == null) { delete(key); return; }
    root = put(root, key, val);
    //assert check();
  }
  private Node<K,V> put(Node<K,V> x, K key, V val) {
    if (x == null) return new Node<>(key, val, 1);
    int cmp = key.compareTo(x.key);
    if      (cmp < 0)
      x.left  = put(x.left,  key, val);
    else if (cmp > 0)
      x.right = put(x.right, key, val);
    else
      x.val   = val;
    x.N = 1 + size(x.left) + size(x.right);
    return x;
  }
  /* *********************************************************************
   *  Delete
   ***********************************************************************/
  public void deleteMin() {
    if (isEmpty()) throw new Error("Symbol table underflow");
    root = deleteMin(root);
    //assert check();
  }
  private Node<K,V> deleteMin(Node<K,V> x) {
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = size(x.left) + size(x.right) + 1;
    return x;
  }
  public void deleteMax() {
    if (isEmpty()) throw new Error("Symbol table underflow");
    root = deleteMax(root);
    //assert check();
  }
  private Node<K,V> deleteMax(Node<K,V> x) {
    if (x.right == null) return x.left;
    x.right = deleteMax(x.right);
    x.N = size(x.left) + size(x.right) + 1;
    return x;
  }
  public void delete(K key) {
    root = delete(root, key);
    //assert check();
  }
  private Node<K,V> delete(Node<K,V> x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) x.left  = delete(x.left,  key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
      if (x.right == null) return x.left;
      if (x.left  == null) return x.right;
      Node<K,V> t = x;
      x = min(t.right);
      x.right = deleteMin(t.right);
      x.left = t.left;
    }
    x.N = size(x.left) + size(x.right) + 1;
    return x;
  }
  /* *********************************************************************
   *  Min, max, floor, and ceiling
   ***********************************************************************/
  public K min() {
    if (isEmpty()) return null;
    return min(root).key;
  }
  private Node<K,V> min(Node<K,V> x) {
    if (x.left == null) return x;
    else                return min(x.left);
  }
  public K max() {
    if (isEmpty()) return null;
    return max(root).key;
  }
  private Node<K,V> max(Node<K,V> x) {
    if (x.right == null) return x;
    else                 return max(x.right);
  }
  public K floor(K key) {
    Node<K,V> x = floor(root, key);
    if (x == null) return null;
    else return x.key;
  }
  private Node<K,V> floor(Node<K,V> x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp <  0) return floor(x.left, key);
    Node<K,V> t = floor(x.right, key);
    if (t != null) return t;
    else return x;
  }
  public K ceiling(K key) {
    Node<K,V> x = ceiling(root, key);
    if (x == null) return null;
    else return x.key;
  }
  private Node<K,V> ceiling(Node<K,V> x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0) {
      Node<K,V> t = ceiling(x.left, key);
      if (t != null) return t;
      else return x;
    }
    return ceiling(x.right, key);
  }
  /* *********************************************************************
   *  Rank and selection
   ***********************************************************************/
  public K select(int k) {
    if (k < 0 || k >= size())  return null;
    Node<K,V> x = select(root, k);
    return x.key;
  }
  // Return key of rank k.
  private Node<K,V> select(Node<K,V> x, int k) {
    if (x == null) return null;
    int t = size(x.left);
    if      (t > k) return select(x.left,  k);
    else if (t < k) return select(x.right, k-t-1);
    else            return x;
  }
  public int rank(K key) {
    return rank(key, root);
  }
  // Number of keys in the subtree less than x.key.
  private int rank(K key, Node<K,V> x) {
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else              return size(x.left);
  }
  /* *********************************************************************
   *  Range count and range search.
   ***********************************************************************/
  public Iterable<K> keys() {
    Queue<K> q = new Queue<>();
    inOrder(root, q);
    return q;
  }
  private void inOrder(Node<K,V> x, Queue<K> q) {
    if (x == null) return;
    inOrder(x.left, q);
    inOrder(x.right, q);
    q.enqueue(x.key);
  }
  public Iterable<K> keys(K lo, K hi) {
    Queue<K> queue = new Queue<>();
    inOrder(root, queue, lo, hi);
    return queue;
  }
  private void inOrder(Node<K,V> x, Queue<K> queue, K lo, K hi) {
    if (x == null) return;
    int cmplo = lo.compareTo(x.key);
    int cmphi = hi.compareTo(x.key);
    if (cmplo < 0) inOrder(x.left, queue, lo, hi);
    if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
    if (cmphi > 0) inOrder(x.right, queue, lo, hi);
  }
  public int size(K lo, K hi) {
    if (lo.compareTo(hi) > 0) return 0;
    if (contains(hi)) return rank(hi) - rank(lo) + 1;
    else              return rank(hi) - rank(lo);
  }
  // height of this BST (one-node tree has height 0)
  public int height() { return height(root); }
  private int height(Node<K,V> x) {
    if (x == null) return -1;
    return 1 + Math.max(height(x.left), height(x.right));
  }
  // level order traversal
  public Iterable<K> levelOrder() {
    Queue<K> keys = new Queue<>();
    Queue<Node<K,V>> queue = new Queue<>();
    queue.enqueue(root);
    while (!queue.isEmpty()) {
      Node<K,V> x = queue.dequeue();
      if (x == null) continue;
      keys.enqueue(x.key);
      queue.enqueue(x.left);
      queue.enqueue(x.right);
    }
    return keys;
  }
  /* ***********************************************************************
   *  Check integrity of BST data structure
   *************************************************************************/
  private boolean check() {
    if (!isBST())            StdOut.println("Not in symmetric order");
    if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
    if (!isRankConsistent()) StdOut.println("Ranks not consistent");
    return isBST() && isSizeConsistent() && isRankConsistent();
  }
  // does this binary tree satisfy symmetric order?
  // Note: this test also ensures that data structure is a binary tree since order is strict
  private boolean isBST() {
    return isBST(root, null, null);
  }
  // is the tree rooted at x a BST with all keys strictly between min and max
  // (if min or max is null, treat as empty constraint)
  // Credit: Bob Dondero's elegant solution
  private boolean isBST(Node<K,V> x, K min, K max) {
    if (x == null) return true;
    if (min != null && x.key.compareTo(min) <= 0) return false;
    if (max != null && x.key.compareTo(max) >= 0) return false;
    return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
  }
  // are the size fields correct?
  private boolean isSizeConsistent() { return isSizeConsistent(root); }
  private boolean isSizeConsistent(Node<K,V> x) {
    if (x == null) return true;
    if (x.N != size(x.left) + size(x.right) + 1) return false;
    return isSizeConsistent(x.left) && isSizeConsistent(x.right);
  }
  // check that ranks are consistent
  private boolean isRankConsistent() {
    for (int i = 0; i < size(); i++)
      if (i != rank(select(i))) return false;
    for (K key : keys())
      if (key.compareTo(select(rank(key))) != 0) return false;
    return true;
  }
  /* ***************************************************************************
   *  Visualization
   *****************************************************************************/
  public String toString() {
    StringBuilder sb = new StringBuilder();
    for (K key: levelOrder())
      sb.append (key + " ");
    return sb.toString ();
  }
  public void toGraphviz(String filename) {
    GraphvizBuilder gb = new GraphvizBuilder ();
    toGraphviz (gb, null, root);
    gb.toFileUndirected (filename, "ordering=\"out\"");
  }
  private void toGraphviz (GraphvizBuilder gb, Node<K,V> parent, Node<K,V> n) {
    if (n == null) { gb.addNullEdge (parent); return; }
    gb.addLabeledNode (n, n.key.toString ());
    if (parent != null) gb.addEdge (parent, n);
    toGraphviz (gb, n, n.left);
    toGraphviz (gb, n, n.right);
  }
  // You may modify "drawTree" if you wish
  public void drawTree() {
    if (root != null) {
      StdDraw.setPenColor (StdDraw.BLACK);
      StdDraw.setCanvasSize(1200,700);
      drawTree(root, .5, 1, .25, 0);
    }
  }
  private void drawTree (Node<K,V> n, double x, double y, double range, int depth) {
    int CUTOFF = 10;
    StdDraw.text (x, y, n.key.toString ());
    StdDraw.setPenRadius (.007);
    if (n.left != null && depth != CUTOFF) {
      StdDraw.line (x-range, y-.08, x-.01, y-.01);
      drawTree (n.left, x-range, y-.1, range*.5, depth+1);
    }
    if (n.right != null && depth != CUTOFF) {
      StdDraw.line (x+range, y-.08, x+.01, y-.01);
      drawTree (n.right, x+range, y-.1, range*.5, depth+1);
    }
  }
  /* ***************************************************************************
   *  Test client
   *****************************************************************************/
  public static void main(String[] args) {
    //StdIn.fromString ("S E A R C H E X A M P L E");
    //StdIn.fromString ("D F B  G E A C");
    StdIn.fromString ("C A B E D");
    BST<String, Integer> st = new BST<>();
    for (int i = 0; !StdIn.isEmpty(); i++) {
      String key = StdIn.readString();
      st.put(key, i);
    }
    //GraphvizBuilder.nodesToFile (st.root);
    st.toGraphviz ("g.png");
    //        st.drawTree ();
    Iterable<String> keys = st.levelOrder();
    for (String s : keys)
      StdOut.println(s + " " + st.get(s));
    //        StdOut.println();
    //        for (String s : st.keys())
    //            StdOut.println(s + " " + st.get(s));
  }
}
 |