| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 
 | package algs32;
import algs13.Queue;
import stdlib.*;
/* ***********************************************************************
 * A simple BST with int keys
 * 
 * Recall that:
 *   Depth of root==0.
 *   Height of leaf==0.
 *   Size of empty tree==0.
 *   Height of empty tree=-1.
 * 
 * TODO: complete the functions in this file.
 *
 * Restrictions:
 *  - DO NOT change the Node class.
 *  - DO NOT change the first line of any function: name, parameters, types.
 *  - you may add new functions, but don't delete anything
 *  - functions must be recursive, except printLeftI
 *  - no loops, except in printLeftI (you cannot use "while" "for" etc...)
 *  - no fields (variables declared outside of a function)
 *  - each function must have exactly one recursive helper function, which you add
 *  - each function must be independent --- do not call any function other than the helper
 *    (But you may use Math.max)
 *  
 * See the method testAll for examples that explain the expected behavior 
 *************************************************************************/
public class MyIntSET {
  private Node root;
  private static class Node {
    public final int key;
    public Node left, right;
    public Node(int key) { this.key = key; }
  }
  
  // Print only the elements going down the left side of the tree
  // in the BST with level order traversal "41 21 61 11 31", this should print "41 21 11"
  public void printLeftI () {
    // TODO
  }
  // the number of nodes in the tree
  // in the BST with level order traversal "41 21 61 11 31", the size is 5
  public int size() {
    // TODO
    return 0;
  }
  // Recall the definitions of height and depth.
  // in the BST with level order traversal "41 21 61 11 31",
  //   node 41 has depth 0, height 2
  //   node 21 has depth 1, height 1
  //   node 61 has depth 1, height 0
  //   node 11 has depth 2, height 0
  //   node 31 has depth 2, height 0
  // height of the whole tree is the height of the root
  // the height of the tree
  public int height() {
    // TODO
    return 0;
  }
  // the number of nodes with odd keys
  public int sizeOdd() {
    // TODO
    return 0;
  }
  // The next three functions compute the size of the tree at depth k.
  // It should be the case that for any given k,
  //
  //   sizeAbove(k) + sizeAt(k) + sizeBelow(k) = size()
  //
  // The words "above" and "below" assume that the root is at the "top".
  //
  // Suppose we have with size N and height H (so max depth also H).
  // For such a tree, we expect
  //
  //   sizeAboveDepth (-1)  = 0
  //   sizeAtDepth    (-1)  = 0
  //   sizeBelowDepth (-1)  = N
  //
  //   sizeAboveDepth (0)   = 0
  //   sizeAtDepth    (0)   = 1
  //   sizeBelowDepth (0)   = N-1
  //
  //   sizeAboveDepth (H+1) = N
  //   sizeAtDepth    (H+1) = 0
  //   sizeBelowDepth (H+1) = 0
  //
  // the number of nodes in the tree, at exactly depth k
  // include node n if depth(n) == k
  public int sizeAtDepth(int k) {
    // TODO
    return 0;
  }
  // the number of nodes in the tree, "above" depth k (not including k)
  // include node n if depth(n) < k
  public int sizeAboveDepth(int k) {
    // TODO
    return 0;
  }
  // the number of nodes in the tree, "below" depth k (not including k)
  // include node n if depth(n) > k
  public int sizeBelowDepth(int k) {
    // TODO
    return 0;
  }
  // tree is perfect if for every node, size of left == size of right
  // hint: in the helper, return -1 if the tree is not perfect, otherwise return the size
  public boolean isPerfectlyBalancedS() {
    // TODO
    return false;
  }
  // tree is perfect if for every node, height of left == height of right
  // hint: in the helper, return -2 if the tree is not perfect, otherwise return the height
  public boolean isPerfectlyBalancedH() {
    // TODO
    return false;
  }
  // tree is odd-perfect if for every node, #odd descendant on left == # odd descendants on right
  // A node is odd if it has an odd key
  // hint: in the helper, return -1 if the tree is not odd-perfect, otherwise return the odd size
  public boolean isOddBalanced() {
    // TODO
    return false;
  }
  // tree is semi-perfect if every node is semi-perfect
  // A node with 0 children is semi-perfect.
  // A node with 1 child is NOT semi-perfect.
  // A node with 2 children is semi-perfect if (size-of-larger-sized-child <= size-of-smaller-sized-child * 3)
  // Here, larger and smaller have to do with the SIZE of the children, not the key values.
  // hint: in the helper, return -1 if the tree is not semi-perfect, otherwise return the size
  public boolean isSemiBalanced() {
    // TODO
    return false;
  }
  /*
   * Mutator functions
   * HINT: all of these are easier to write if the helper function returns Node, rather than void.
   */
  // remove all subtrees with odd roots (if node is odd, remove it and its descendants)
  // A node is odd if it has an odd key
  // If the root is odd, then you should end up with the empty tree
  public void removeOddSubtrees () {
    // TODO
  }
  // remove all subtrees below depth k from the original tree
  public void removeBelowDepth(int k) {
    // TODO
  }
  // add a child with key=0 to all nodes that have only one child
  // (you do not need to retain symmetric order or uniqueness of keys, obviously)
  public void addZeroToSingles() {
    // TODO
  }
  // remove all leaves from the original tree
  // if you start with "41", then the result is the empty tree.
  // if you start with "41 21 61", then the result is the tree "41"
  // if you start with the BST "41 21 11  1", then the result is the tree "41 21 11"
  // if you start with the BST "41 21 61 11", then the result is the tree "41 21"
  // Hint: This requires that you check for "leafiness" before the recursive calls
  public void removeLeaves() {
    // TODO
  }
  // remove all nodes that have only one child by "promoting" that child
  // repeat this recursively as you go up, so the final result should have no nodes with only one child
  // if you start with "41", the tree is unchanged.
  // if you start with "41 21 61", the tree is unchanged.
  // if you start with the BST "41 21 11  1", then the result is the tree "1"
  // if you start with the BST "41 21 61 11", then the result is the tree "41 11 61"
  // Hint: This requires that you check for "singleness" after the recursive calls
  public void removeSingles() {
    // TODO
  }
  /* ***************************************************************************
   *  Test client
   *  You can modify any of these methods, if you wish
   *****************************************************************************/
  public static void main(String[] args) {
    testOne ();
    testAccessors ();
    testMutators ();
    StdOut.println ("Finished Tests");
  }
  private static void testOne () {
    Trace.drawStepsOfMethod ("printLeftI");
    Trace.run ();
    MyIntSET set1 = MyIntSET.fromString("41 21 61 11 31");
    set1.printLeftI ();
    //MyIntSET set2 = MyIntSET.fromString ("41 21 61 11 31 51 71 111");
    //show (set1, "set1");
    //show (set2, "set2");
  }
  private static void testAccessors () {
    testSize (5, "41 21 61 11 31");
    testSize (8, "41 21 61 11 31 51 71 111");
    testSize (9, "101 41 21 61 11 31 51 71 111");
    testSize (15, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testSize (11, "101 41 21 61 11 31 51 71 141 121 161");
    testSize (9, "101 41 21 61 11 31 51 71 141");
    testSize (15, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testSize (13, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testSize (7, "40 20 61 10 30 50 70");
    testSize (7, "41 21 61 11 30 51 70");
    testSize (0, "");
    testSize (1, "1");
    testSize (35, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testHeight (2, "41 21 61 11 31");
    testHeight (3, "41 21 61 11 31 51 71 111");
    testHeight (3, "101 41 21 61 11 31 51 71 111");
    testHeight (3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testHeight (3, "101 41 21 61 11 31 51 71 141 121 161");
    testHeight (3, "101 41 21 61 11 31 51 71 141");
    testHeight (3, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testHeight (8, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testHeight (2, "40 20 61 10 30 50 70");
    testHeight (2, "41 21 61 11 30 51 70");
    testHeight (-1, "");
    testHeight (0, "1");
    testHeight (5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testSizeOdd (5, "41 21 61 11 31");
    testSizeOdd (8, "41 21 61 11 31 51 71 111");
    testSizeOdd (9, "101 41 21 61 11 31 51 71 111");
    testSizeOdd (15, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testSizeOdd (11, "101 41 21 61 11 31 51 71 141 121 161");
    testSizeOdd (9, "101 41 21 61 11 31 51 71 141");
    testSizeOdd (11, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testSizeOdd (2, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testSizeOdd (1, "40 20 61 10 30 50 70");
    testSizeOdd (5, "41 21 61 11 30 51 70");
    testSizeOdd (0, "");
    testSizeOdd (1, "1");
    testSizeOdd (0, "2");
    testSizeOdd (11, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testSizeAtDepth (2, 2, "41 21 61 11 31");
    testSizeAtDepth (4, 2, "41 21 61 11 31 51 71 111");
    testSizeAtDepth (2, 2, "101 41 21 61 11 31 51 71 111");
    testSizeAtDepth (8, 3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testSizeAtDepth (0, 4, "101 41 21 61 11 31 51 71 141 121 161");
    testSizeAtDepth (2, 2, "101 41 21 61 11 31 51 71 141");
    testSizeAtDepth (4, 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testSizeAtDepth (2, 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testSizeAtDepth (4, 2, "40 20 61 10 30 50 70");
    testSizeAtDepth (2, 1, "41 21 61 11 30 51 70");
    testSizeAtDepth (0, 2, "");
    testSizeAtDepth (0, 2, "1");
    testSizeAtDepth (4, 5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testSizeAboveDepth (3, 2, "41 21 61 11 31");
    testSizeAboveDepth (3, 2, "41 21 61 11 31 51 71 111");
    testSizeAboveDepth (3, 2, "101 41 21 61 11 31 51 71 111");
    testSizeAboveDepth (7, 3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testSizeAboveDepth (11, 4, "101 41 21 61 11 31 51 71 141 121 161");
    testSizeAboveDepth (3, 2, "101 41 21 61 11 31 51 71 141");
    testSizeAboveDepth (3, 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testSizeAboveDepth (5, 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testSizeAboveDepth (3, 2, "40 20 61 10 30 50 70");
    testSizeAboveDepth (1, 1, "41 21 61 11 30 51 70");
    testSizeAboveDepth (0, 2, "");
    testSizeAboveDepth (1, 2, "1");
    testSizeAboveDepth (31, 5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testSizeBelowDepth (0, 2, "41 21 61 11 31");
    testSizeBelowDepth (1, 2, "41 21 61 11 31 51 71 111");
    testSizeBelowDepth (4, 2, "101 41 21 61 11 31 51 71 111");
    testSizeBelowDepth (0, 3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testSizeBelowDepth (0, 4, "101 41 21 61 11 31 51 71 141 121 161");
    testSizeBelowDepth (4, 2, "101 41 21 61 11 31 51 71 141");
    testSizeBelowDepth (8, 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testSizeBelowDepth (6, 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testSizeBelowDepth (0, 2, "40 20 61 10 30 50 70");
    testSizeBelowDepth (4, 1, "41 21 61 11 30 51 70");
    testSizeBelowDepth (0, 2, "");
    testSizeBelowDepth (0, 2, "1");
    testSizeBelowDepth (0, 5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    
    testIsPerfectlyBalancedS (false, "100 40 140 20 120");
    testIsPerfectlyBalancedS (true, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32");
    testIsPerfectlyBalancedS (false, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 32");
    testIsPerfectlyBalancedS (false, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 5 9 13 17 21 25 29");
    testIsPerfectlyBalancedS (true, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31");
    testIsPerfectlyBalancedS (false, "41 21 61 11 31");
    testIsPerfectlyBalancedS (false, "41 21 61 11 31 51 71 111");
    testIsPerfectlyBalancedS (false, "101 41 21 61 11 31 51 71 111");
    testIsPerfectlyBalancedS (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testIsPerfectlyBalancedS (false, "101 41 21 61 11 31 51 71 141 121 161");
    testIsPerfectlyBalancedS (false, "101 41 21 61 11 31 51 71 141");
    testIsPerfectlyBalancedS (true, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testIsPerfectlyBalancedS (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testIsPerfectlyBalancedS (true, "40 20 61 10 30 50 70");
    testIsPerfectlyBalancedS (true, "41 21 61 11 30 51 70");
    testIsPerfectlyBalancedS (true, "");
    testIsPerfectlyBalancedS (true, "1");
    testIsPerfectlyBalancedS (false, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testIsPerfectlyBalancedH (false, "100 40 140 20 120");
    testIsPerfectlyBalancedH (true, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32");
    testIsPerfectlyBalancedH (false, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 32");
    testIsPerfectlyBalancedH (false, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 5 9 13 17 21 25 29");
    testIsPerfectlyBalancedH (true, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31");
    testIsPerfectlyBalancedH (false, "41 21 61 11 31");
    testIsPerfectlyBalancedH (false, "41 21 61 11 31 51 71 111");
    testIsPerfectlyBalancedH (false, "101 41 21 61 11 31 51 71 111");
    testIsPerfectlyBalancedH (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testIsPerfectlyBalancedH (false, "101 41 21 61 11 31 51 71 141 121 161");
    testIsPerfectlyBalancedH (false, "101 41 21 61 11 31 51 71 141");
    testIsPerfectlyBalancedH (true, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testIsPerfectlyBalancedH (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testIsPerfectlyBalancedH (true, "40 20 61 10 30 50 70");
    testIsPerfectlyBalancedH (true, "41 21 61 11 30 51 70");
    testIsPerfectlyBalancedH (true, "");
    testIsPerfectlyBalancedH (true, "1");
    testIsPerfectlyBalancedH (false, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testIsOddBalanced (false, "41 21 61 11 31");
    testIsOddBalanced (false, "41 21 61 11 71");
    testIsOddBalanced (true, "41 21 61 10 30");
    testIsOddBalanced (true, "40 21 61");
    testIsOddBalanced (true, "41 20 60");
    testIsOddBalanced (false, "41 21 61 11 31 51 71 111");
    testIsOddBalanced (false, "101 41 21 61 11 31 51 71 111");
    testIsOddBalanced (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testIsOddBalanced (false, "101 41 21 61 11 31 51 71 141 121 161");
    testIsOddBalanced (false, "101 41 21 61 11 31 51 71 141");
    testIsOddBalanced (false, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testIsOddBalanced (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testIsOddBalanced (false, "40 20 61 10 30 50 70");
    testIsOddBalanced (false, "41 21 61 11 30 51 70");
    testIsOddBalanced (true, "");
    testIsOddBalanced (true, "1");
    testIsOddBalanced (false, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testIsSemiBalanced (true, "41 21 61 11 31");
    testIsSemiBalanced (false, "41 21 61 11 31 51 71 111");
    testIsSemiBalanced (false, "101 41 21 61 11 31 51 71 111");
    testIsSemiBalanced (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testIsSemiBalanced (true, "101 41 21 61 11 31 51 71 141 121 161");
    testIsSemiBalanced (false, "101 41 21 61 11 31 51 71 141");
    testIsSemiBalanced (true, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testIsSemiBalanced (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testIsSemiBalanced (true, "40 20 61 10 30 50 70");
    testIsSemiBalanced (true, "41 21 61 11 30 51 70");
    testIsSemiBalanced (true, "");
    testIsSemiBalanced (true, "1");
    testIsSemiBalanced (true, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
  }
  private static void testMutators () {
    testRemoveOddSubtrees ("", "41 21 61 11 31");
    testRemoveOddSubtrees ("", "101 41 21 61 11 31 51 71 141");
    testRemoveOddSubtrees ("100 40 140 20 120", "100 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testRemoveOddSubtrees ("90 30 100 10 20", "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testRemoveOddSubtrees ("40 20 10 30", "40 20 61 10 30 50 70");
    testRemoveOddSubtrees ("", "41 21 61 11 30 51 70");
    testRemoveOddSubtrees ("", "");
    testRemoveOddSubtrees ("", "1");
    testRemoveOddSubtrees ("0", "0");
    testRemoveOddSubtrees ("90 30 100 10 80 20 40 12 60 62", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testRemoveBelowDepth ("41 21 61 11 31", 2, "41 21 61 11 31");
    testRemoveBelowDepth ("41 21 61 11 31 51 71", 2, "41 21 61 11 31 51 71 111");
    testRemoveBelowDepth ("101 41 111 21 61", 2, "101 41 21 61 11 31 51 71 111");
    testRemoveBelowDepth ("101 41 141 21 61 121 161", 2, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testRemoveBelowDepth ("101 41 141 21 61 121 161 11 31 51 71", 4, "101 41 21 61 11 31 51 71 141 121 161");
    testRemoveBelowDepth ("101 41 141 21 61", 2, "101 41 21 61 11 31 51 71 141");
    testRemoveBelowDepth ("101 40 140 20 61 120 161", 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testRemoveBelowDepth ("90 30 100 10 81 20 40", 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testRemoveBelowDepth ("40 20 61 10 30 50 70", 2, "40 20 61 10 30 50 70");
    testRemoveBelowDepth ("41 21 61", 1, "41 21 61 11 30 51 70");
    testRemoveBelowDepth ("", 2, "");
    testRemoveBelowDepth ("1", 2, "1");
    testRemoveBelowDepth ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110", 3, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testAddZeroToSingles ("41 21 61 11 0 ", "41 21 61 11");
    testAddZeroToSingles ("41 21 61 11 0 51 71 ", "41 21 61 11 51 71");
    testAddZeroToSingles ("90 30 100 10 81 0 20 40 0 0 60 50 70 62 0 0 63 0 64 ", "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testAddZeroToSingles ("40 20 61 10 30 50 70 ", "40 20 61 10 30 50 70"); 
    testAddZeroToSingles ("", "");
    testAddZeroToSingles ("1 ", "1");
    testAddZeroToSingles ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110 2 6 12 21 35 60 82 86 92 94 96 98 102 104 106 111 34 36 45 62 ", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testRemoveLeaves ("41 21", "41 21 61 11 31");
    testRemoveLeaves ("41 21 61 71", "41 21 61 11 31 51 71 111");
    testRemoveLeaves ("101 41 21 61", "101 41 21 61 11 31 51 71 111");
    testRemoveLeaves ("101 41 141 21 61 121 161", "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testRemoveLeaves ("101 41 141 21 61", "101 41 21 61 11 31 51 71 141 121 161");
    testRemoveLeaves ("101 41 21 61", "101 41 21 61 11 31 51 71 141");
    testRemoveLeaves ("101 40 140 20 61 120 161", "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testRemoveLeaves ("90 30 10 81 40 60 70 62 63", "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testRemoveLeaves ("40 20 61", "40 20 61 10 30 50 70");
    testRemoveLeaves ("41 21 61", "41 21 61 11 30 51 70");
    testRemoveLeaves ("", "");
    testRemoveLeaves ("", "1");
    testRemoveLeaves ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110 35 60", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
    testRemoveSingles ("101 41 141 21 61 121 161 11 31 51 71 111 131 151 171", "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
    testRemoveSingles ("101 41 141 21 61 121 161 11 31 51 71", "101 41 21 61 11 31 51 71 141 121 161");
    testRemoveSingles ("101 41 141 21 61 11 31 51 71", "101 41 21 61 11 31 51 71 141");
    testRemoveSingles ("101 40 140 20 61 120 161 11 31 51 71 111 131 151 171", "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
    testRemoveSingles ("90 30 100 20 60 50 64", "90 30 100 10 81 20 40 60 50 70 62 63 64");
    testRemoveSingles ("40 20 61 10 30 50 70", "40 20 61 10 30 50 70");
    testRemoveSingles ("41 21 61 11 30 51 70", "41 21 61 11 30 51 70");
    testRemoveSingles ("", "");
    testRemoveSingles ("1", "1");
    testRemoveSingles ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110 2 6 12 21 35 60 82 86 92 94 96 98 102 104 106 111 34 36 45 62", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
  }
  private static int exampleCount = 0;
  private static void show(MyIntSET set, String filename) {
    StdOut.format ("tree x%s-%s: %s\n", exampleCount, filename, set); 
    set.toGraphviz ("x" + exampleCount + "-" + filename + ".png");
    exampleCount++;
  }
  private static void testSize (int expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    int actual = set.size ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed size(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed size(%s): Expecting (%d) Actual (%d)\n", tree, expected, actual);
    }
  }
  private static void testHeight (int expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    int actual = set.height ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed height(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed height(%s): Expecting (%d) Actual (%d)\n", tree, expected, actual);
    }
  }
  private static void testSizeOdd (int expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    int actual = set.sizeOdd ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed sizeOdd(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed sizeOdd(%s): Expecting (%d) Actual (%d)\n", tree, expected, actual);
    }
  }
  private static void testSizeAtDepth (int expected, int depth, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    int actual = set.sizeAtDepth (depth);
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed sizeAtDepth(%d,%s): Tree modified\n", depth, tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed sizeAtDepth(%d,%s): Expecting (%d) Actual (%d)\n", depth, tree, expected, actual);
    }
  }
  private static void testSizeAboveDepth (int expected, int depth, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    int actual = set.sizeAboveDepth (depth);
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed sizeAboveDepth(%d,%s): Tree modified\n", depth, tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed sizeAboveDepth(%d,%s): Expecting (%d) Actual (%d)\n", depth, tree, expected, actual);
    }
  }
  private static void testSizeBelowDepth (int expected, int depth, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    int actual = set.sizeBelowDepth (depth);
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed sizeBelowDepth(%d,%s): Tree modified\n", depth, tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed sizeBelowDepth(%d,%s): Expecting (%d) Actual (%d)\n", depth, tree, expected, actual);
    }
  }
  private static void testIsPerfectlyBalancedS (boolean expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    boolean actual = set.isPerfectlyBalancedS ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed isPerfectlyBalancedS(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed isPerfectlyBalancedS(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
    }
  }
  private static void testIsPerfectlyBalancedH (boolean expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    boolean actual = set.isPerfectlyBalancedH ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed isPerfectlyBalancedH(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed isPerfectlyBalancedH(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
    }
  }
  private static void testIsOddBalanced (boolean expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    boolean actual = set.isOddBalanced ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed isOddBalanced(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed isOddBalanced(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
    }
  }
  private static void testIsSemiBalanced (boolean expected, String tree) {
    MyIntSET set = MyIntSET.fromString(tree);
    boolean actual = set.isSemiBalanced ();
    if (! areEquals (set, MyIntSET.fromString(tree))) {
      StdOut.format ("Failed isSemiBalanced(%s): Tree modified\n", tree);
    }
    if (expected != actual) {
      StdOut.format ("Failed isSemiBalanced(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
    }
  }
  private static void testRemoveOddSubtrees (String expected, String tree) {
    MyIntSET actual = MyIntSET.fromString(tree);
    actual.removeOddSubtrees ();    
    if (! areEquals (actual, MyIntSET.fromString(expected))) {
      StdOut.format ("Failed removeOddSubtrees\n");
      show (MyIntSET.fromString(tree), "original");
      show (actual, "actual");
      show (MyIntSET.fromString(expected), "expected");
    }
  } 
  private static void testRemoveBelowDepth (String expected, int depth, String tree) {
    MyIntSET actual = MyIntSET.fromString(tree);
    actual.removeBelowDepth (depth);    
    if (! areEquals (actual, MyIntSET.fromString(expected))) {
      StdOut.format ("Failed removeBelowDepth(%d)\n", depth);
      show (MyIntSET.fromString(tree), "original");
      show (actual, "actual");
      show (MyIntSET.fromString(expected), "expected");
    }
  }
  private static void testRemoveSingles (String expected, String tree) {
    MyIntSET actual = MyIntSET.fromString(tree);
    actual.removeSingles ();    
    if (! areEquals (actual, MyIntSET.fromString(expected))) {
      StdOut.format ("Failed removeSingles\n");
      show (MyIntSET.fromString(tree), "original");
      show (actual, "actual");
      show (MyIntSET.fromString(expected), "expected");
    }
  }
  private static void testRemoveLeaves(String expected, String tree) {
    MyIntSET actual = MyIntSET.fromString(tree);
    actual.removeLeaves();    
    if (! areEquals (actual, MyIntSET.fromString(expected))) {
      StdOut.format ("Failed removeLeaves\n");
      show (MyIntSET.fromString(tree), "original");
      show (actual, "actual");
      show (MyIntSET.fromString(expected), "expected");
    }
  }
  private static void testAddZeroToSingles(String expected, String tree) {
    MyIntSET actual = MyIntSET.fromString(tree);
    actual.addZeroToSingles ();
    if (! expected.equals (actual.toString ())) {
      StdOut.format ("Failed addZeroToSingles\n");
      show (MyIntSET.fromString(tree), "original");
      show (actual, "actual");
      show (MyIntSET.fromString(expected), "expected");
    }
  }
  /* ***************************************************************************
   * Some methods to create and display trees
   * DO NOT MODIFY THESE METHODS
   *****************************************************************************/
  // Add one element to a tree, in BST order
  public void put(int key) { root = put(root, key); }
  private static Node put(Node n, int key) {
    if (n == null) return new Node(key);
    if      (key < n.key) n.left  = put(n.left,  key);
    else if (key > n.key) n.right = put(n.right, key);
    return n;
  }
  // Test for equality
  public static boolean areEquals (MyIntSET a, MyIntSET b) { return areEquals(a.root, b.root); }
  private static boolean areEquals (Node x, Node y) {
    if (x == null) {
      return (y == null);
    } else {
      return (y != null) && x.key == y.key && areEquals (x.left, y.left) && areEquals (x.right, y.right);
    }   
  }
  // Create a tree from a string
  public static MyIntSET fromString (String ints) {
    MyIntSET set = new MyIntSET ();
    for (String s : ints.split (" "))
      try { set.put (Integer.parseInt (s)); } catch (NumberFormatException e) {}
    return set;
  }
  // Return the values of the tree in level order
  public Iterable<Integer> levelOrder() {
    Queue<Integer> keys = new Queue<>();
    Queue<Node> queue = new Queue<>();
    queue.enqueue(root);
    while (!queue.isEmpty()) {
      Node n = queue.dequeue();
      if (n == null) continue;
      keys.enqueue(n.key);
      queue.enqueue(n.left);
      queue.enqueue(n.right);
    }
    return keys;
  }
  // String representation of the tree
  public String toString() {
    StringBuilder sb = new StringBuilder();
    for (int key: levelOrder())
      sb.append (key + " ");
    return sb.toString ();
  }
  // Graphical representation of the tree
  public void toGraphviz(String filename) {
    GraphvizBuilder gb = new GraphvizBuilder ();
    toGraphviz (gb, null, root);
    gb.toFileUndirected (filename, "ordering=\"out\"");
  }
  private static void toGraphviz (GraphvizBuilder gb, Node parent, Node n) {
    if (n == null) { gb.addNullEdge (parent); return; }
    gb.addLabeledNode (n, Integer.toString (n.key));
    if (parent != null) gb.addEdge (parent, n);
    toGraphviz (gb, n, n.left);
    toGraphviz (gb, n, n.right);
  }
}
 |