| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 
 | package algs32.kdtree;
import algs12.Point2D;
import algs13.Queue;
import stdlib.*;
public class NearestNeighborCorrectnessTest {
  static int NUM_TARGETS = 1000;
  static int NUM_SIZES = 12;
  static int NUM_TESTS = 200;
  static int NUM_POSSIBLE_INIT = 1;
  static int TREE_SIZE_INIT = 0;
  static boolean ALLOW_DUPLICATES = true;
  static boolean SHOW_TREE_ON_FAILURE = true;
  static boolean STOP_AFTER_FIRST_FAILURE = true;
  static boolean CATCH_EXCEPTIONS = false;
  private static boolean passed = true;
  protected static Point2D nearest (KdTree kdtree, Point2D target) {
    if (!CATCH_EXCEPTIONS) {
      return kdtree.nearest (target);
    } else {
      try {
        return kdtree.nearest (target);
      } catch (Throwable e) {
        if (passed) {
          passed = false;
          e.printStackTrace ();
        }
        return new Point2D (666, 666);
      }
    }
  }
  private static boolean showInsertionException = true;
  protected static boolean insert (KdTree kdtree, Point2D p) {
    if (!CATCH_EXCEPTIONS) {
      kdtree.insert (p);
      return true;
    } else {
      try {
        kdtree.insert (p);
        return true;
      } catch (Throwable e) {
        if (showInsertionException) {
          showInsertionException = false;
          e.printStackTrace ();
        }
        passed = false;
        return false;
      }
    }
  }
  private static double random(int numPossible) {
    return StdRandom.uniform (numPossible)/(double)numPossible;
  }
  public static void main(String[] args) {
    //StdRandom.setSeed (0); // uncomment to get the same results over and over
    Queue<Point2D> queue = new Queue<> ();
    for (int i=0; i<NUM_TARGETS; i++)
      queue.enqueue(new Point2D(random(1000), random(1000)));
    // treeSize and numPossible vary each time around the test loop
    // trying small trees with few possible values for points to start
    // doubling the treeSize each time
    // keeping numPossible a power of 10 so that decimal fractions print nicely
    int numPossible = NUM_POSSIBLE_INIT;
    int treeSize = TREE_SIZE_INIT;
    int numTested = 0;
    int numPassed = 0;
    int numTreesAttempted = 0;
    int numTreesCreated = 0;
    test: for (int numsize=0; numsize<NUM_SIZES; numsize++) {
      StdOut.format ("trying treeSize %d\n", treeSize);
      for (int numtest=0; numtest<NUM_TESTS; numtest++) {
        PointSET brute = new PointSET();
        KdTree kdtree = new KdTree();
        boolean treeCreated = true;
        for (int i=0; i<treeSize; i++) {
          Point2D p = new Point2D(random (numPossible), random (numPossible));
          if (ALLOW_DUPLICATES || !brute.contains (p)) {
            if (!insert(kdtree, p)) treeCreated = false;
            brute.insert(p);
          }
        }
        numTreesAttempted ++;
        if (treeCreated) numTreesCreated ++;
        point: for (Point2D p : queue) {
          numTested ++;
          Point2D b = brute.nearest(p);
          Point2D k = nearest (kdtree, p);
          if (b==null) {
            if (k!=null) {
              printError (treeSize, brute, kdtree, p);
              if (STOP_AFTER_FIRST_FAILURE) break test; else continue point;
            }
          } else if (k==null) {
            printError (treeSize, brute, kdtree, p);
            if (STOP_AFTER_FIRST_FAILURE) break test; else continue test;
          } else if (p.distanceTo(b) - p.distanceTo (k) != 0.0) {
            printError (treeSize, brute, kdtree, p);
            if (STOP_AFTER_FIRST_FAILURE) break test; else continue point;
          }
          numPassed ++;
        }
      }
      treeSize += (treeSize==0) ? 1 : treeSize;
      if (numsize % 4==0) numPossible *= 10;
    }
    StdOut.format ("#NearestNeighbor %s: %d/%d passed, %d/%d trees created without thrown exception\n", passed ? "passed" : "failed", numPassed, numTested, numTreesCreated, numTreesAttempted);
  }
  private static void printError (int treeSize, PointSET brute, KdTree kdtree, Point2D p) {
    if (passed) {
      passed = false;
      StdOut.println ("Error!");
      //StdOut.println ("  treeSize should be " + treeSize);
      //if (brute.size() != treeSize) StdOut.println ("  duplicate points");
      StdOut.println ("  PointSET         = " + brute);
      StdOut.println ("  KdTree           = " + kdtree);
      StdOut.println ("  target           = " + p);
      StdOut.println ("  PointSET nearest = " + brute.nearest(p));
      StdOut.println ("  KdTree nearest   = " + nearest(kdtree, p));
      if (SHOW_TREE_ON_FAILURE) {
        kdtree.toGraphviz ();
        kdtree.draw ();
      }
    }
  }
}
 |