| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 
 | package algs33;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac RedBlackLiteBST.java
 *  Execution:    java RedBlackLiteBST < input.txt
 *  Dependencies: StdIn.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/33balanced/tinyST.txt
 *
 *  A symbol table implemented using a left-leaning red-black BST.
 *  This is the 2-3 version.
 *
 *  This implementation implements only put, get, and contains.
 *  See RedBlackBST.java for a full implementation including delete.
 *
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java RedBlackLiteBST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 *************************************************************************/
public class XRedBlackLiteBST<K extends Comparable<? super K>, V> {
  private static final boolean RED   = true;
  private static final boolean BLACK = false;
  private Node<K,V> root; // root of the BST
  private int N;          // number of key-value pairs in BST
  // BST helper node data type
  private static class Node<K,V> {
    public final K key;         // key
    public V val;         // associated data
    public Node<K,V> left, right;  // links to left and right subtrees
    public boolean color;     // color of parent link
    public Node(K key, V val, boolean color) {
      this.key = key;
      this.val = val;
      this.color = color;
    }
  }
  /* ***********************************************************************
   *  Standard BST search
   *************************************************************************/
  // return value associated with the given key, or null if no such key exists
  public V get(K key) { return get(root, key); }
  public V get(Node<K,V> x, K key) {
    while (x != null) {
      int cmp = key.compareTo(x.key);
      if      (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else              return x.val;
    }
    return null;
  }
  // is there a key-value pair in the symbol table with the given key?
  public boolean contains(K key) {
    return (get(key) != null);
  }
  /* ***********************************************************************
   *  Red-black insertion
   *************************************************************************/
  public void put(K key, V val) {
    root = insert(root, key, val);
    root.color = BLACK;
    assert check();
  }
  private Node<K,V> insert(Node<K,V> h, K key, V val) {
    if (h == null) {
      N++;
      return new Node<>(key, val, RED);
    }
    int cmp = key.compareTo(h.key);
    if      (cmp < 0) h.left  = insert(h.left,  key, val);
    else if (cmp > 0) h.right = insert(h.right, key, val);
    else              h.val   = val;
    // fix-up any right-leaning links
    if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
    if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
    return h;
  }
  /* ***********************************************************************
   *  red-black tree helper functions
   *************************************************************************/
  // is node x red (and non-null) ?
  private boolean isRed(Node<K,V> x) {
    if (x == null) return false;
    return (x.color == RED);
  }
  // rotate right
  private Node<K,V> rotateRight(Node<K,V> h) {
    assert (h != null) && isRed(h.left);
    Node<K,V> x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
  }
  // rotate left
  private Node<K,V> rotateLeft(Node<K,V> h) {
    assert (h != null) && isRed(h.right);
    Node<K,V> x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
  }
  // precondition: two children are red, node is black
  // postcondition: two children are black, node is red
  private void flipColors(Node<K,V> h) {
    assert !isRed(h) && isRed(h.left) && isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
  }
  /* ***********************************************************************
   *  Utility functions
   *************************************************************************/
  // return number of key-value pairs in symbol table
  public int size() { return N; }
  // is the symbol table empty?
  public boolean isEmpty() { return N == 0; }
  // height of tree (empty tree height = 0)
  public int height() { return height(root); }
  private int height(Node<K,V> x) {
    if (x == null) return 0;
    return 1 + Math.max(height(x.left), height(x.right));
  }
  // return the smallest key; null if no such key
  public K min() { return min(root); }
  private K min(Node<K,V> x) {
    K key = null;
    while (x != null) {
      key = x.key;
      x = x.left;
    }
    return key;
  }
  // return the largest key; null if no such key
  public K max() { return max(root); }
  private K max(Node<K,V> x) {
    K key = null;
    while (x != null) {
      key = x.key;
      x = x.right;
    }
    return key;
  }
  /* *********************************************************************
   *  Iterate using an inorder traversal.
   *  Iterating through N elements takes O(N) time.
   ***********************************************************************/
  public Iterable<K> keys() {
    Queue<K> queue = new Queue<>();
    keys(root, queue);
    return queue;
  }
  private void keys(Node<K,V> x, Queue<K> queue) {
    if (x == null) return;
    keys(x.left, queue);
    queue.enqueue(x.key);
    keys(x.right, queue);
  }
  /* ***********************************************************************
   *  Check integrity of red-black BST data structure
   *************************************************************************/
  private boolean check() {
    if (!isBST())            StdOut.println("Not in symmetric order");
    if (!is23())             StdOut.println("Not a 2-3 tree");
    if (!isBalanced())       StdOut.println("Not balanced");
    return isBST() && is23() && isBalanced();
  }
  // does this binary tree satisfy symmetric order?
  // Note: this test also ensures that data structure is a binary tree since order is strict
  private boolean isBST() {
    return isBST(root, null, null);
  }
  // is the tree rooted at x a BST with all keys strictly between min and max
  // (if min or max is null, treat as empty constraint)
  // Credit: Bob Dondero's elegant solution
  private boolean isBST(Node<K,V> x, K min, K max) {
    if (x == null) return true;
    if (min != null && x.key.compareTo(min) <= 0) return false;
    if (max != null && x.key.compareTo(max) >= 0) return false;
    return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
  }
  // Does the tree have no red right links, and at most one (left)
  // red links in a row on any path?
  private boolean is23() { return is23(root); }
  private boolean is23(Node<K,V> x) {
    if (x == null) return true;
    if (isRed(x.right)) return false;
    if (x != root && isRed(x) && isRed(x.left))
      return false;
    return is23(x.left) && is23(x.right);
  }
  // do all paths from root to leaf have same number of black edges?
  private boolean isBalanced() {
    int black = 0;     // number of black links on path from root to min
    Node<K,V> x = root;
    while (x != null) {
      if (!isRed(x)) black++;
      x = x.left;
    }
    return isBalanced(root, black);
  }
  // does every path from the root to a leaf have the given number of black links?
  private boolean isBalanced(Node<K,V> x, int black) {
    if (x == null) return black == 0;
    if (!isRed(x)) black--;
    return isBalanced(x.left, black) && isBalanced(x.right, black);
  }
  /* ***********************************************************************
   *  Test client
   *************************************************************************/
  public static void main(String[] args) {
    String test = "S E A R C H E X A M P L E";
    String[] keys = test.split(" ");
    XRedBlackLiteBST<String, Integer> st = new XRedBlackLiteBST<>();
    for (int i = 0; i < keys.length; i++)
      st.put(keys[i], i);
    StdOut.println("size = " + st.size());
    StdOut.println("min  = " + st.min());
    StdOut.println("max  = " + st.max());
    StdOut.println();
    // print keys in order using allKeys()
    StdOut.println("Testing keys()");
    StdOut.println("--------------------------------");
    for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
    StdOut.println();
    // insert N elements in order if one command-line argument supplied
    if (args.length == 0) return;
    int N = Integer.parseInt(args[0]);
    XRedBlackLiteBST<Integer, Integer> st2 = new XRedBlackLiteBST<>();
    for (int i = 0; i < N; i++) {
      st2.put(i, i);
      int h = st2.height();
      StdOut.println("i = " + i + ", height = " + h + ", size = " + st2.size());
    }
    StdOut.println("size = " + st2.size());
  }
}
 |