001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
package algs33;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac SplayBST.java
 *  Execution:    java SplayBST
 *
 *  Splay tree. Supports splay-insert, -search, and -delete.
 *  Splays on every operation, regardless of the presence of the associated
 *  key prior to that operation.
 *
 *  Written by Josh Israel.
 *
 *************************************************************************/


public class XSplayBST<K extends Comparable<? super K>, V>  {

  private Node<K,V> root;   // root of the BST

  // BST helper node data type
  private static class Node<K,V> {
    public final K key;          // key
    public V value;        // associated data
    public Node<K,V> left, right;   // left and right subtrees

    public Node(K key, V value) {
      this.key   = key;
      this.value = value;
    }
  }

  public boolean contains(K key) {
    return (get(key) != null);
  }

  // return value associated with the given key
  // if no such value, return null
  public V get(K key) {
    root = splay(root, key);
    int cmp = key.compareTo(root.key);
    if (cmp == 0) return root.value;
    else          return null;
  }

  /* ***********************************************************************
   *  splay insertion
   *************************************************************************/
  public void put(K key, V value) {
    // splay key to root
    if (root == null) {
      root = new Node<>(key, value);
      return;
    }

    root = splay(root, key);

    int cmp = key.compareTo(root.key);

    // Insert new node at root
    if (cmp < 0) {
      Node<K,V> n = new Node<>(key, value);
      n.left = root.left;
      n.right = root;
      root.left = null;
      root = n;
    }

    // Insert new node at root
    else if (cmp > 0) {
      Node<K,V> n = new Node<>(key, value);
      n.right = root.right;
      n.left = root;
      root.right = null;
      root = n;
    }

    // It was a duplicate key. Simply replace the value
    else if (cmp == 0) {
      root.value = value;
    }

  }

  /* ***********************************************************************
   *  splay deletion
   *************************************************************************/
  /* This splays the key, then does a slightly modified Hibbard deletion on
   * the root (if it is the node to be deleted; if it is not, the key was
   * not in the tree). The modification is that rather than swapping the
   * root (call it node A) with its successor, it's successor (call it Node<K,V> B)
   * is moved to the root position by splaying for the deletion key in A's
   * right subtree. Finally, A's right child is made the new root's right
   * child.
   */
  public void remove(K key) {
    if (root == null) return; // empty tree

    root = splay(root, key);

    int cmp = key.compareTo(root.key);

    if (cmp == 0) {
      if (root.left == null) {
        root = root.right;
      }
      else {
        Node<K,V> x = root.right;
        root = root.left;
        splay(root, key);
        root.right = x;
      }
    }

    // else: it wasn't in the tree to remove
  }


  /* **********************************************************************
   * splay function
   * **********************************************************************/
  // splay key in the tree rooted at Node<K,V> h. If a node with that key exists,
  //   it is splayed to the root of the tree. If it does not, the last node
  //   along the search path for the key is splayed to the root.
  private Node<K,V> splay(Node<K,V> h, K key) {
    if (h == null) return null;

    int cmp1 = key.compareTo(h.key);

    if (cmp1 < 0) {
      // key not in tree, so we're done
      if (h.left == null) {
        return h;
      }
      int cmp2 = key.compareTo(h.left.key);
      if (cmp2 < 0) {
        h.left.left = splay(h.left.left, key);
        h = rotateRight(h);
      }
      else if (cmp2 > 0) {
        h.left.right = splay(h.left.right, key);
        if (h.left.right != null)
          h.left = rotateLeft(h.left);
      }

      if (h.left == null) return h;
      else                return rotateRight(h);
    }

    else if (cmp1 > 0) {
      // key not in tree, so we're done
      if (h.right == null) {
        return h;
      }

      int cmp2 = key.compareTo(h.right.key);
      if (cmp2 < 0) {
        h.right.left  = splay(h.right.left, key);
        if (h.right.left != null)
          h.right = rotateRight(h.right);
      }
      else if (cmp2 > 0) {
        h.right.right = splay(h.right.right, key);
        h = rotateLeft(h);
      }

      if (h.right == null) return h;
      else                 return rotateLeft(h);
    }

    else return h;
  }


  /* ***********************************************************************
   *  helper functions
   *************************************************************************/

  // height of tree (empty tree height = 0)
  public int height() { return height(root); }
  private int height(Node<K,V> x) {
    if (x == null) return 0;
    return 1 + Math.max(height(x.left), height(x.right));
  }


  public int size() {
    return size(root);
  }

  private int size(Node<K,V> x) {
    if (x == null) return 0;
    else return (1 + size(x.left) + size(x.right));
  }

  // right rotate
  private Node<K,V> rotateRight(Node<K,V> h) {
    Node<K,V> x = h.left;
    h.left = x.right;
    x.right = h;
    return x;
  }

  // left rotate
  private Node<K,V> rotateLeft(Node<K,V> h) {
    Node<K,V> x = h.right;
    h.right = x.left;
    x.left = h;
    return x;
  }

  // test client
  public static void main(String[] args) {
    XSplayBST<Integer, Integer> st1 = new XSplayBST<>();
    st1.put(5, 5);
    st1.put(9, 9);
    st1.put(13, 13);
    st1.put(11, 11);
    st1.put(1, 1);


    XSplayBST<String, String> st = new XSplayBST<>();
    st.put("www.cs.princeton.edu", "128.112.136.11");
    st.put("www.cs.princeton.edu", "128.112.136.12");
    st.put("www.cs.princeton.edu", "128.112.136.13");
    st.put("www.princeton.edu",    "128.112.128.15");
    st.put("www.yale.edu",         "130.132.143.21");
    st.put("www.simpsons.com",     "209.052.165.60");
    StdOut.println("The size 0 is: " + st.size());
    st.remove("www.yale.edu");
    StdOut.println("The size 1 is: " + st.size());
    st.remove("www.princeton.edu");
    StdOut.println("The size 2 is: " + st.size());
    st.remove("non-member");
    StdOut.println("The size 3 is: " + st.size());
    StdOut.println(st.get("www.cs.princeton.edu"));
    StdOut.println("The size 4 is: " + st.size());
    StdOut.println(st.get("www.yale.com"));
    StdOut.println("The size 5 is: " + st.size());
    StdOut.println(st.get("www.simpsons.com"));
    StdOut.println("The size 6 is: " + st.size());
    StdOut.println();
  }

}