| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 
 | package algs41;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac CC.java
 *  Execution:    java CC filename.txt
 *  Dependencies: Graph.java StdOut.java Queue.java
 *  Data files:   http://algs4.cs.princeton.edu/41undirected/tinyG.txt
 *
 *  Compute connected components using depth first search.
 *  Runs in O(E + V) time.
 *
 *  %  java CC tinyG.txt
 *  3 components
 *  0 1 2 3 4 5 6
 *  7 8
 *  9 10 11 12
 *
 *************************************************************************/
public class CC {
  private final boolean[] marked;   // marked[v] = has vertex v been marked?
  private final int[] id;           // id[v] = id of connected component containing v
  private final int[] size;         // size[id] = number of vertices in component containing v
  private int count;                // number of connected components
  public CC(Graph G) {
    marked = new boolean[G.V()];
    id = new int[G.V()];
    size = new int[G.V()];
    for (int v = 0; v < G.V(); v++) {
      if (!marked[v]) {
        dfs(G, v);
        count++;
      }
    }
  }
  // depth first search
  private void dfs(Graph G, int v) {
    marked[v] = true;
    id[v] = count;
    size[count]++;
    for (int w : G.adj(v)) {
      if (!marked[w]) {
        dfs(G, w);
      }
    }
  }
  // id of connected component containing v
  public int id(int v) {
    return id[v];
  }
  // size of connected component containing v
  public int size(int v) {
    return size[id[v]];
  }
  // number of connected components
  public int count() {
    return count;
  }
  // are v and w in the same connected component?
  public boolean areConnected(int v, int w) {
    return id(v) == id(w);
  }
  // test client
  public static void anotherTest() {
    Graph G;
    do {
      G = GraphGenerator.simple(20,40);
    } while (new CC(G).count() != 1);
    G.toGraphviz ("g.png");
  }
  public static void main(String[] args) {
    anotherTest();
//    args = new String [] { "10", "5" };
//    final int V = Integer.parseInt(args[0]);
//    final int E = Integer.parseInt(args[1]);
//    final Graph G = GraphGenerator.simple(V, E);
//    StdOut.println(G);
    //args = new String [] { "data/tinyAG.txt" };
    args = new String [] { "data/tinyG.txt" };
    In in = new In(args[0]);
    Graph G = GraphGenerator.fromIn (in);
    StdOut.println(G);
    G.toGraphviz ("g");
    
    CC cc = new CC(G);
    // number of connected components
    int M = cc.count();
    StdOut.println(M + " components");
    // compute list of vertices in each connected component
    @SuppressWarnings("unchecked")
    Queue<Integer>[] components = new Queue[M];
    for (int i = 0; i < M; i++) {
      components[i] = new Queue<>();
    }
    for (int v = 0; v < G.V(); v++) {
      components[cc.id(v)].enqueue(v);
    }
    // print results
    for (int i = 0; i < M; i++) {
      for (int v : components[i]) {
        StdOut.print(v + " ");
      }
      StdOut.println();
    }
  }
}
 |