001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
package algs41;
import stdlib.*;
import algs13.Queue;
import algs13.Stack;

/******************************************************************************
 *  Compilation:  javac EulerianPath.java
 *  Execution:    java EulerianPath V E
 *  Dependencies: Graph.java Stack.java StdOut.java
 *
 *  Find an Eulerian path in a graph, if one exists.
 *
 ******************************************************************************/

/**
 *  The {@code EulerianPath} class represents a data type
 *  for finding an Eulerian path in a graph.
 *  An <em>Eulerian path</em> is a path (not necessarily simple) that
 *  uses every edge in the graph exactly once.
 *  <p>
 *  This implementation uses a nonrecursive depth-first search.
 *  The constructor runs in O(<em>E</em> + <em>V</em>) time,
 *  and uses O(<em>E</em> + <em>V</em>) extra space,
 *  where <em>E</em> is the number of edges and <em>V</em> the number of vertices
 *  All other methods take O(1) time.
 *  <p>
 *  To compute Eulerian cycles in graphs, see {@link EulerianCycle}.
 *  To compute Eulerian cycles and paths in digraphs, see
 *  {@link DirectedEulerianCycle} and {@link DirectedEulerianPath}.
 *  <p>
 *  For additional documentation,
 *  see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 * 
 * @author Robert Sedgewick
 * @author Kevin Wayne
 * @author Nate Liu
 */
public class EulerianPath {
    private Stack<Integer> path = null;   // Eulerian path; null if no suh path

    // an undirected edge, with a field to indicate whether the edge has already been used
    private static class Edge {
        private final int v;
        private final int w;
        private boolean isUsed;

        public Edge(int v, int w) {
            this.v = v;
            this.w = w;
            isUsed = false;
        }

        // returns the other vertex of the edge
        public int other(int vertex) {
            if      (vertex == v) return w;
            else if (vertex == w) return v;
            else throw new IllegalArgumentException("Illegal endpoint");
        }
    }

    /**
     * Computes an Eulerian path in the specified graph, if one exists.
     * 
     * @param G the graph
     */
    public EulerianPath(Graph G) {

        // find vertex from which to start potential Eulerian path:
        // a vertex v with odd degree(v) if it exits;
        // otherwise a vertex with degree(v) > 0
        int oddDegreeVertices = 0;
        int s = nonIsolatedVertex(G);
        for (int v = 0; v < G.V(); v++) {
            if (G.degree(v) % 2 != 0) {
                oddDegreeVertices++;
                s = v;
            }
        }

        // graph can't have an Eulerian path
        // (this condition is needed for correctness)
        if (oddDegreeVertices > 2) return;

        // special case for graph with zero edges (has a degenerate Eulerian path)
        if (s == -1) s = 0;

        // create local view of adjacency lists, to iterate one vertex at a time
        // the helper Edge data type is used to avoid exploring both copies of an edge v-w
        @SuppressWarnings("unchecked")
    Queue<Edge>[] adj = new Queue[G.V()];
        for (int v = 0; v < G.V(); v++)
            adj[v] = new Queue<Edge>();

        for (int v = 0; v < G.V(); v++) {
            int selfLoops = 0;
            for (int w : G.adj(v)) {
                // careful with self loops
                if (v == w) {
                    if (selfLoops % 2 == 0) {
                        Edge e = new Edge(v, w);
                        adj[v].enqueue(e);
                        adj[w].enqueue(e);
                    }
                    selfLoops++;
                }
                else if (v < w) {
                    Edge e = new Edge(v, w);
                    adj[v].enqueue(e);
                    adj[w].enqueue(e);
                }
            }
        }

        // initialize stack with any non-isolated vertex
        Stack<Integer> stack = new Stack<Integer>();
        stack.push(s);

        // greedily search through edges in iterative DFS style
        path = new Stack<Integer>();
        while (!stack.isEmpty()) {
            int v = stack.pop();
            while (!adj[v].isEmpty()) {
                Edge edge = adj[v].dequeue();
                if (edge.isUsed) continue;
                edge.isUsed = true;
                stack.push(v);
                v = edge.other(v);
            }
            // push vertex with no more leaving edges to path
            path.push(v);
        }

        // check if all edges are used
        if (path.size() != G.E() + 1)
            path = null;

        assert certifySolution(G);
    }

    /**
     * Returns the sequence of vertices on an Eulerian path.
     * 
     * @return the sequence of vertices on an Eulerian path;
     *         {@code null} if no such path
     */
    public Iterable<Integer> path() {
        return path;
    }

    /**
     * Returns true if the graph has an Eulerian path.
     * 
     * @return {@code true} if the graph has an Eulerian path;
     *         {@code false} otherwise
     */
    public boolean hasEulerianPath() {
        return path != null;
    }


    // returns any non-isolated vertex; -1 if no such vertex
    private static int nonIsolatedVertex(Graph G) {
        for (int v = 0; v < G.V(); v++)
            if (G.degree(v) > 0)
                return v;
        return -1;
    }


    /**************************************************************************
     *
     *  The code below is solely for testing correctness of the data type.
     *
     **************************************************************************/

    // Determines whether a graph has an Eulerian path using necessary
    // and sufficient conditions (without computing the path itself):
    //    - degree(v) is even for every vertex, except for possibly two
    //    - the graph is connected (ignoring isolated vertices)
    // This method is solely for unit testing.
    private static boolean satisfiesNecessaryAndSufficientConditions(Graph G) {
        if (G.E() == 0) return true;

        // Condition 1: degree(v) is even except for possibly two
        int oddDegreeVertices = 0;
        for (int v = 0; v < G.V(); v++)
            if (G.degree(v) % 2 != 0)
                oddDegreeVertices++;
        if (oddDegreeVertices > 2) return false;

        // Condition 2: graph is connected, ignoring isolated vertices
        int s = nonIsolatedVertex(G);
        BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);
        for (int v = 0; v < G.V(); v++)
            if (G.degree(v) > 0 && !bfs.hasPathTo(v))
                return false;

        return true;
    }

    // check that solution is correct
    private boolean certifySolution(Graph G) {

        // internal consistency check
        if (hasEulerianPath() == (path() == null)) return false;

        // hashEulerianPath() returns correct value
        if (hasEulerianPath() != satisfiesNecessaryAndSufficientConditions(G)) return false;

        // nothing else to check if no Eulerian path
        if (path == null) return true;

        // check that path() uses correct number of edges
        if (path.size() != G.E() + 1) return false;

        // check that path() is a path in G
        // TODO

        return true;
    }

    private static void unitTest(Graph G, String description) {
        StdOut.println(description);
        StdOut.println("-------------------------------------");
        StdOut.print(G);

        EulerianPath euler = new EulerianPath(G);

        StdOut.print("Eulerian path:  ");
        if (euler.hasEulerianPath()) {
            for (int v : euler.path()) {
                StdOut.print(v + " ");
            }
            StdOut.println();
        }
        else {
            StdOut.println("none");
        }
        StdOut.println();
    }


    /**
     * Unit tests the {@code EulerianPath} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);


        // Eulerian cycle
        Graph G1 = GraphGenerator.eulerianCycle(V, E);
        unitTest(G1, "Eulerian cycle");

        // Eulerian path
        Graph G2 = GraphGenerator.eulerianPath(V, E);
        unitTest(G2, "Eulerian path");

        // add one random edge
        Graph G3 = GraphGenerator.copy(G2);
        G3.addEdge(StdRandom.uniform(V), StdRandom.uniform(V));
        unitTest(G3, "one random edge added to Eulerian path");

        // self loop
        Graph G4 = new Graph(V);
        int v4 = StdRandom.uniform(V);
        G4.addEdge(v4, v4);
        unitTest(G4, "single self loop");

        // single edge
        Graph G5 = new Graph(V);
        G5.addEdge(StdRandom.uniform(V), StdRandom.uniform(V));
        unitTest(G5, "single edge");

        // empty graph
        Graph G6 = new Graph(V);
        unitTest(G6, "empty graph");

        // random graph
        Graph G7 = GraphGenerator.simple(V, E);
        unitTest(G7, "simple graph");
    }
}