| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 
 | package algs41;
import stdlib.*;
import algs13.Queue;
import algs13.Stack;
/******************************************************************************
 *  Compilation:  javac EulerianPath.java
 *  Execution:    java EulerianPath V E
 *  Dependencies: Graph.java Stack.java StdOut.java
 *
 *  Find an Eulerian path in a graph, if one exists.
 *
 ******************************************************************************/
/**
 *  The {@code EulerianPath} class represents a data type
 *  for finding an Eulerian path in a graph.
 *  An <em>Eulerian path</em> is a path (not necessarily simple) that
 *  uses every edge in the graph exactly once.
 *  <p>
 *  This implementation uses a nonrecursive depth-first search.
 *  The constructor runs in O(<em>E</em> + <em>V</em>) time,
 *  and uses O(<em>E</em> + <em>V</em>) extra space,
 *  where <em>E</em> is the number of edges and <em>V</em> the number of vertices
 *  All other methods take O(1) time.
 *  <p>
 *  To compute Eulerian cycles in graphs, see {@link EulerianCycle}.
 *  To compute Eulerian cycles and paths in digraphs, see
 *  {@link algs42.DirectedEulerianCycle} and {@link algs42.DirectedEulerianPath}.
 *  <p>
 *  For additional documentation,
 *  see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 * 
 * @author Robert Sedgewick
 * @author Kevin Wayne
 * @author Nate Liu
 */
public class EulerianPath {
    private Stack<Integer> path = null;   // Eulerian path; null if no suh path
    // an undirected edge, with a field to indicate whether the edge has already been used
    private static class Edge {
        private final int v;
        private final int w;
        private boolean isUsed;
        public Edge(int v, int w) {
            this.v = v;
            this.w = w;
            isUsed = false;
        }
        // returns the other vertex of the edge
        public int other(int vertex) {
            if      (vertex == v) return w;
            else if (vertex == w) return v;
            else throw new IllegalArgumentException("Illegal endpoint");
        }
    }
    /**
     * Computes an Eulerian path in the specified graph, if one exists.
     * 
     * @param G the graph
     */
    public EulerianPath(Graph G) {
        // find vertex from which to start potential Eulerian path:
        // a vertex v with odd degree(v) if it exits;
        // otherwise a vertex with degree(v) > 0
        int oddDegreeVertices = 0;
        int s = nonIsolatedVertex(G);
        for (int v = 0; v < G.V(); v++) {
            if (G.degree(v) % 2 != 0) {
                oddDegreeVertices++;
                s = v;
            }
        }
        // graph can't have an Eulerian path
        // (this condition is needed for correctness)
        if (oddDegreeVertices > 2) return;
        // special case for graph with zero edges (has a degenerate Eulerian path)
        if (s == -1) s = 0;
        // create local view of adjacency lists, to iterate one vertex at a time
        // the helper Edge data type is used to avoid exploring both copies of an edge v-w
        @SuppressWarnings("unchecked")
    Queue<Edge>[] adj = new Queue[G.V()];
        for (int v = 0; v < G.V(); v++)
            adj[v] = new Queue<Edge>();
        for (int v = 0; v < G.V(); v++) {
            int selfLoops = 0;
            for (int w : G.adj(v)) {
                // careful with self loops
                if (v == w) {
                    if (selfLoops % 2 == 0) {
                        Edge e = new Edge(v, w);
                        adj[v].enqueue(e);
                        adj[w].enqueue(e);
                    }
                    selfLoops++;
                }
                else if (v < w) {
                    Edge e = new Edge(v, w);
                    adj[v].enqueue(e);
                    adj[w].enqueue(e);
                }
            }
        }
        // initialize stack with any non-isolated vertex
        Stack<Integer> stack = new Stack<Integer>();
        stack.push(s);
        // greedily search through edges in iterative DFS style
        path = new Stack<Integer>();
        while (!stack.isEmpty()) {
            int v = stack.pop();
            while (!adj[v].isEmpty()) {
                Edge edge = adj[v].dequeue();
                if (edge.isUsed) continue;
                edge.isUsed = true;
                stack.push(v);
                v = edge.other(v);
            }
            // push vertex with no more leaving edges to path
            path.push(v);
        }
        // check if all edges are used
        if (path.size() != G.E() + 1)
            path = null;
        assert certifySolution(G);
    }
    /**
     * Returns the sequence of vertices on an Eulerian path.
     * 
     * @return the sequence of vertices on an Eulerian path;
     *         {@code null} if no such path
     */
    public Iterable<Integer> path() {
        return path;
    }
    /**
     * Returns true if the graph has an Eulerian path.
     * 
     * @return {@code true} if the graph has an Eulerian path;
     *         {@code false} otherwise
     */
    public boolean hasEulerianPath() {
        return path != null;
    }
    // returns any non-isolated vertex; -1 if no such vertex
    private static int nonIsolatedVertex(Graph G) {
        for (int v = 0; v < G.V(); v++)
            if (G.degree(v) > 0)
                return v;
        return -1;
    }
    /**************************************************************************
     *
     *  The code below is solely for testing correctness of the data type.
     *
     **************************************************************************/
    // Determines whether a graph has an Eulerian path using necessary
    // and sufficient conditions (without computing the path itself):
    //    - degree(v) is even for every vertex, except for possibly two
    //    - the graph is connected (ignoring isolated vertices)
    // This method is solely for unit testing.
    private static boolean satisfiesNecessaryAndSufficientConditions(Graph G) {
        if (G.E() == 0) return true;
        // Condition 1: degree(v) is even except for possibly two
        int oddDegreeVertices = 0;
        for (int v = 0; v < G.V(); v++)
            if (G.degree(v) % 2 != 0)
                oddDegreeVertices++;
        if (oddDegreeVertices > 2) return false;
        // Condition 2: graph is connected, ignoring isolated vertices
        int s = nonIsolatedVertex(G);
        BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);
        for (int v = 0; v < G.V(); v++)
            if (G.degree(v) > 0 && !bfs.hasPathTo(v))
                return false;
        return true;
    }
    // check that solution is correct
    private boolean certifySolution(Graph G) {
        // internal consistency check
        if (hasEulerianPath() == (path() == null)) return false;
        // hashEulerianPath() returns correct value
        if (hasEulerianPath() != satisfiesNecessaryAndSufficientConditions(G)) return false;
        // nothing else to check if no Eulerian path
        if (path == null) return true;
        // check that path() uses correct number of edges
        if (path.size() != G.E() + 1) return false;
        // check that path() is a path in G
        // TODO
        return true;
    }
    private static void unitTest(Graph G, String description) {
        StdOut.println(description);
        StdOut.println("-------------------------------------");
        StdOut.print(G);
        EulerianPath euler = new EulerianPath(G);
        StdOut.print("Eulerian path:  ");
        if (euler.hasEulerianPath()) {
            for (int v : euler.path()) {
                StdOut.print(v + " ");
            }
            StdOut.println();
        }
        else {
            StdOut.println("none");
        }
        StdOut.println();
    }
    /**
     * Unit tests the {@code EulerianPath} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);
        // Eulerian cycle
        Graph G1 = GraphGenerator.eulerianCycle(V, E);
        unitTest(G1, "Eulerian cycle");
        // Eulerian path
        Graph G2 = GraphGenerator.eulerianPath(V, E);
        unitTest(G2, "Eulerian path");
        // add one random edge
        Graph G3 = GraphGenerator.copy(G2);
        G3.addEdge(StdRandom.uniform(V), StdRandom.uniform(V));
        unitTest(G3, "one random edge added to Eulerian path");
        // self loop
        Graph G4 = new Graph(V);
        int v4 = StdRandom.uniform(V);
        G4.addEdge(v4, v4);
        unitTest(G4, "single self loop");
        // single edge
        Graph G5 = new Graph(V);
        G5.addEdge(StdRandom.uniform(V), StdRandom.uniform(V));
        unitTest(G5, "single edge");
        // empty graph
        Graph G6 = new Graph(V);
        unitTest(G6, "empty graph");
        // random graph
        Graph G7 = GraphGenerator.simple(V, E);
        unitTest(G7, "simple graph");
    }
} |