| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 
 | package algs41;
import java.util.Arrays;
import algs13.Stack;
import algs24.MinPQ;
import stdlib.*;
public class GraphGenerator {
  /**
   * Create a graph from input stream.
   */
  public static Graph fromIn (In in) {
    Graph G = new Graph (in.readInt());
    int E = in.readInt();
    for (int i = 0; i < E; i++) {
      int v = in.readInt();
      int w = in.readInt();
      G.addEdge(v, w);
    }
    return G;
  }
  public static Graph copy (Graph G) {
    Graph R = new Graph (G.V());
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack<Integer> reverse = new Stack<Integer>();
            for (int w : G.adj(v)) {
                reverse.push(w);
            }
            for (int w : reverse) {
                R.addEdge (v, w);
            }
        }
    return R;
  }
  public static Graph complete (int V) {
    return simple (V, V * (V - 1) / 2);
  }
  public static Graph simple (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    if (E > V * (V - 1) / 2) throw new IllegalArgumentException ("Number of edges must be less than V*(V-1)/2");
    Graph G = new Graph (V);
    newEdge: while (E > 0) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      if (v == w) continue;
      for (int w2 : G.adj (v))
        if (w == w2) continue newEdge;
      G.addEdge (v, w);
      E--;
    }
    return G;
  }
  public static Graph simpleConnected (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    if (E > V * (V - 1) / 2) throw new IllegalArgumentException ("Number of edges must be less than V*(V-1)/2");
    Graph G = spanningTree (V);
    newEdge: while (G.E () < E) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      if (v == w) continue;
      for (int w2 : G.adj (v))
        if (w == w2) continue newEdge;
      G.addEdge (v, w);
      E--;
    }
    return G;
  }
  public static Graph connected (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    Graph G = spanningTree (V);
    while (G.E () < E) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      G.addEdge (v, w);
    }
    return G;
  }
  public static Graph random (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    Graph G = new Graph (V);
    while (G.E () < E) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      G.addEdge (v, w);
    }
    return G;
  }
  public static Graph spanningTree (int V) {
    if (V < 1) throw new IllegalArgumentException ();
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++)
      vertices[i] = i;
    StdRandom.shuffle (vertices);
    Graph G = new Graph (V);
    for (int i = 1; i < V; i++) {
      int v = vertices[StdRandom.uniform (i)];
      int w = vertices[i];
      G.addEdge (v, w);
    }
    return G;
  }
  public static Graph connected(int V, int E, int c) {
    if (c >= V || c <= 0)
      throw new IllegalArgumentException("Number of components must be between 1 and V");
    if (E <= (V-c))
      throw new IllegalArgumentException("Number of edges must be at least (V-c)");
    if (E > V * (V - 1) / 2)
      throw new IllegalArgumentException("Too many edges");
    int[] label = new int[V];
    for (int v = 0; v < V; v++) {
      label[v] = StdRandom.uniform(c);
    }
    // The following hack ensures that each color appears at least once
    {
      Arrays.sort (label);
      label[0] = 0;
      for (int v = 1; v < V; v++) {
        if (label[v]-label[v-1] > 1 || V-v == c-label[v-1]-1)
          label[v] = label[v-1]+1;
      }
      StdRandom.shuffle (label);
    }
    // make all vertices with label c a connected component
    Graph G = new Graph(V);
    for (int i = 0; i < c; i++) {
      // how many vertices in component c
      int count = 0;
      for (int v = 0; v < V; v++) {
        if (label[v] == i) count++;
      }
      int[] vertices = new int[count];
      {
        int j = 0;
        for (int v = 0; v < V; v++)
          if (label[v] == i) vertices[j++] = v;
      }
      StdRandom.shuffle(vertices);
      for (int j = 1; j < count; j++) {
        int v = vertices[StdRandom.uniform (j)];
        int w = vertices[j];
        G.addEdge (v, w);
      }
    }
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      if (v != w && label[v] == label[w]) {
        G.addEdge(v, w);
      }
    }
    return G;
  }
    /**
     * Returns a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     * containing each possible edge with probability {@code p}.
     * @param V1 the number of vertices in one partition
     * @param V2 the number of vertices in the other partition
     * @param p the probability that the graph contains an edge with one endpoint in either side
     * @return a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     *    containing each possible edge with probability {@code p}
     * @throws IllegalArgumentException if probability is not between 0 and 1
     */
    public static Graph bipartite(int V1, int V2, double p) {
        if (p < 0.0 || p > 1.0)
            throw new IllegalArgumentException("Probability must be between 0 and 1");
        int[] vertices = new int[V1 + V2];
        for (int i = 0; i < V1 + V2; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        Graph G = new Graph(V1 + V2);
        for (int i = 0; i < V1; i++)
            for (int j = 0; j < V2; j++)
                if (StdRandom.bernoulli(p))
                    G.addEdge(vertices[i], vertices[V1+j]);
        return G;
    }
    /**
     * Returns a path graph on {@code V} vertices.
     * @param V the number of vertices in the path
     * @return a path graph on {@code V} vertices
     */
    public static Graph path(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }
    /**
     * Returns a complete binary tree graph on {@code V} vertices.
     * @param V the number of vertices in the binary tree
     * @return a complete binary tree graph on {@code V} vertices
     */
    public static Graph binaryTree(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[i], vertices[(i-1)/2]);
        }
        return G;
    }
    /**
     * Returns a cycle graph on {@code V} vertices.
     * @param V the number of vertices in the cycle
     * @return a cycle graph on {@code V} vertices
     */
    public static Graph cycle(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[0]);
        return G;
    }
    /**
     * Returns an Eulerian cycle graph on {@code V} vertices.
     *
     * @param  V the number of vertices in the cycle
     * @param  E the number of edges in the cycle
     * @return a graph that is an Eulerian cycle on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0}
     */
    public static Graph eulerianCycle(int V, int E) {
        if (E <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one edge");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex");
        Graph G = new Graph(V);
        int[] vertices = new int[E];
        for (int i = 0; i < E; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[E-1], vertices[0]);
        return G;
    }
    /**
     * Returns an Eulerian path graph on {@code V} vertices.
     *
     * @param  V the number of vertices in the path
     * @param  E the number of edges in the path
     * @return a graph that is an Eulerian path on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0}
     */
    public static Graph eulerianPath(int V, int E) {
        if (E < 0)
            throw new IllegalArgumentException("negative number of edges");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian path must have at least one vertex");
        Graph G = new Graph(V);
        int[] vertices = new int[E+1];
        for (int i = 0; i < E+1; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }
    /**
     * Returns a wheel graph on {@code V} vertices.
     * @param V the number of vertices in the wheel
     * @return a wheel graph on {@code V} vertices: a single vertex connected to
     *     every vertex in a cycle on {@code V-1} vertices
     */
    public static Graph wheel(int V) {
        if (V <= 1) throw new IllegalArgumentException("Number of vertices must be at least 2");
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        // simple cycle on V-1 vertices
        for (int i = 1; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[1]);
        // connect vertices[0] to every vertex on cycle
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[0], vertices[i]);
        }
        return G;
    }
    /**
     * Returns a star graph on {@code V} vertices.
     * @param V the number of vertices in the star
     * @return a star graph on {@code V} vertices: a single vertex connected to
     *     every other vertex
     */
    public static Graph star(int V) {
        if (V <= 0) throw new IllegalArgumentException("Number of vertices must be at least 1");
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        // connect vertices[0] to every other vertex
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[0], vertices[i]);
        }
        return G;
    }
    /**
     * Returns a uniformly random {@code k}-regular graph on {@code V} vertices
     * (not necessarily simple). The graph is simple with probability only about e^(-k^2/4),
     * which is tiny when k = 14.
     *
     * @param V the number of vertices in the graph
     * @param k degree of each vertex
     * @return a uniformly random {@code k}-regular graph on {@code V} vertices.
     */
    public static Graph regular(int V, int k) {
        if (V*k % 2 != 0) throw new IllegalArgumentException("Number of vertices * k must be even");
        Graph G = new Graph(V);
        // create k copies of each vertex
        int[] vertices = new int[V*k];
        for (int v = 0; v < V; v++) {
            for (int j = 0; j < k; j++) {
                vertices[v + V*j] = v;
            }
        }
        // pick a random perfect matching
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V*k/2; i++) {
            G.addEdge(vertices[2*i], vertices[2*i + 1]);
        }
        return G;
    }
    // http://www.proofwiki.org/wiki/Labeled_Tree_from_Prüfer_Sequence
    // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.6484&rep=rep1&type=pdf
    /**
     * Returns a uniformly random tree on {@code V} vertices.
     * This algorithm uses a Prufer sequence and takes time proportional to <em>V log V</em>.
     * @param V the number of vertices in the tree
     * @return a uniformly random tree on {@code V} vertices
     */
    public static Graph tree(int V) {
        Graph G = new Graph(V);
        // special case
        if (V == 1) return G;
        // Cayley's theorem: there are V^(V-2) labeled trees on V vertices
        // Prufer sequence: sequence of V-2 values between 0 and V-1
        // Prufer's proof of Cayley's theorem: Prufer sequences are in 1-1
        // with labeled trees on V vertices
        int[] prufer = new int[V-2];
        for (int i = 0; i < V-2; i++)
            prufer[i] = StdRandom.uniform(V);
        // degree of vertex v = 1 + number of times it appers in Prufer sequence
        int[] degree = new int[V];
        for (int v = 0; v < V; v++)
            degree[v] = 1;
        for (int i = 0; i < V-2; i++)
            degree[prufer[i]]++;
        // pq contains all vertices of degree 1
        MinPQ<Integer> pq = new MinPQ<Integer>();
        for (int v = 0; v < V; v++)
            if (degree[v] == 1) pq.insert(v);
        // repeatedly delMin() degree 1 vertex that has the minimum index
        for (int i = 0; i < V-2; i++) {
            int v = pq.delMin();
            G.addEdge(v, prufer[i]);
            degree[v]--;
            degree[prufer[i]]--;
            if (degree[prufer[i]] == 1) pq.insert(prufer[i]);
        }
        G.addEdge(pq.delMin(), pq.delMin());
        return G;
    }
  public static void print (Graph G, String filename) {
    if (G == null) return;
    System.out.println (filename);
    System.out.println (G);
    System.out.println ();
    G.toGraphviz (filename + ".png");
  }
  
  public static void main (String[] args) {
    //StdRandom.setSeed (10);
    args = new String[] { "6", "10", "3" };
    int V = Integer.parseInt (args[0]);
    int E = Integer.parseInt (args[1]);
    int c = Integer.parseInt (args[2]);
    for (int i= 5; i>0; i--) {
      print (GraphGenerator.random (V, E), "random-" + V + "-" + E);
      print (GraphGenerator.random (V, E), "random-" + V + "-" + E);
      print (GraphGenerator.simple (V, E), "simple-" + V + "-" + E);
      print (GraphGenerator.complete (V), "complete-" + V);
      print (GraphGenerator.spanningTree (V), "spanningTree-" + V);
      print (GraphGenerator.simpleConnected (V, E), "simpleConnected-" + V + "-" + E);
      print (GraphGenerator.connected (V, E), "connected-" + V + "-" + E);
      print (GraphGenerator.path (V), "path-" + V);
      print (GraphGenerator.binaryTree (V), "binaryTree-" + V);
      print (GraphGenerator.cycle (V), "cycle-" + V);
      if (E <= (V - c)) E = (V - c) + 1;
      print (GraphGenerator.connected (V, E, c), "connected-" + V + "-" + E + "-" + c);
      print (GraphGenerator.eulerianCycle (V, E), "eulerian-" + V + "-" + E);
    }
  }
}
 |