| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 
 | /******************************************************************************
 *  Compilation:  javac DirectedEulerianCycle.java
 *  Execution:    java DirectedEulerianCycle V E
 *  Dependencies: Digraph.java Stack.java StdOut.java
 *                BreadthFirstPaths.java
 *                DigraphGenerator.java StdRandom.java
 *
 *  Find an Eulerian cycle in a digraph, if one exists.
 *
 ******************************************************************************/
package algs42;
import algs13.Stack;
import algs41.BreadthFirstPaths;
import algs41.Graph;
import stdlib.*;
import java.util.Iterator;
/**
 *  The {@code DirectedEulerianCycle} class represents a data type
 *  for finding an Eulerian cycle or path in a digraph.
 *  An <em>Eulerian cycle</em> is a cycle (not necessarily simple) that
 *  uses every edge in the digraph exactly once.
 *  <p>
 *  This implementation uses a nonrecursive depth-first search.
 *  The constructor takes Θ(<em>E</em> + <em>V</em>) time in the worst
 *  case, where <em>E</em> is the number of edges and <em>V</em> is the
 *  number of vertices
 *  Each instance method takes Θ(1) time.
 *  It uses Θ(<em>V</em>) extra space (not including the digraph).
 *  <p>
 *  To compute Eulerian paths in digraphs, see {@link DirectedEulerianPath}.
 *  To compute Eulerian cycles and paths in undirected graphs, see
 *  {@link algs41.EulerianCycle} and {@link algs41.EulerianPath}.
 *  <p>
 *  For additional documentation,
 *  see <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 * 
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 *  @author Nate Liu
 */
public class DirectedEulerianCycle {
    private Stack<Integer> cycle = null;  // Eulerian cycle; null if no such cylce
    /**
     * Computes an Eulerian cycle in the specified digraph, if one exists.
     * 
     * @param G the digraph
     */
    public DirectedEulerianCycle(Digraph G) {
        // must have at least one edge
        if (G.E() == 0) return;
        // necessary condition: indegree(v) = outdegree(v) for each vertex v
        // (without this check, DFS might return a path instead of a cycle)
        for (int v = 0; v < G.V(); v++)
            if (G.outdegree(v) != G.indegree(v))
                return;
        // create local view of adjacency lists, to iterate one vertex at a time
        @SuppressWarnings("unchecked")
    Iterator<Integer>[] adj = (Iterator<Integer>[]) new Iterator[G.V()];
        for (int v = 0; v < G.V(); v++)
            adj[v] = G.adj(v).iterator();
        // initialize stack with any non-isolated vertex
        int s = nonIsolatedVertex(G);
        Stack<Integer> stack = new Stack<Integer>();
        stack.push(s);
        // greedily add to putative cycle, depth-first search style
        cycle = new Stack<Integer>();
        while (!stack.isEmpty()) {
            int v = stack.pop();
            while (adj[v].hasNext()) {
                stack.push(v);
                v = adj[v].next();
            }
            // add vertex with no more leaving edges to cycle
            cycle.push(v);
        }
        // check if all edges have been used
        // (in case there are two or more vertex-disjoint Eulerian cycles)
        if (cycle.size() != G.E() + 1)
            cycle = null;
        assert certifySolution(G);
    }
    /**
     * Returns the sequence of vertices on an Eulerian cycle.
     * 
     * @return the sequence of vertices on an Eulerian cycle;
     *         {@code null} if no such cycle
     */
    public Iterable<Integer> cycle() {
        return cycle;
    }
    /**
     * Returns true if the digraph has an Eulerian cycle.
     * 
     * @return {@code true} if the digraph has an Eulerian cycle;
     *         {@code false} otherwise
     */
    public boolean hasEulerianCycle() {
        return cycle != null;
    }
    // returns any non-isolated vertex; -1 if no such vertex
    private static int nonIsolatedVertex(Digraph G) {
        for (int v = 0; v < G.V(); v++)
            if (G.outdegree(v) > 0)
                return v;
        return -1;
    }
    /**************************************************************************
     *
     *  The code below is solely for testing correctness of the data type.
     *
     **************************************************************************/
    // Determines whether a digraph has an Eulerian cycle using necessary
    // and sufficient conditions (without computing the cycle itself):
    //    - at least one edge
    //    - indegree(v) = outdegree(v) for every vertex
    //    - the graph is connected, when viewed as an undirected graph
    //      (ignoring isolated vertices)
    private static boolean satisfiesNecessaryAndSufficientConditions(Digraph G) {
        // Condition 0: at least 1 edge
        if (G.E() == 0) return false;
        // Condition 1: indegree(v) == outdegree(v) for every vertex
        for (int v = 0; v < G.V(); v++)
            if (G.outdegree(v) != G.indegree(v))
                return false;
        // Condition 2: graph is connected, ignoring isolated vertices
        Graph H = new Graph(G.V());
        for (int v = 0; v < G.V(); v++)
            for (int w : G.adj(v))
                H.addEdge(v, w);
        
        // check that all non-isolated vertices are conneted
        int s = nonIsolatedVertex(G);
        BreadthFirstPaths bfs = new BreadthFirstPaths(H, s);
        for (int v = 0; v < G.V(); v++)
            if (H.degree(v) > 0 && !bfs.hasPathTo(v))
                return false;
        return true;
    }
    // check that solution is correct
    private boolean certifySolution(Digraph G) {
        // internal consistency check
        if (hasEulerianCycle() == (cycle() == null)) return false;
        // hashEulerianCycle() returns correct value
        if (hasEulerianCycle() != satisfiesNecessaryAndSufficientConditions(G)) return false;
        // nothing else to check if no Eulerian cycle
        if (cycle == null) return true;
        // check that cycle() uses correct number of edges
        if (cycle.size() != G.E() + 1) return false;
        // check that cycle() is a directed cycle of G
        // TODO
        return true;
    }
    private static void unitTest(Digraph G, String description) {
        StdOut.println(description);
        StdOut.println("-------------------------------------");
        StdOut.print(G);
        DirectedEulerianCycle euler = new DirectedEulerianCycle(G);
        StdOut.print("Eulerian cycle: ");
        if (euler.hasEulerianCycle()) {
            for (int v : euler.cycle()) {
                StdOut.print(v + " ");
            }
            StdOut.println();
        }
        else {
            StdOut.println("none");
        }
        StdOut.println();
    }
    /**
     * Unit tests the {@code DirectedEulerianCycle} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);
        // Eulerian cycle
        Digraph G1 = DigraphGenerator.eulerianCycle(V, E);
        unitTest(G1, "Eulerian cycle");
        // Eulerian path
        Digraph G2 = DigraphGenerator.eulerianPath(V, E);
        unitTest(G2, "Eulerian path");
        // empty digraph
        Digraph G3 = new Digraph(V);
        unitTest(G3, "empty digraph");
        // self loop
        Digraph G4 = new Digraph(V);
        int v4 = StdRandom.uniform(V);
        G4.addEdge(v4, v4);
        unitTest(G4, "single self loop");
        // union of two disjoint cycles
        Digraph H1 = DigraphGenerator.eulerianCycle(V/2, E/2);
        Digraph H2 = DigraphGenerator.eulerianCycle(V - V/2, E - E/2);
        int[] perm = new int[V];
        for (int i = 0; i < V; i++)
            perm[i] = i;
        StdRandom.shuffle(perm);
        Digraph G5 = new Digraph(V);
        for (int v = 0; v < H1.V(); v++)
            for (int w : H1.adj(v))
                G5.addEdge(perm[v], perm[w]);
        for (int v = 0; v < H2.V(); v++)
            for (int w : H2.adj(v))
                G5.addEdge(perm[V/2 + v], perm[V/2 + w]);
        unitTest(G5, "Union of two disjoint cycles");
        // random digraph
        Digraph G6 = DigraphGenerator.simple(V, E);
        unitTest(G6, "simple digraph");
//        // 4-vertex digraph
//        Digraph G7 = new Digraph(new In("eulerianD.txt"));
//        unitTest(G7, "4-vertex Eulerian digraph");
    }
}
/******************************************************************************
 *  Copyright 2002-2020, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/
 |