| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 
 | package algs42;
import stdlib.*;
import algs13.Queue;
import algs13.Stack;
/* ***********************************************************************
 *  Compilation:  javac TarjanSCC.java
 *  Execution:    Java XTarjanSCC V E
 *  Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java
 *
 *  Compute the strongly-connected components of a digraph using
 *  Tarjan's algorithm.
 *
 *  Runs in O(E + V) time.
 *
 *  % java TarjanSCC tinyDG.txt
 *  5 components
 *  1
 *  0 2 3 4 5
 *  9 10 11 12
 *  6
 *  7 8
 *
 *************************************************************************/
public class XTarjanSCC {
  private final boolean[] marked;        // marked[v] = has v been visited?
  private final int[] id;                // id[v] = id of strong component containing v
  private final int[] low;               // low[v] = low number of v
  private int pre;                 // preorder number counter
  private int count;               // number of strongly-connected components
  private final Stack<Integer> stack;
  public XTarjanSCC(Digraph G) {
    marked = new boolean[G.V()];
    stack = new Stack<>();
    id = new int[G.V()];
    low = new int[G.V()];
    for (int v = 0; v < G.V(); v++) {
      if (!marked[v]) dfs(G, v);
    }
    // check that id[] gives strong components
    assert check(G);
  }
  private void dfs(Digraph G, int v) {
    marked[v] = true;
    low[v] = pre++;
    int min = low[v];
    stack.push(v);
    for (int w : G.adj(v)) {
      if (!marked[w]) dfs(G, w);
      if (low[w] < min) min = low[w];
    }
    if (min < low[v]) { low[v] = min; return; }
    int w;
    do {
      w = stack.pop();
      id[w] = count;
      low[w] = G.V();
    } while (w != v);
    count++;
  }
  // return the number of strongly connected components
  public int count() { return count; }
  // are v and w strongly connected?
  public boolean stronglyConnected(int v, int w) {
    return id[v] == id[w];
  }
  // in which strongly connected component is vertex v?
  public int id(int v) { return id[v]; }
  // does the id[] array contain the strongly connected components?
  private boolean check(Digraph G) {
    TransitiveClosure tc = new TransitiveClosure(G);
    for (int v = 0; v < G.V(); v++) {
      for (int w = 0; w < G.V(); w++) {
        if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
          return false;
      }
    }
    return true;
  }
  public static void main(String[] args) {
    args = new String[] { "data/tinyDG.txt" };
    In in = new In(args[0]);
    Digraph G = DigraphGenerator.fromIn(in);
    XTarjanSCC scc = new XTarjanSCC(G);
    // number of connected components
    int M = scc.count();
    StdOut.println(M + " components");
    // compute list of vertices in each strong component
    @SuppressWarnings("unchecked")
    final
    Queue<Integer>[] components = new Queue[M];
    for (int i = 0; i < M; i++) {
      components[i] = new Queue<>();
    }
    for (int v = 0; v < G.V(); v++) {
      components[scc.id(v)].enqueue(v);
    }
    // print results
    for (int i = 0; i < M; i++) {
      for (int v : components[i]) {
        StdOut.print(v + " ");
      }
      StdOut.println();
    }
  }
}
 |