| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 
 | // Exercise 4.3.21 4.3.22 (Solution published at http://algs4.cs.princeton.edu/)
package algs43;
import stdlib.*;
import algs13.Queue;
import algs15.WeightedUF;
import algs24.IndexMinPQ;
/* ****************************************************************************
 *  Compilation:  javac PrimMST.java
 *  Execution:    java PrimMST filename.txt
 *  Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
 *                IndexMinPQ.java UF.java In.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
 *                http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
 *                http://algs4.cs.princeton.edu/43mst/largeEWG.txt
 *
 *  Compute a minimum spanning forest using Prim's algorithm.
 *
 *  %  java PrimMST tinyEWG.txt
 *  1-7 0.19000
 *  0-2 0.26000
 *  2-3 0.17000
 *  4-5 0.35000
 *  5-7 0.28000
 *  6-2 0.40000
 *  0-7 0.16000
 *  1.81000
 *
 *  % java PrimMST mediumEWG.txt
 *  1-72   0.06506
 *  2-86   0.05980
 *  3-67   0.09725
 *  4-55   0.06425
 *  5-102  0.03834
 *  6-129  0.05363
 *  7-157  0.00516
 *  ...
 *  10.46351
 *
 *  % java PrimMST largeEWG.txt
 *  ...
 *  647.66307
 *
 ******************************************************************************/
public class PrimMST {
  private final Edge[] edgeTo;        // edgeTo[v] = shortest edge from tree vertex to non-tree vertex
  private final double[] distTo;      // distTo[v] = weight of shortest such edge
  private final boolean[] marked;     // marked[v] = true if v on tree, false otherwise
  private final IndexMinPQ<Double> pq;
  public PrimMST(EdgeWeightedGraph G) {
    edgeTo = new Edge[G.V()];
    distTo = new double[G.V()];
    marked = new boolean[G.V()];
    pq = new IndexMinPQ<>(G.V());
    for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY;
    for (int v = 0; v < G.V(); v++)      // run from each vertex to find
      if (!marked[v]) prim(G, v);      // minimum spanning forest
    // check optimality conditions
    assert check(G);
  }
  // run Prim's algorithm in graph G, starting from vertex s
  private void prim(EdgeWeightedGraph G, int s) {
    distTo[s] = 0.0;
    pq.insert(s, distTo[s]);
    while (!pq.isEmpty()) {
      int v = pq.delMin();
      scan(G, v);
    }
  }
  // scan vertex v
  private void scan(EdgeWeightedGraph G, int v) {
    marked[v] = true;
    for (Edge e : G.adj(v)) {
      int w = e.other(v);
      if (marked[w]) continue;         // v-w is obsolete edge
      if (e.weight() < distTo[w]) {
        distTo[w] = e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else                pq.insert(w, distTo[w]);
      }
    }
  }
  // return iterator of edges in MST
  public Iterable<Edge> edges() {
    Queue<Edge> mst = new Queue<>();
    for (Edge e : edgeTo) {
      if (e != null) {
        mst.enqueue(e);
      }
    }
    return mst;
  }
  // return weight of MST
  public double weight() {
    double weight = 0.0;
    for (Edge e : edges())
      weight += e.weight();
    return weight;
  }
  // check optimality conditions (takes time proportional to E V lg* V)
  private boolean check(EdgeWeightedGraph G) {
    // check weight
    double totalWeight = 0.0;
    for (Edge e : edges()) {
      totalWeight += e.weight();
    }
    double EPSILON = 1E-12;
    if (Math.abs(totalWeight - weight()) > EPSILON) {
      System.err.format("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
      return false;
    }
    // check that it is acyclic
    WeightedUF uf = new WeightedUF(G.V());
    for (Edge e : edges()) {
      int v = e.either(), w = e.other(v);
      if (uf.connected(v, w)) {
        System.err.println("Not a forest");
        return false;
      }
      uf.union(v, w);
    }
    // check that it is a spanning forest
    for (Edge e : edges()) {
      int v = e.either(), w = e.other(v);
      if (!uf.connected(v, w)) {
        System.err.println("Not a spanning forest");
        return false;
      }
    }
    // check that it is a minimal spanning forest (cut optimality conditions)
    for (Edge e : edges()) {
      int v = e.either(), w = e.other(v);
      // all edges in MST except e
      uf = new WeightedUF(G.V());
      for (Edge f : edges()) {
        int x = f.either(), y = f.other(x);
        if (f != e) uf.union(x, y);
      }
      // check that e is min weight edge in crossing cut
      for (Edge f : G.edges()) {
        int x = f.either(), y = f.other(x);
        if (!uf.connected(x, y)) {
          if (f.weight() < e.weight()) {
            System.err.println("Edge " + f + " violates cut optimality conditions");
            return false;
          }
        }
      }
    }
    return true;
  }
  public static void main(String[] args) {
    args = new String[] { "data/10000EWG.txt" };
    //args = new String[] { "data/mediumEWG.txt" };
    //args = new String[] { "data/largeEWG.txt" };
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    PrimMST mst = new PrimMST(G);
    for (Edge e : mst.edges()) {
      StdOut.println(e);
    }
    StdOut.format("%.5f\n", mst.weight());
  }
}
 |