| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 
 | package algs44;
import algs13.Stack;
import  stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac FloydWarshall.java
 *  Execution:    java FloydWarshall V E
 *  Dependencies: AdjMatrixEdgeWeightedDigraph.java
 *
 *  Floyd-Warshall all-pairs shortest path algorithm.
 *
 *  % java FloydWarshall 100 500
 *
 *  Should check for negative cycles during triple loop; otherwise
 *  intermediate numbers can get exponentially large.
 *  Reference: "The Floyd-Warshall algorithm on graphs with negative cycles"
 *  by Stefan Hougardy
 *
 *************************************************************************/
public class FloydWarshall {
  private double[][] distTo;        // distTo[v][w] = length of    shortest v->w path
  private DirectedEdge[][] edgeTo;  // edgeTo[v][w] = last edge on shortest v->w path
  public FloydWarshall(AdjMatrixEdgeWeightedDigraph G) {
    int V = G.V();
    distTo = new double[V][V];
    edgeTo = new DirectedEdge[V][V];
    // initialize distances to infinity
    for (int v = 0; v < V; v++) {
      for (int w = 0; w < V; w++) {
        distTo[v][w] = Double.POSITIVE_INFINITY;
      }
    }
    // initialize distances using edge-weighted digraph's
    for (int v = 0; v < G.V(); v++) {
      for (DirectedEdge e : G.adj(v)) {
        distTo[e.from()][e.to()] = e.weight();
        edgeTo[e.from()][e.to()] = e;
      }
      // in case of self-loops
      if (distTo[v][v] >= 0.0) {
        distTo[v][v] = 0.0;
        edgeTo[v][v] = null;
      }
    }
    // Floyd-Warshall updates
    for (int i = 0; i < V; i++) {
      // compute shortest paths using only 0, 1, ..., i as intermediate vertices
      for (int v = 0; v < V; v++) {
        if (edgeTo[v][i] == null) continue;    // optimization
        for (int w = 0; w < V; w++) {
          if (distTo[v][w] > distTo[v][i] + distTo[i][w]) {
            distTo[v][w] = distTo[v][i] + distTo[i][w];
            edgeTo[v][w] = edgeTo[i][w];
          }
        }
        if (distTo[v][v] < 0.0) return;  // negative cycle
      }
    }
  }
  // is there a negative cycle?
  public boolean hasNegativeCycle() {
    for (int v = 0; v < distTo.length; v++)
      if (distTo[v][v] < 0.0) return true;
    return false;
  }
  // negative cycle
  public Iterable<DirectedEdge> negativeCycle() {
    for (int v = 0; v < distTo.length; v++) {
      // negative cycle in v's predecessor graph
      if (distTo[v][v] < 0.0) {
        int V = edgeTo.length;
        EdgeWeightedDigraph spt = new EdgeWeightedDigraph(V);
        for (int w = 0; w < V; w++)
          if (edgeTo[v][w] != null)
            spt.addEdge(edgeTo[v][w]);
        EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(spt);
        assert finder.hasCycle();
        return finder.cycle();
      }
    }
    return null;
  }
  // is there a path from v to w?
  public boolean hasPath(int v, int w) {
    return distTo[v][w] < Double.POSITIVE_INFINITY;
  }
  // return length of shortest path from v to w
  public double dist(int v, int w) {
    return distTo[v][w];
  }
  // return view of shortest path from v to w, null if no such path
  public Iterable<DirectedEdge> path(int v, int w) {
    if (!hasPath(v, w) || hasNegativeCycle()) return null;
    Stack<DirectedEdge> path = new Stack<>();
    for (DirectedEdge e = edgeTo[v][w]; e != null; e = edgeTo[v][e.from()]) {
      path.push(e);
    }
    return path;
  }
  // check optimality conditions
  private boolean check(EdgeWeightedDigraph G, int s) {
    // no negative cycle
    if (!hasNegativeCycle()) {
      for (int v = 0; v < G.V(); v++) {
        for (DirectedEdge e : G.adj(v)) {
          int w = e.to();
          for (int i = 0; i < G.V(); i++) {
            if (distTo[i][w] > distTo[i][v] + e.weight()) {
              System.err.println("edge " + e + " is eligible");
              return false;
            }
          }
        }
      }
    }
    return true;
  }
  public static void main(String[] args) {
    // random graph with V vertices and E edges, parallel edges allowed
    int V = Integer.parseInt(args[0]);
    int E = Integer.parseInt(args[1]);
    AdjMatrixEdgeWeightedDigraph G = new AdjMatrixEdgeWeightedDigraph(V);
    for (int i = 0; i < E; i++) {
      int v = (int) (V * Math.random());
      int w = (int) (V * Math.random());
      double weight = Math.round(100 * (Math.random() - 0.15)) / 100.0;
      if (v == w) G.addEdge(new DirectedEdge(v, w, Math.abs(weight)));
      else        G.addEdge(new DirectedEdge(v, w, weight));
    }
    StdOut.println(G);
    // run Floyd-Warshall algorithm
    FloydWarshall spt = new FloydWarshall(G);
    // print all-pairs shortest path distances
    StdOut.format("     ");
    for (int v = 0; v < G.V(); v++) {
      StdOut.format("%6d ", v);
    }
    StdOut.println();
    for (int v = 0; v < G.V(); v++) {
      StdOut.format("%3d: ", v);
      for (int w = 0; w < G.V(); w++) {
        if (spt.hasPath(v, w)) StdOut.format("%6.2f ", spt.dist(v, w));
        else                   StdOut.format("   Inf ");
      }
      StdOut.println();
    }
    // print negative cycle
    if (spt.hasNegativeCycle()) {
      StdOut.println("Negative cost cycle:");
      for (DirectedEdge e : spt.negativeCycle())
        StdOut.println(e);
      StdOut.println();
    }
    // print all-pairs shortest paths
    else {
      for (int v = 0; v < G.V(); v++) {
        for (int w = 0; w < G.V(); w++) {
          if (spt.hasPath(v, w)) {
            StdOut.format("%d to %d (%5.2f)  ", v, w, spt.dist(v, w));
            for (DirectedEdge e : spt.path(v, w))
              StdOut.print(e + "  ");
            StdOut.println();
          }
          else {
            StdOut.format("%d to %d          no path\n", v, w);
          }
        }
      }
    }
  }
}
 |