| 
0102
 03
 04
 05
 06
 07
 08
 09
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 
 | package algs64; // section 6.4
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac BipartiteMatching.java
 *  Execution:    java BipartiteMatching N E
 *  Dependencies: FordFulkerson.java FlowNetwork.java FlowEdge.java
 *
 *  Find a maximum matching in a bipartite graph. Solve by reducing
 *  to maximum flow.
 *
 *  The order of growth of the running time in the worst case is E V
 *  because each augmentation increases the cardinality of the matching
 *  by one.
 *
 *  The Hopcroft-Karp algorithm improves this to E V^1/2 by finding
 *  a maximal set of shortest augmenting paths in each phase.
 *
 *********************************************************************/
public class BipartiteMatching {
  public static void main(String[] args) {
    // read in bipartite network with 2N vertices and E edges
    // we assume the vertices on one side of the bipartition
    // are named 0 to N-1 and on the other side are N to 2N-1.
    int N = Integer.parseInt(args[0]);
    int E = Integer.parseInt(args[1]);
    int s = 2*N, t = 2*N + 1;
    FlowNetwork G = new FlowNetwork(2*N + 2);
    for (int i = 0; i < E; i++) {
      int v = StdRandom.uniform(N);
      int w = StdRandom.uniform(N) + N;
      G.addEdge(new FlowEdge(v, w, Double.POSITIVE_INFINITY));
      StdOut.println(v + "-" + w);
    }
    for (int i = 0; i < N; i++) {
      G.addEdge(new FlowEdge(s,     i, 1.0));
      G.addEdge(new FlowEdge(i + N, t, 1.0));
    }
    // compute maximum flow and minimum cut
    FordFulkerson maxflow = new FordFulkerson(G, s, t);
    StdOut.println();
    StdOut.println("Size of maximum matching = " + (int) maxflow.value());
    for (int v = 0; v < N; v++) {
      for (FlowEdge e : G.adj(v)) {
        if (e.from() == v && e.flow() > 0)
          StdOut.println(e.from() + "-" + e.to());
      }
    }
  }
}
 |