| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 
 | package algs91; // section 9.9
import stdlib.*;
import algs12.Complex;
/* ***********************************************************************
 *  Compilation:  javac FFT.java
 *  Execution:    java FFT N
 *  Dependencies: Complex.java
 *
 *  Compute the FFT and inverse FFT of a length N complex sequence.
 *  Bare bones implementation that runs in O(N log N) time. Our goal
 *  is to optimize the clarity of the code, rather than performance.
 *
 *  Limitations
 *  -----------
 *   -  assumes N is a power of 2
 *
 *   -  not the most memory efficient algorithm (because it uses
 *      an object type for representing complex numbers and because
 *      it re-allocates memory for the subarray, instead of doing
 *      in-place or reusing a single temporary array)
 *
 *************************************************************************/
public class FFT {
  // compute the FFT of x[], assuming its length is a power of 2
  public static Complex[] fft(Complex[] x) {
    int N = x.length;
    // base case
    if (N == 1) return new Complex[] { x[0] };
    // radix 2 Cooley-Tukey FFT
    if (N % 2 != 0) { throw new Error("N is not a power of 2"); }
    // fft of even terms
    Complex[] even = new Complex[N/2];
    for (int k = 0; k < N/2; k++) {
      even[k] = x[2*k];
    }
    Complex[] q = fft(even);
    // fft of odd terms
    Complex[] odd  = even;  // reuse the array
    for (int k = 0; k < N/2; k++) {
      odd[k] = x[2*k + 1];
    }
    Complex[] r = fft(odd);
    // combine
    Complex[] y = new Complex[N];
    for (int k = 0; k < N/2; k++) {
      double kth = -2 * k * Math.PI / N;
      Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
      y[k]       = q[k].plus(wk.times(r[k]));
      y[k + N/2] = q[k].minus(wk.times(r[k]));
    }
    return y;
  }
  // compute the inverse FFT of x[], assuming its length is a power of 2
  public static Complex[] ifft(Complex[] x) {
    int N = x.length;
    Complex[] y = new Complex[N];
    // take conjugate
    for (int i = 0; i < N; i++) {
      y[i] = x[i].conjugate();
    }
    // compute forward FFT
    y = fft(y);
    // take conjugate again
    for (int i = 0; i < N; i++) {
      y[i] = y[i].conjugate();
    }
    // divide by N
    for (int i = 0; i < N; i++) {
      y[i] = y[i].times(1.0 / N);
    }
    return y;
  }
  // compute the circular convolution of x and y
  public static Complex[] cconvolve(Complex[] x, Complex[] y) {
    // should probably pad x and y with 0s so that they have same length
    // and are powers of 2
    if (x.length != y.length) { throw new Error("Dimensions don't agree"); }
    int N = x.length;
    // compute FFT of each sequence
    Complex[] a = fft(x);
    Complex[] b = fft(y);
    // point-wise multiply
    Complex[] c = new Complex[N];
    for (int i = 0; i < N; i++) {
      c[i] = a[i].times(b[i]);
    }
    // compute inverse FFT
    return ifft(c);
  }
  // compute the linear convolution of x and y
  public static Complex[] convolve(Complex[] x, Complex[] y) {
    Complex ZERO = new Complex(0, 0);
    Complex[] a = new Complex[2*x.length];
    for (int i = 0;        i <   x.length; i++) a[i] = x[i];
    for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;
    Complex[] b = new Complex[2*y.length];
    for (int i = 0;        i <   y.length; i++) b[i] = y[i];
    for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;
    return cconvolve(a, b);
  }
  // display an array of Complex numbers to standard output
  public static void show(Complex[] x, String title) {
    StdOut.println(title);
    StdOut.println("-------------------");
    for (Complex element : x) {
      StdOut.println(element);
    }
    StdOut.println();
  }
  /* *******************************************************************
   *  Test client and sample execution
   *
   *  % java FFT 4
   *  x
   *  -------------------
   *  -0.03480425839330703
   *  0.07910192950176387
   *  0.7233322451735928
   *  0.1659819820667019
   *
   *  y = fft(x)
   *  -------------------
   *  0.9336118983487516
   *  -0.7581365035668999 + 0.08688005256493803i
   *  0.44344407521182005
   *  -0.7581365035668999 - 0.08688005256493803i
   *
   *  z = ifft(y)
   *  -------------------
   *  -0.03480425839330703
   *  0.07910192950176387 + 2.6599344570851287E-18i
   *  0.7233322451735928
   *  0.1659819820667019 - 2.6599344570851287E-18i
   *
   *  c = cconvolve(x, x)
   *  -------------------
   *  0.5506798633981853
   *  0.23461407150576394 - 4.033186818023279E-18i
   *  -0.016542951108772352
   *  0.10288019294318276 + 4.033186818023279E-18i
   *
   *  d = convolve(x, x)
   *  -------------------
   *  0.001211336402308083 - 3.122502256758253E-17i
   *  -0.005506167987577068 - 5.058885073636224E-17i
   *  -0.044092969479563274 + 2.1934338938072244E-18i
   *  0.10288019294318276 - 3.6147323062478115E-17i
   *  0.5494685269958772 + 3.122502256758253E-17i
   *  0.240120239493341 + 4.655566391833896E-17i
   *  0.02755001837079092 - 2.1934338938072244E-18i
   *  4.01805098805014E-17i
   *
   *********************************************************************/
  public static void main(String[] args) {
    int N = Integer.parseInt(args[0]);
    Complex[] x = new Complex[N];
    // original data
    for (int i = 0; i < N; i++) {
      x[i] = new Complex(i, 0);
      x[i] = new Complex(-2*Math.random() + 1, 0);
    }
    show(x, "x");
    // FFT of original data
    Complex[] y = fft(x);
    show(y, "y = fft(x)");
    // take inverse FFT
    Complex[] z = ifft(y);
    show(z, "z = ifft(y)");
    // circular convolution of x with itself
    Complex[] c = cconvolve(x, x);
    show(c, "c = cconvolve(x, x)");
    // linear convolution of x with itself
    Complex[] d = convolve(x, x);
    show(d, "d = convolve(x, x)");
  }
}
 |