| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 
 | package algs91; // section 9.8
import stdlib.*;
import java.util.Arrays;
import algs12.Point2D;
import algs13.Stack;
/* ***********************************************************************
 *  Compilation:  javac GrahamaScanNondegenerate.java
 *  Execution:    java GrahamNondegenerate < input.txt
 *  Dependencies: Point2D.java Stack.java
 *
 *  Read points from standard input and compute their convex hull
 *  using Graham's algorithm.
 *
 *  Returns the extreme points of the convex hull in counterclockwise
 *  order (starting with the point with smallest y-coordinate).
 *
 *  Non-degeneracy assumption
 *  -------------------------
 *   -  at least 3 points
 *   -  no coincident points
 *   -  no 3 collinear points
 *
 *  GrahamScan.java removes these degeneracy assumptions.
 *
 *************************************************************************/
public class XGrahamScanNondegenerate {
  private final Stack<Point2D> hull = new Stack<>();
  public XGrahamScanNondegenerate(Point2D[] points) {
    // defensive copy
    int N = points.length;
    if (N <= 2) throw new Error("Requires at least 3 points");
    Point2D[] p = new Point2D[N];
    for (int i = 0; i < N; i++)
      p[i] = points[i];
    // preprocess so that p[0] has lowest y-coordinate; break ties by x-coordinate
    // p[0] is an extreme point of the convex hull
    // (could do easily in linear time)
    Arrays.sort(p, Point2D.Y_ORDER);
    // sort by polar angle with respect to base point p[0].
    // (no ties because of general position assumption)
    Arrays.sort(p, 1, N, p[0].POLAR_ORDER);
    // p[0] and p[1] are extreme points (p[1] because of general position)
    hull.push(p[0]);
    hull.push(p[1]);
    // Graham scan
    for (int i = 2; i < N; i++) {
      Point2D top = hull.pop();
      // could replace >= with > since no three collinear
      // could replace unnecessary popping/pushing with peekpeek()
      while (Point2D.ccw(hull.peek(), top, p[i]) <= 0) {
        top = hull.pop();
      }
      hull.push(top);
      hull.push(p[i]);
    }
    assert isConvex();
  }
  // return extreme points on convex hull in counterclockwise order as an Iterable
  // (no need to reverse if we want to return in clockwise order)
  public Iterable<Point2D> hull() {
    Stack<Point2D> s = new Stack<>();
    for (Point2D p : hull) s.push(p);
    return s;
  }
  // check that boundary of hull is strictly convex
  private boolean isConvex() {
    int N = hull.size();
    Point2D[] points = new Point2D[N];
    int n = 0;
    for (Point2D p : hull()) {
      points[n++] = p;
    }
    // needs to check N = 1 and N = 2 cases if not in general position
    for (int i = 0; i < N; i++) {
      if (Point2D.ccw(points[i], points[(i+1) % N], points[(i+2) % N]) <= 0) {
        return false;
      }
    }
    return true;
  }
  // test client
  public static void main(String[] args) {
    int N = StdIn.readInt();
    Point2D[] points = new Point2D[N];
    for (int i = 0; i < N; i++) {
      int x = StdIn.readInt();
      int y = StdIn.readInt();
      points[i] = new Point2D(x, y);
    }
    XGrahamScanNondegenerate graham = new XGrahamScanNondegenerate(points);
    for (Point2D p : graham.hull())
      StdOut.println(p);
  }
}
 |