HASH TABLES

» hash functions
» separate chaining
» linear probing

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2012 - March7,2012 5:02:20 AM

ST implementations: summary

worst-case cost average-case cost

(after N inserts) (after N random inserts)

. . ordered key
implementation

iteration? interface
search insert delete search hit insert delete

(unordered list) A A N/2 N N/2 no equals ()
oInary seareh Ig N N N lg N N/2 N/2 es compareTo ()
(ordered array) 9 9 y p

sequential search

BST N N N 1.38IgN 1.38IgN ? yes compareTo ()

red-black BST 21gN 21gN 21gN 1.00lgN 1.00IgN 1.00IgN yes compareTo ()

Q. Can we do better?
A. Yes, but with different access to the data.

Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3
\ 3 nign

4
Issues.

5

e Computing the hash function.
e Equality test: Method for checking whether two keys are equal.

Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3

\ 3 ny g

7

4
Issues. haSh("timeS") = 3 /

e Computing the hash function. 5
e Equality test: Method for checking whether two keys are equal.
* Collision resolution: Algorithm and data structure

to handle two keys that hash to the same array index.

Classic space-time tradeoff.

* No space limitation: trivial hash function with key as index.

* No time limitation: ftrivial collision resolution with sequential search.
e Space and time limitations: hashing (the real world).

» hash functions

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

key

!

« Efficiently computable.
* Each table index equally likely for each key.
N\ ey e Gl
still problematic in practical applications
Ex 1. Phone numbers.
e Bad: first three digits. table

index

e Better: last three digits.
Ex 2. Social Security numbers. «—— >°73 =California, 574 = Alaska

(assigned in chronological order within geographic region)
e Bad: first three digits.

* Better: last three digits.

Practical challenge. Need different approach for each key type.

Java's hash code conventions

All Java classes inherit a method hashcode (), which returns a 32-bit int.

Requiremen’r. If x.equals(y), ‘rhen (x.hashCode () == y.hashCode()).

Highly desirable. If 'x.equals(y), then (x.hashCode() !'= y.hashCode()).

X Y
i -
v v
x.hashCode () y .hashCode ()

Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

Implementing hash code: integers, booleans, and doubles

Java library implementations

public final class Integer
{

private final int value;

public int hashCode ()
{ return value; }

public final class Boolean

{

private final boolean value;

public int hashCode ()
{

if (value) return 1231;
else return 1237;

public final class Double
{

private final double value;

public int hashCode ()

{
long bits = doubleToLongBits (value) ;

return (int) (bits * (bits >>> 32));
} A

convert to |IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Implementing hash code: strings

Java library implementation

public final class String

{

private final char|[] s;

Ial 97

Ibl 98
public int hashCode () 1

C 99

{
int hash = 0;
for (int 1 = 0; i < length(); i++)
hash = s[i] + (31 * hash);

return hash;
}

ith character of s

* Horner's method to hash string of length L: L multiplies/adds.
* Equivalent to Z=s[0] - 314" + ...+ s[L-3] - 312 + s[L-2]- 31" + s[L—1]"31°,

EX. String s = "call";
int code = s.hashCode(); <«—— 3045982 =99-313+97-312+108-31"+ 108-310
=108 +31-(108+ 31 (97 + 31 -(99)))
(Horner's method)

Implementing hash code: strings

Performance optimization.
e Cache the hash value in an instance variable.
e Return cached value.

private int hash = 0;

int h = hash;
if (h '= 0) return h;

cache of hash code

return cached value

store cache of hash code

War story: String hashing in Java

String hashcode () in Java 1.1,

* For long strings: only examine 8-9 evenly spaced characters.

» Benefit: saves time in performing arithmetic.

public int hashCode ()

{

int hash =
= Math.max (1, length() / 8);

= 0; i < length(); i += skip)
hash = s[i] + (37 * hash);

int skip
for (int

i

0,

return hash;

* Downside: great potential for bad collision patterns.

http://www.
http://www.
http://www.
http://www.

t t

cs
Ccs
Ccs

cCs

t

.princeton.
.princeton.
.princeton.

.princeton.

t

edu/introcs/13loop/Hello
edu/introcs/13loop/Hello

edu/introcs/13loop/Hello.
edu/introcs/12type/index.

t t t t

.java
.class
html
html

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>

{

private final String who;
private final Date when;
private final double amount;

public Transaction (String who, Date when, double amount)
{ /* as before */ }

public boolean equals (Object y)
{ /* as before */ }

public int hashCode ()

{ /
int hash = 17;

hash

nonzero constant

&
Y

31l*hash + who.hashCode() ;
hash 31l*hash + when.hashCode() ;

A

hash = 31*hash + ((Double) amount) .hashCode() ;
return hash;

typically a small prime

for reference types,
use hashCode ()

for primitive types,
use hashCode ()
of wrapper type

Hash code design

"Standard" recipe for user-defined types.
« Combine each significant field using the 31x +y rule.

If field is a primitive type, use wrapper type hashCode ().
If field is null, return 0.

If field is a reference type, use hashCode (). <«—— applies rule recursively

If fleld IS an array, Gpply to each enTr'y. <«<—— Or use Arrays.deepHashCode ()

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Keys are bitstring; "universal" hash functions exisft.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Modular hashing

Hash code. An int between -231 and 231-1.

Hash function. An int between o and M-1 (for use as array index).

AN

typically a prime or power of 2

private int hash (Key key)
{ return key.hashCode() % M; }

bug

private int hash (Key key)
{ return Math.abs (key.hashCode()) %$ M; }

1-in-a-billion bug

\ hashCode() of "polygenelubricants” is -23!

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

correct

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Birthday problem. Expect two balls in the same bin after ~+/x M/ 2 tosses.
Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses.

Load balancing. After M tosses, expect most loaded bin has
® (log M /log log M) balls.

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's string data uniformly distribute the keys of Tale of Two Cities

» separate chaining

Collisions

Collision. Two distinct keys hashing to same index.
 Birthday problem = can't avoid collisions unless you have
a ridiculous (quadratic) amount of memory.

 Coupon collector + load balancing = collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("it") = 3

\ 3 i g

7

4
hash("times") = 3 /////W

Separate chaining symbol table

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
* Hash: map key to integer i between 0 and M - 1.
e Insert: put at front of i chain (if not already there).

» Search: need to search only i" chain.

key hash

S

m r ©WwW < » X m T O XR”™ > m

2

o w w »~ O N O b~ A A~ O O

A W N R O

/7 IAN

st[]

null

Separate chaining ST: Java implementation

public class SeparateChainingHashST<Key, Value>

{
private int M = 97; // number of chains
private Node[] st = new Node[M]; // array of chains

private static class Node

{

private Object key; <«——— no generic array creation

private Object val; <«—— (declare key and value of type Object)

private Node next;

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

X

public Value get (Key key) ({
int i = hash (key) ;
for (Node x = st[i]; x '= null; x = x.next)
if (key.equals(x.key)) return (Value) x.val;
return null;

—

array doubling
and halving
code omitted

20

Separate chaining ST: Java implementation

public void put (Key key, Value val) {
int i = hash(key);

for (Node x = st[i]; x !'= null; x

if (key.equals(x.key)) { x.val

st[i] = new Node (key, val, st[i]);

= x.next)
= val; return;

}

21

Analysis of separate chaining

Proposition. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/ M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

_—(10,.12511...)

A —.125

| | | | -0
0 10 20 30

Binomial distribution (N = 104, M = 103, a = 10)

equals () and hashCode ()

Consequence. Number of probes for search/insert is proportional to N/ M.
* M too large = too many empty chains. T

. M times faster than
* M too small = chains too long. sequential search

e Typical choice: M~ N/5 = constant-time ops.

22

ST implementations: summary

worst-case cost average case
: : (after N inserts) (after N random inserts) ordered key
implementation . . :
iteration? interface
search insert delete search hit insert delete
sequential search
N N/2 1
(unordered list) N N N Ny / no equals ()
SHIRELR7 SEEELD lg N N N lg N N/2 N/2 es compareTo ()
(ordered array) 9 9 Y =
BST N N N 1.38IgN 1.38IgN ? yes compareTo ()
red-black tree 21gN 21gN 21gN 1.00lgN 1.00IlgN 1.00IgN yes compareTo ()
separate chaining IgN* Ilg N * Ig N * 3-5* 3-5* 3-5* no equals ()

* under uniform hashing assumption

23

» linear probing

24

Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

st[0] jocularly
st[1] null
st[2] listen
st[3] suburban
. null
st[30000] browsing

linear probing (M = 30001, N =15000)

Linear probing demo

Hash. Map key to integer i between 0 and M - 1.
Insert. Put at table index i if free; if not try i+ 1,i+2, etc.
Search. Search table index i; if occupied but no match, try i+ 1,i+2, etc.

Note. Array size M must be greater than N.

st[] P M A C S H L E R

16

15

26

Linear probing ST implementation

public class LinearProbingHashST<Key, Value>

{
private int M = 30001;

private Value[] wvals = (Value[]) new Object[M];

A

private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* as before */ '}

public void put (Key key, Value val)
{

int i;
for (i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (keys[i] .equals (key))
break;
keys[i] = key;
vals[i] = val;

public Value get (Key key)
{
for (int i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (key.equals (keys[i]))
return vals[i];
return null;

array doubling
and halving
code omitted

27

Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

A

OO0 O | DooOEn 0 | /&

28

Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i+ 1,i + 2, etc.

Q. What is mean displacement of a car?

displacement = 3

et 1
D) ()))) &) L))

Half-full. With M /2 cars, mean displacement is ~ 3 /2.
Full. With M cars, mean displacement is ~ \/mt M/ 8

29

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average number of
probes in a linear probing hash table of size M that contains N = o M keys is:

() el)

search hit search miss / insert

Pf.

- NOTES On "OPHU" ADDRESSIRG. " "D, Knwbh. 7/22/63
0 L. Istroducvion and Hefinitions. Dpes mddressing 1s a widely-used technique
- for keeping symbol tables,” The nethod was first used in 1954 by Samuel, Awmdahi,
and Rochme in an assembly program “or the IHM T0l. An extensive discussion of
the method was given by Peterson in 1957 {1], snd frequent references have been
made te it ever since (&.g. Scnay and Spruth {2), Iversen [3}). However, the
timing characterdstics have apparently never bean axectly established, and indeed
the anthor has heard reports of seversl reputable mathematieciang whe falled %0
find the solution after some trial. Tharefore it is the purpsse of this note to
indicste one way by which the soluuion cen be cbbained,

Parameters.
* M too large = too many empty array entries.

* M too small = search time blows up.

probes for search hit is about 3/2
probes for search miss is about 5/2

e Typical choice: o = N/ M ~ Y. «——

30

ST implementations: summary

worst-case cost average case
: : (after N inserts) (after N random inserts) R e
implementation : . :
iteration? interface
search insert delete search hit insert delete
sequential search
(unordered list N N N N/2 N N/2 no equals ()
binary search Ig N N N Ig N N/2 N/2 es mpareTo ()
(ordered array) 9 9 Y compareso
BST N N N 1.381g N 1.381g N ? yes compareTo ()
red-black tree 21gN 21gN 21gN 1.00lgN 1.00IgN 1.00IgN yes compareTo ()
separate chaining IgN* Ilg N~ Ig N~ 3-5* 3-5* 3-5* no equals ()
linear probing Ig N * Ig N * Ig N * 3-5* 3-5* 3-5* no equals ()

* under uniform hashing assumption

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Buc ker
o
e malicious adversary learns your hash function
2] (e.g., by reading Java API) and causes a big pile-up
3| in single slot that grinds performance to a halt
s |l P BB P B
[

Real-world exploits. [Crosby-Wallach 2003]

* Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

» Per| 5.8.0: insert carefully chosen strings into associative array.

e Linux 2.4.20 kernel: save files with carefully chosen names.

32

Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.

Solution. The base 31 hash code is part of Java's string APL.

key

"Aa "

" BB "

hashCode ()

2112

2112

"AaAaAaBB"

"AaRaBBAa"

"AaAaBBBB"

"AaBBAaAa"

"AaBBAaBB"

"AaBBBBAa"

"AaBBBBBB"

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

"BBAaAaAa"

"BBAaAaBB"

"BBAaBBAa"

"BBAaBBBB"

"BBBBAaAa"

"BBBBAaBB"

"BBBBBBAa"

"BBBBBBBB"

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

2N strings of length 2N that hash to same value!

33

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired value

(or two keys that hash to same value).

Ex. MD4, MD5, SHA-O, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160,

N _
\/

known to be insecure

String password = args[0];
MessageDigest shal = MessageDigest.getInstance ("SHAl") ;

byte[] bytes = shal.digest (password) ;

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

34

Separate chaining vs. linear probing

Separate chaining.

* Easier to implement delete.

* Performance degrades gracefully.

e Clustering less sensitive to poorly-designed hash function.

Linear probing.
* Less wasted space.
e Better cache performance.

Q. How to delete?
Q. How tfo resize?

35

Hashing: variations on the theme
Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)
* Hash fo two positions, insert key in shorter of the two chains.
» Reduces expected length of the longest chain to log log M.

Double hashing. (linear-probing variant)

 Use linear probing, but skip a variable amount, not just 1 each time.
» Effectively eliminates clustering.

* Can allow table to become nearly full.

* More difficult to implement delete.

Cuckoo hashing. (linear-probing variant)

* Hash key to two positions; insert key into either position; if occupied,
reinsert displaced key into its alternative position (and recur).

» Constant worst case time for search.

36

Hash tables vs. balanced search trees

Hash tables.

e Simpler to code.

* No effective alternative for unordered keys.

* Faster for simple keys (a few arithmetic ops versus log N compares).
e Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
» Stronger performance guarantee.
e Support for ordered ST operations.

e Easier to implemen‘r compareTo () COI"PZCTIY than equals () and hashCode ().

Java system includes both.
e Red-black BSTs: java.util.TreeMap, java.util.TreeSet.

 Hash tables: java.util.HashMap, java.util.IdentityHashMap.

37

