2.4 Priority Queues

- API
- elementary implementations
- binary heaps
- heapsort
- event-driven simulation

API

> elementanyimelementations binary heaps
> , heapsort
> , event-drive

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.
Priority queue. Remove the largest (or smallest) item.

operation	argument	return value
insert insert insert remove max insert insert insert	P	
remove max	Q	
insert insert insert	X	Q
remove max	E	X
		P

Priority queue API

Requirement. Generic items are Comparable.

Priority queue applications

- Event-driven simulation.
- Numerical computation.
- Data compression.
- Graph searching.
- Computational number theory.
- Artificial intelligence.
- Statistics.
- Operating systems.
- Discrete optimization.
- Spam filtering.
[customers in a line, colliding particles]
[reducing roundoff error]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[A* search]
[maintain largest M values in a sequence]
[load balancing, interrupt handling]
[bin packing, scheduling]
[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

- Fraud detection: isolate \$\$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.

```
% more tinyBatch.txt
Turing 6/17/1990 644.08
vonNeumann 3/26/2002 4121.85
Dijkstra 8/22/2007 2678.40
vonNeumann 1/11/1999 4409.74
Dijkstra 11/18/1995 837.42
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20
```

	_ java TopM			5 tinyBatch.txt
Thompson	$2 / 27 / 2000$	4747.08		
vonNeumann	$2 / 12 / 1994$	4732.35		
vonNeumann	$1 / 11 / 1999$	4409.74		
Hoare	$8 / 18 / 1992$	4381.21		
vonNeumann	$3 / 26 / 2002$	4121.85		

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

order of growth of finding the largest M in a stream of N items

implementation	time	space
sort	$\mathrm{N} \log \mathrm{N}$	N
elementary PQ	M N	M
binary heap	$\mathrm{N} \log \mathrm{M}$	M
best in theory	N	M

, elementary implementations

Priority queue: unordered and ordered array implementation

operation	argument	return value	size		$\begin{aligned} & \text { cont } \\ & \text { unor } \end{aligned}$	ents dered					cont (order	ents ered)				
insert	P		1	P						P						
insert	Q		2	P	Q					P	Q					
insert	E		3	P	Q	E				E	P	Q				
remove max		Q	2	P	E					E	P					
insert	X		3		E	X				E	P	X				
insert	A		4		E	X	A			A	E	P	X			
insert	M		5	P	E	X	A	M		A	E	M	P	X		
remove max		X	4	P	E	M	A			A	E	M	P			
insert	P		5	P	E	M	A	P		A	E	M	P	P		
insert	L		6	P	E	M	A	P	L	A	E	L	M	P	P	
insert	E		7	P	E	M	A	P	L E	A	E	E	L	M	P	P
remove max		P	6	E	M	A	P	L	E	A	E	E	L	M	P	

Priority queue: unordered array implementation

```
public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq; // pq[i] = ith element on pq
    private int N; // number of elements on pq
    public UnorderedMaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity]; }
    public boolean isEmpty()
    { return N == 0; }
    public void insert(Key x)
    { pq[N++] = x; }
    public Key delMax()
    {
        int max = 0;
        for (int i = 1; i < N; i++)
            if (less(max, i)) max = i;
        exch(max, N-1);
        return pq[--N];
    }
}
null out entry
to prevent loitering
```


Priority queue elementary implementations

Challenge. Implement all operations efficiently.
order-of-growth of running time for priority queue with \mathbf{N} items

implementation	insert	del max	max
unordered array	1	N	N
ordered array	N	1	1
goal	$\log N$	$\log N$	$\log N$

Binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is $\lfloor\lg N\rfloor$.
Pf. Height only increases when N is a power of 2 .

A complete binary tree in nature

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.

- Take nodes in level order.
- No explicit links needed!

Binary heap properties

Proposition. Largest key is a [1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $k / 2$.
- Children of node at k are at 2 k and $2 \mathrm{k}+1$.

Promotion in a heap

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- Repeat until heap order restored.

```
private void swim(int k)
{
    while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k = k/2;
    }
}
    parent of node at k is at k/2
```

Peter principle. Node promoted to level of incompetence.

Insertion in a heap

Insert. Add node at end, then swim it up. Cost. At most $1+\lg N$ compares.

```
public void insert(Key x)
{
    pq[++N] = x;
    swim(N);
}
```


Scenario. Parent's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:

- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```
private void sink(int k)
{
    while (2*k}<=N)\quad\mathrm{ at }\textrm{k}\mathrm{ are 2k and 2k+1
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```


Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down. Cost. At most $2 \lg N$ compares.

```
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = null;
    return max;
}
```


Binary heap demo

Binary heap: Java implementation

```
public class MaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq;
    private int N;
    public MaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity+1]; }
    public boolean isEmpty()
    { return N == 0; }
    public void insert(Key key)
    { /* see previous code */ }
    public Key delMax()
    { /* see previous code */ }
    private void swim(int k)
    { /* see previous code */ }
    private void sink(int k)
    { /* see previous code */ }
    private boolean less(int i, int j)
    { return pq[i].compareTo(pq[j] < 0; }
    private void exch(int i, int j)
    { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
```


Priority queues implementation cost summary

order-of-growth of running time for priority queue with \mathbf{N} items

implementation	insert	del max	\max
unordered array	1	N	N
ordered array	N	1	1
binary heap	$\log \mathrm{N}$	$\log \mathrm{N}$	1
d-ary heap	$\log _{\mathrm{d}} \mathrm{N}$	$\mathrm{d} \log _{\mathrm{d}} \mathrm{N}$	1
Fibonacci	1	$\log N+^{1}$	1
impossible	1	1	1

\dagger amortized

Binary heap considerations

Immutability of keys.

- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
leads to $\log N$

- Replace less() with greater().
- Implement greater ().

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.

Immutability: implementing in Java

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D. Mutable. StringBuilder, Stack, Counter, Java array.

Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.

- Simplifies debugging.
- Safer in presence of hostile code.
- Simplifies concurrent programming.

- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.
" Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible.

- Joshua Bloch (Java architect)

elementary implementations

heapsort

Heapsort

Basic plan for in-place sort.

- Create max-heap with all N keys.
- Repeatedly remove the maximum key.

Heapsort demo

Heapsort: heap construction

First pass. Build heap using bottom-up method.

```
for (int k = N/2; k >= 1; k--)
    sink(a, k,N);
```


Heapsort: sortdown

Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```
while (N > 1)
```

while (N > 1)
{
{
exch(a, 1, N--);
exch(a, 1, N--);
sink(a, 1, N);
sink(a, 1, N);
}

```
}
```


Heapsort: Java implementation

```
public class Heap
{
    public static void sort(Comparable[] pq)
    {
        int N = pq.length;
        for (int k = N/2; k >= 1; k--)
            sink(pq, k, N);
        while (N > 1)
        {
            exch(pq, 1, N);
            sink(pq, 1, --N);
        }
    }
    private static void sink(Comparable[] pq, int k, int N)
    { /* as before */ }
    private static boolean less(Comparable[] pq, int i, int j)
    { /* as before */ }
    private static void exch(Comparable[] pq, int i, int j)
    { /* as before */
                                    but convert from
                                    1-based indexing to
                        0-base indexing
```

a[i]													
N	k	0	1	2	3	4	5	6	7	8	9	10	11
initia	alues		S	0	R	T	E	X	A	M	P	L	E
11	5		S	0	R	T	L	X	A	M	P	E	E
11	4		S	0	R	T	L	X	A	M	P	E	E
11	3		S	0	X	T	L	R	A	M	P	E	E
11	2		S	T	X	P	L	R	A	M	0	E	E
11	1		X	T	S	P	L	R	A	M	0	E	E
heap-ordered			X	T	S	P	L	R	A	M	0	E	E
10	1		T	P	S	0	L	R	A	M	E	E	X
9	1		S	P	R	0	L	E	A	M	E	T	X
8	1		R	P	E	0	L	E	A	M	S	T	X
7	1		P	0	E	M	L	E	A	R	S	T	X
6	1		0	M	E	A	L	E	P	R	S	T	X
5	1		M	L	E	A	E	0	P	R	S	T	X
4	1		L	E	E	A	M	0	P	R	S	T	X
3	1		E	A	E	L	M	0	P	R	S		X
2	1		E	A	E	L	M	0	P	R	S	T	X
1	1		A	E	E	L	M	0	P	R	S	T	X
	result		A	E	E	L	M	0	P	R	S	T	X

Heapsort trace (array contents just after each sink)

50 random items

- algorithm position
in order
not in order
http://www.sorting-algorithms.com/heap-sort

Heapsort: mathematical analysis

Proposition. Heap construction uses fewer than $2 N$ compares and exchanges.
Proposition. Heapsort uses at most $2 N \lg N$ compares and exchanges.

Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space.
\longleftarrow in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case.
$\longleftarrow \quad \mathrm{N} \log \mathrm{N}$ worst-case quicksort possible,
not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort's.
- Makes poor use of cache memory.
- Not stable.

Sorting algorithms: summary

	inplace?	stable?	worst	average	best	remarks
selection	x		$N^{2} / 2$	$N^{2} / 2$	$N^{2} / 2$	N exchanges
insertion	x	x	N ${ }^{2} / 2$	N $2 / 4$	N	use for small N or partially ordered
shell	x		?	?	N	tight code, subquadratic
quick	x		N $2 / 2$	$2 N \ln N$	$N \lg N$	$N \log N$ probabilistic guarantee fastest in practice
3-way quick	x		N ${ }^{2} / 2$	$2 N \ln N$	N	improves quicksort in presence of duplicate keys
merge		x	$N \lg N$	$N \lg N$	$N \lg N$	$N \log \mathrm{~N}$ guarantee, stable
heap	x		$2 N \lg N$	$2 N \lg N$	$N \lg N$	$N \log N$ guarantee, in-place
???	x	x	$N \lg N$	$N \lg N$	$N \lg N$	holy sorting grail

- event-driven simulation

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard disc model.

- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.

- Maxwell-Boltzmann: distribution of speeds as a function of temperature.
- Einstein: explain Brownian motion of pollen grains.

Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

```
public class BouncingBalls
{
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        Ball balls[] = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while(true)
            {
            StdDraw.clear();
            for (int i = 0; i < N; i++)
            {
                balls[i].move(0.5);
                balls[i].draw();
            }
            StdDraw.show(50);
        }
    }
                            main simulation loop
```

\% java BouncingBalls 100

Warmup: bouncing balls

```
public class Ball
{
    private double rx, ry; // position
    private double vx, vy; // velocity
    private final double radius; // radius
    public Ball()
    { /* initialize position and velocity */ } check for collision with walls
    public void move(double dt)
    {
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }
    public void draw()
    { StdDraw.filledCircle(rx, ry, radius); }
}
```

Missing. Check for balls colliding with each other.

- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
- Discretize time in quanta of size dt.
- Update the position of each particle after every $d t$ units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

Time-driven simulation

Main drawbacks.

- $\sim N^{2} / 2$ overlap checks per time quantum.
- Simulation is too slow if $d t$ is very small.
- May miss collisions if $d t$ is too large.
(if colliding particles fail to overlap when we are looking)

Event-driven simulation

Change state only when something happens.

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

Particle-wall collision

Collision prediction and resolution.

- Particle of radius s at position ($r x, r y$).
- Particle moving in unit box with velocity ($v x, v y$).
- Will it collide with a vertical wall? If so, when?

Particle-particle collision prediction

Collision prediction.

- Particle i : radius s_{i}, position ($r x_{i}, r y_{i}$), velocity ($v x_{i}, v y_{i}$).
- Particle j : radius s_{j}, position ($r x_{j}, r y_{j}$), velocity ($v x_{j}, v y_{j}$).
- Will particles i and j collide? If so, when?

Particle-particle collision prediction

Collision prediction.

- Particle i : radius s_{i}, position ($r x_{i}, r y_{i}$), velocity ($v x_{i}, v y_{i}$).
- Particle j : radius s_{j}, position ($r x_{j}, r y_{j}$), velocity ($v x_{j}, v y_{j}$).
- Will particles i and j collide? If so, when?

$$
\begin{aligned}
& \Delta t= \begin{cases}\infty & \text { if } \Delta v \cdot \Delta r \geq 0 \\
\infty & \text { if } d<0 \\
-\frac{\Delta v \cdot \Delta r+\sqrt{d}}{\Delta v \cdot \Delta v} & \text { otherwise }\end{cases} \\
& d=(\Delta v \cdot \Delta r)^{2}-(\Delta v \cdot \Delta v)\left(\Delta r \cdot \Delta r-\sigma^{2}\right) \quad \sigma=\sigma_{i}+\sigma_{j}
\end{aligned}
$$

$$
\begin{array}{ll}
\Delta v=(\Delta v x, \Delta v y)=\left(v x_{i}-v x_{j}, v y_{i}-v y_{j}\right) & \Delta v \cdot \Delta v=(\Delta v x)^{2}+(\Delta v y)^{2} \\
\Delta r=(\Delta r x, \Delta r y)=\left(r x_{i}-r x_{j}, r y_{i}-r y_{j}\right) & \Delta r \cdot \Delta r=(\Delta r x)^{2}+(\Delta r y)^{2} \\
& \Delta v \cdot \Delta r=(\Delta v x)(\Delta r x)+(\Delta v y)(\Delta r y)
\end{array}
$$

Important note: This is high-school physics, so we won't be testing you on it!

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

$$
\begin{aligned}
v x_{i}^{\prime} & =v x_{i}+J x / m_{i} \\
v y_{i}^{\prime} & =v y_{i}+J y / m_{i} \\
v x_{j}^{\prime} & =v x_{j}-J x / m_{j} \\
v y_{j}^{\prime} & =v y_{j}-J y / m_{j}
\end{aligned}
$$

Newton's second law (momentum form)

$$
\begin{aligned}
& J x=\frac{J \Delta r x}{\sigma}, J y=\frac{J \Delta r y}{\sigma}, J=\frac{2 m_{i} m_{j}(\Delta v \cdot \Delta r)}{\sigma\left(m_{i}+m_{j}\right)} \\
& \text { impulse due to normal force }
\end{aligned}
$$

Particle data type skeleton

```
public class Particle
{
    private double rx, ry; // position
    private double vx, vy; // velocity
    private final double radius; // radius
    private final double mass; // mass
    private int count; // number of collisions
    public Particle(...) { }
    public void move(double dt) { }
    public void draw() { }
    public double timeToHit(Particle that) { }
    public double timeToHitVerticalWall() { }
    public double timeToHitHorizontalWall() { }
    public void bounceOff(Particle that) { }
    public void bounceOffVerticalWall() { }
    public void bounceOffHorizontalWall() { }
}
```

predict collision with particle or wall
resolve collision with particle or wall

Particle-particle collision and resolution implementation

```
public double timeToHit(Particle that)
{
    if (this == that) return INFINITY;
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if( dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double sigma = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * fardr - sigma*sigma);
    if (d < O) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
}
```

public void bounceOff(Particle that)
\{
double $d x=$ that.rx - this.rx, $d y=t h a t . r y ~-~ t h i s . r y ; ~$
double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
double dvdr $=d x * d v x+d y * d v y ;$
double dist $=$ this.radius + that.radius;
double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
double Jx = J * dx / dist;
double Jy = J * dy / dist;
this.vx += Jx / this.mass;
this.vy $+=$ Jy / this.mass;
that.vx -= Jx / that.mass;
that.vy -= Jy / that.mass;
this.count++;
that. count++; Important note: This is high-school physics, so we won't be testing you on it!
\}

Collision system: event-driven simulation main loop

Initialization.

- Fill $P Q$ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.
two particles on a collision course

third particle interferes: no collision

An invalidated event

Main loop.

- Delete the impending event from PQ (min priority $=t$).
- If the event has been invalidated, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

Event data type

Conventions.

- Neither particle null \Rightarrow particle-particle collision.
- One particle null $\quad \Rightarrow$ particle-wall collision.
- Both particles null $\quad \Rightarrow$ redraw event.

Collision system implementation: skeleton

```
public class CollisionSystem
{
    private MinPQ<Event> pq; // the priority queue
    private double t = 0.0; // simulation clock time
    private Particle[] particles; // the array of particles
    public CollisionSystem(Particle[] particles) { }
    private void predict(Particle a)
    {
        if (a == null) return;
        for (int i = 0; i < N; i++)
        {
            double dt = a.timeToHit(particles[i]);
            pq.insert(new Event(t + dt, a, particles[i]));
        }
        pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
        pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
}
    private void redraw() { }
    public void simulate() { /* see next slide */ }
}
```

Collision system implementation: main event-driven simulation loop

```
public void simulate()
{
    pq = new MinPQ<Event>();
    for(int i = 0; i < N; i++) predict(particles[i]);
    pq.insert(new Event(0, null, null));
    while(!pq.isEmpty())
    {
            Event event = pq.delMin();
            if(!event.isValid()) continue;
            Particle a = event.a;
            Particle b = event.b;
            for(int i = 0; i < N; i++)
            particles[i].move(event.time - t);
            t = event.time;
            if (a != null && b != null) a.bounceOff(b);
            else if (a != null && b == null) a.bounceOffVerticalWall()
            else if (a == null && b != null) b.bounceOffHorizontalWall();
            else if (a == null && b == null) redraw();
            predict(a);
            predict(b);
    }
}
```

initialize PQ with collision events and redraw event
get next event
update positions and time
process event
predict new events based on changes

Particle collision simulation example 2

```
% java CollisionSystem < billiards.txt
```



```
% java CollisionSystem < brownian.txt
```


Particle collision simulation example 4
\% java CollisionSystem < diffusion.txt

