4.2 DIRECTED GRAPHS

- digraph API
- digraph search
- ▶ topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hypernym relationship.

The McChrystal Afghanistan PowerPoint slide

Digraph applications

digraph	vertex	directed edge	
transportation	street intersection	one-way street	
web	web page	hyperlink	
food web	species	predator-prey relationship	
WordNet	synset	hypernym	
scheduling	task	precedence constraint	
financial	bank	transaction	
cell phone	person	placed call	
infectious disease	person	infection	
game	board position	legal move	
citation	journal article	citation	
object graph	object	pointer	
inheritance hierarchy	class	inherits from	
control flow	code block	jump	

Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

digraph API

- digraph search
- ▶ topological sort
- strong components

Digraph API

```
public class Digraph
                       Digraph(int V)
                                                          create an empty digraph with V vertices
                       Digraph(In in)
                                                            create a digraph from input stream
                void addEdge(int v, int w)
                                                                 add a directed edge v \rightarrow w
Iterable<Integer> adj(int v)
                                                                 vertices pointing from v
                 int V()
                                                                   number of vertices
                 int E()
                                                                    number of edges
            Digraph reverse()
                                                                  reverse of this digraph
             String toString()
                                                                  string representation
```

Digraph API


```
% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
:
11->4
11->12
12-9
```

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
  for (int w : G.adj(v))
    StdOut.println(v + "->" + w);
read digraph from input stream

print out each edge (once)
```

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Adjacency-lists graph representation: Java implementation

```
public class Graph
   private final int V;
                                                     adjacency lists
   private final Bag<Integer>[] adj;
   public Graph(int V)
                                                     create empty graph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
                                                     add edge v-w
   public void addEdge(int v, int w)
      adj[v].add(w);
      adj[w].add(v);
   public Iterable<Integer> adj(int v)
                                                     iterator for vertices
                                                     adjacent to v
   { return adj[v]; }
```

Adjacency-lists digraph representation: Java implementation

```
public class Digraph
   private final int V;
                                                     adjacency lists
   private final Bag<Integer>[] adj;
   public Digraph(int V)
                                                     create empty digraph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
                                                     add edge v→w
   public void addEdge(int v, int w)
      adj[v].add(w);
   public Iterable<Integer> adj(int v)
                                                     iterator for vertices
                                                      pointing from v
   { return adj[v]; }
```

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	E	1	E	E
adjacency matrix	V ²	1 †	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

- digraph API
- digraph search
- topological sort
- strong components

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w pointing from v.

Depth-first search demo

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```
public class DepthFirstSearch
                                                          true if path to s
   private boolean[] marked;
   public DepthFirstSearch(Graph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices connected to s
      dfs(G, s);
   private void dfs(Graph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                           vertex is connected to s
      return marked[v]; }
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [Substitute Digraph for Graph]

```
public class DirectedDFS
                                                           true if path from s
   private boolean[] marked;
   public DirectedDFS(Digraph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices reachable from s
      dfs(G, s);
   private void dfs(Digraph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                           vertex is reachable from s
      return marked[v]; }
```

Reachability application: program control-flow analysis

Every program is a digraph.

• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - · Path finding.
 - Topological sort.
 - Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges).

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. Shortest path from $\{1, 7, 10\}$ to 5 is $7 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 5$.

- Q. How to implement multi-source constructor?
- A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

BFS.

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
                                                               queue of websites to crawl
                                                               set of discovered websites
SET<String> discovered = new SET<String>();
String root = "http://www.princeton.edu";
queue.enqueue(root);
                                                               start crawling from root website
discovered.add(root);
while (!queue.isEmpty())
   String v = queue.dequeue();
                                                                read in raw html from next
   StdOut.println(v);
                                                                website in queue
   In in = new In(v);
   String input = in.readAll();
   String regexp = "http://(\\w+\\.)*(\\w+)";
                                                               use regular expression to find all URLs
   Pattern pattern = Pattern.compile(regexp); <</pre>
                                                               in website of form http://xxx.yyy.zzz
   Matcher matcher = pattern.matcher(input);
                                                               [crude pattern misses relative URLs]
   while (matcher.find())
       String w = matcher.group();
       if (!discovered.contains(w))
                                                               if undiscovered, mark it as discovered
          discovered.add(w);
                                                               and put on queue
          queue.enqueue(w);
```

- digraph API
- ▶ digraph search
- ▶ topological sort
- strong components

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing

tasks

6. Advanced Programming

precedence constraint graph

feasible schedule

34

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?

topological order

Topological sort demo

Depth-first search order

```
public class DepthFirstOrder
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder(Digraph G)
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
                                                      returns all vertices in
   public Iterable<Integer> reversePost()
                                                      "reverse DFS postorder"
   { return reversePost; }
```

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When afs(v) is called:

- Case 1: afs(w) has already been called and returned. Thus, w was done before v.
- Case 2: afs(w) has not yet been called.
 afs(w) will get called directly or indirectly by afs(v) and will finish before afs(v).
 Thus, w will be done before v.
- Case 3: afs (w) has already been called, but has not yet returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
00.	0000 1100	LOUIS COLOUIS DECICAL	0.47

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
```

```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

- digraph API
- digraph search
- ▶ topological sort
- strong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is a directed path from v to w and a directed path from w to v

connected component id (easy to compute with DFS)

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

constant-time client connectivity query

strongly-connected component id (how to compute?)

```
public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- how to compute?
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph G and its strong components

kernel DAG of G (in reverse topological order)

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on G^R to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph GR

check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12

reverse postorder for use in second dfs() 1 0 2 4 5 3 11 9 12 10 6 7 8

```
dfs(0)
  dfs(6)
    dfs(8)
    check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
            check 11
            dfs(10)
              check 9
            10 done
          12 done
          check 7
          check 6
```

. . .

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on G^R to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.

Proposition. Second DFS gives strong components. (!!)

Connected components in an undirected graph (with DFS)

```
public class CC
  private boolean marked[];
  private int[] id;
  private int count;
  public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v])
            dfs(G, v);
            count++;
  private void dfs(Graph G, int v)
     marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
  public boolean connected(int v, int w)
   { return id[v] == id[w]; }
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSCC
  private boolean marked[];
  private int[] id;
  private int count;
   public KosarajuSCC(Digraph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePost())
         if (!marked[v])
            dfs(G, v);
            count++;
  private void dfs(Digraph G, int v)
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
  public boolean stronglyConnected(int v, int w)
   { return id[v] == id[w]; }
```

Digraph-processing summary: algorithms of the day

