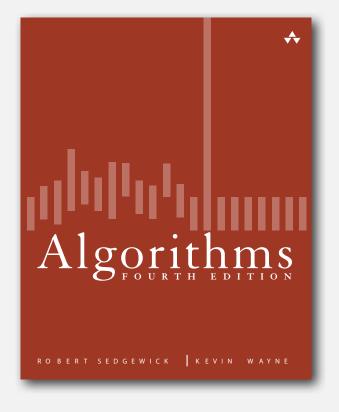
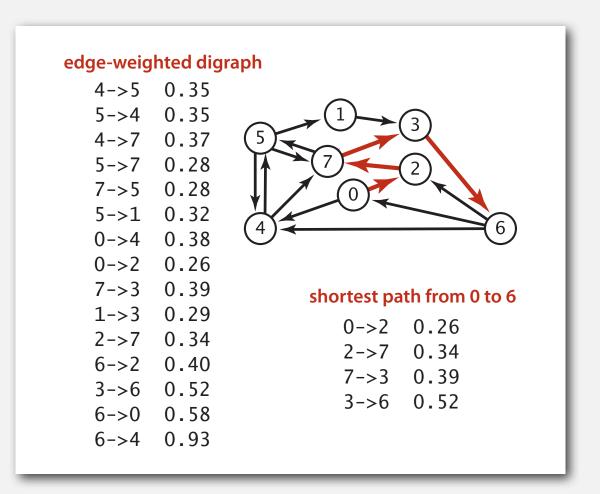
4.4 SHORTEST PATHS



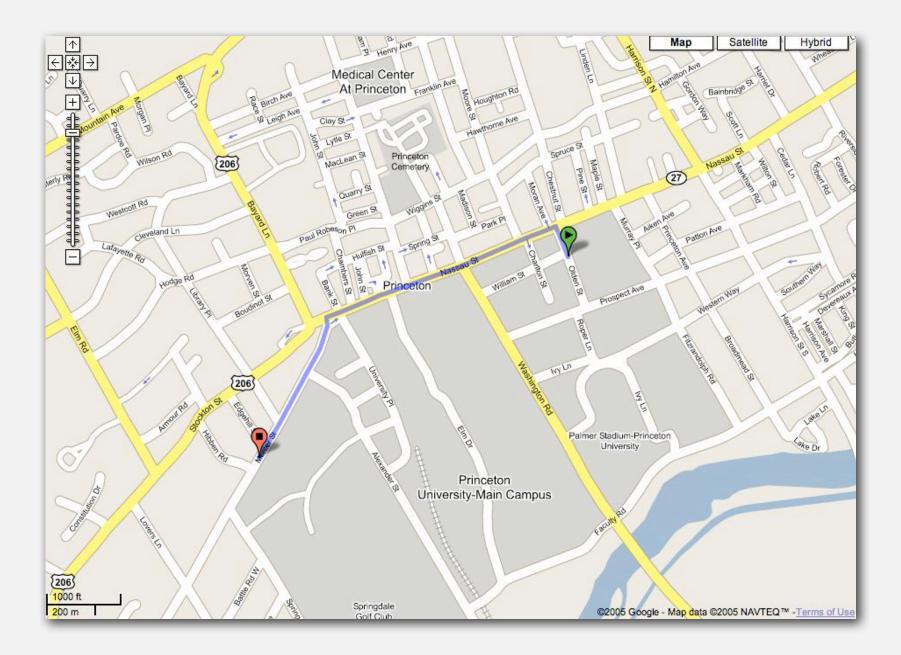
- edge-weighted digraph API
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Shortest paths in a weighted digraph

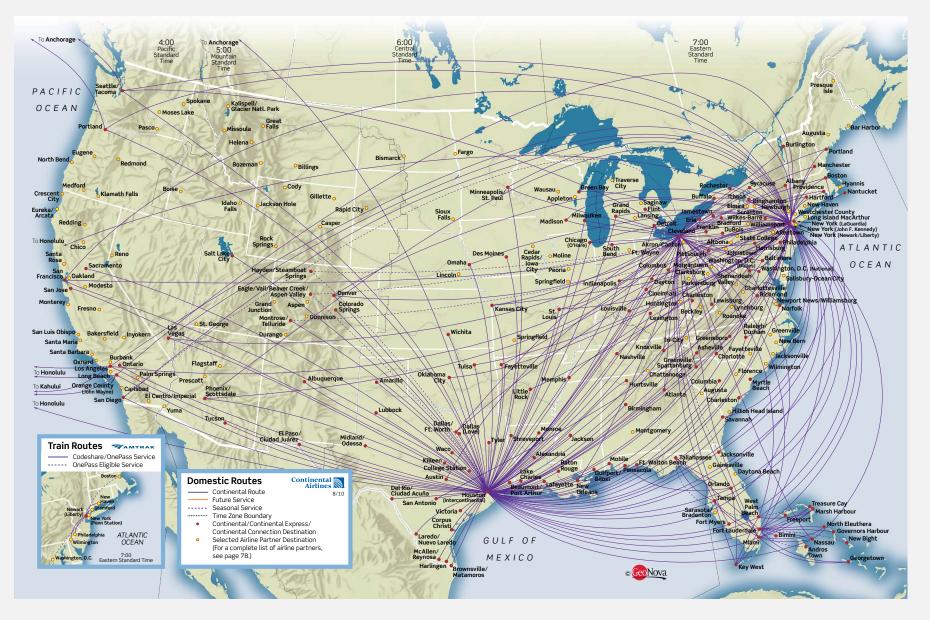
Given an edge-weighted digraph, find the shortest (directed) path from s to t.



Google maps



Continental U.S. routes (August 2010)



http://www.continental.com/web/en-US/content/travel/routes

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

- Source-sink: from one vertex to another.
- Single source: from one vertex to every other.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Arbitrary weights.
- Euclidean weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. There exists a shortest path from s to each vertex v.

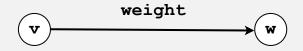
edge-weighted digraph API

shortest-paths properties
 Dijkstra's algorithm
 edge-weighted DAGs
 negative weights

Weighted directed edge API

public class DirectedEdge

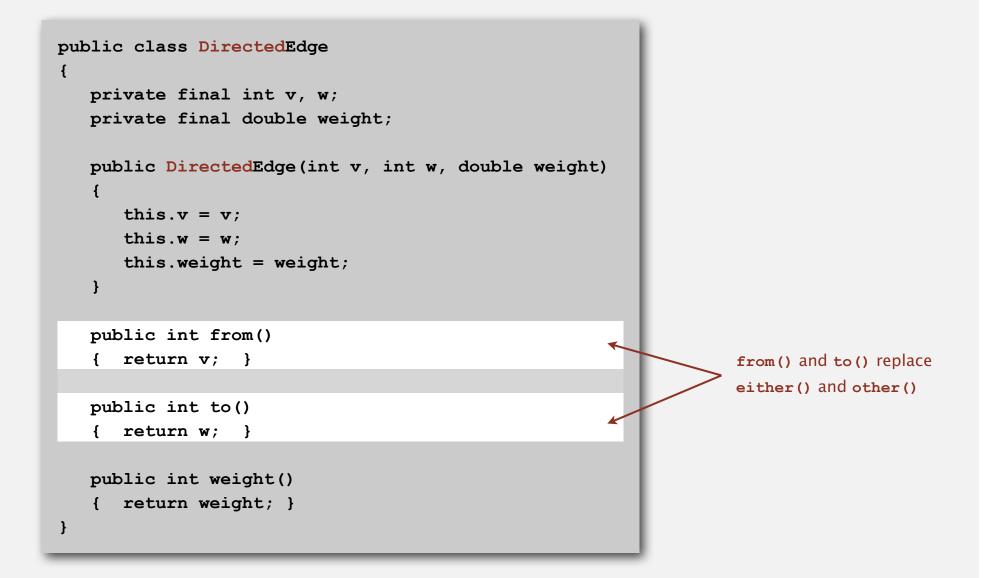
	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation



Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

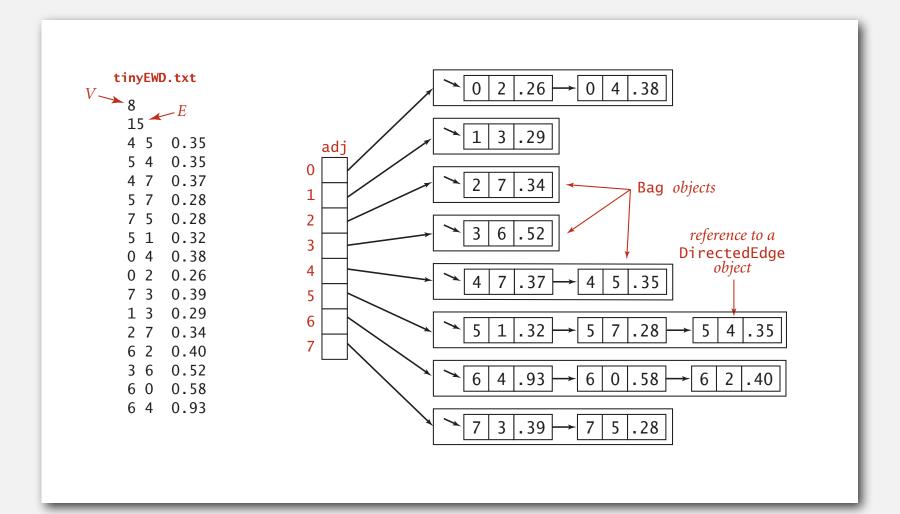


Edge-weighted digraph API

public class	EdgeWeightedDigraph	
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream
void	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges pointing from v
int	V()	number of vertices
int	E()	number of edges
Iterable <directededge></directededge>	edges ()	all edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation



Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeweightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
Ł
   private final int V;
   private final Bag<Edge>[] adj;
   public EdgeWeightedDigraph(int V)
   {
      this.V = V;
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
   }
   public void addEdge(DirectedEdge e)
   {
      int v = e.from();
                                                          add edge e = v \rightarrow w only to
      adj[v].add(e);
                                                          v's adjacency list
   }
   public Iterable<DirectedEdge> adj(int v)
      return adj[v]; }
   {
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class	SP		
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G	
double	distTo(int v)	length of shortest path from s to v	
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v	
boolean	hasPathTo(int v)	is there a path from s to v?	

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP					
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G			
double	distTo(int v)	length of shortest path from s to v			
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v			
boolean	hasPathTo(int v)	is there a path from s to v?			

%j	java	SP tinyE	EWD.tx	t O			
0 t	co 0	(0.00):					
0 t	co 1	(1.05):	0->4	0.38	4->5 0.35	5->1 0.32	
0 t	co 2	(0.26):	0->2	0.26			
0 t	co 3	(0.99):	0->2	0.26	2->7 0.34	7->3 0.39	
0 t	co 4	(0.38):	0->4	0.38			
0 t	co 5	(0.73):	0->4	0.38	4->5 0.35		
0 t	co 6	(1.51):	0->2	0.26	2->7 0.34	7->3 0.39	3->6 0.52
0 t	co 7	(0.60):	0->2	0.26	2->7 0.34		

edge-weighted digraph API

shortest-paths properties

Dijkstra's algorithm
edge-weighted DAGs
negative weights

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- dist[v] is length of shortest path from s to v.
- edgeto[v] is last edge on shortest path from s to v.

		edgeTo[]	distTo[]
	0	null	0
	1	5->1 0.32	1.05
5	2	0->2 0.26	0.26
	3	7->3 0.37	0.97
	4	0->4 0.38	0.38
	5	4->5 0.35	0.73
(4) (6)	6	3->6 0.52	1.49
	7	2->7 0.34	0.60

shortest-paths tree from 0

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- dist[v] is length of shortest path from s to v.
- edgeto[v] is last edge on shortest path from s to v.

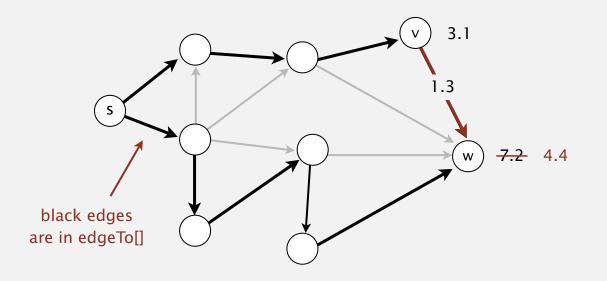
```
public double distTo(int v)
{ return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v)
{
 Stack<DirectedEdge> path = new Stack<DirectedEdge>();
 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
     path.push(e);
 return path;
}
```

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeto[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update distTo[w] and edgeTo[w].

v→w successfully relaxes



Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeto[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update distro[w] and edgeto[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Shortest-paths optimality conditions

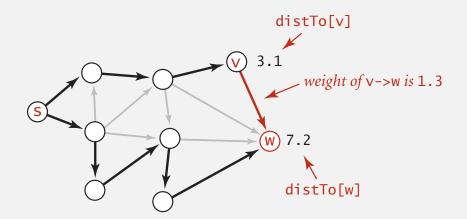
Proposition. Let G be an edge-weighted digraph.

Then distro[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. \leftarrow [necessary]

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].



Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

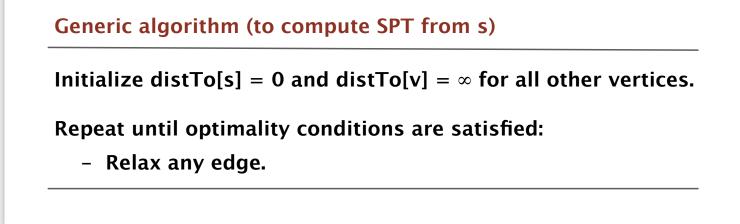
Then distro[] are the shortest path distances from s iff:

- For each vertex v, distro[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, distTo[v_k] \leq distTo[v_{k-1}] + e_k.weight() distTo[v_{k-1}] \leq distTo[v_{k-2}] + e_{k-1}.weight() \rightarrow e_i = ith edge on shortest path from s to w ... distTo[v_1] \leq distTo[v_0] + e₁.weight()
- Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0:

• Thus, distTo[w] is the weight of shortest path to W.



Proposition. Generic algorithm computes SPT (if it exists) from s. Pf sketch.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

edge-weighted digraph API

shortest-paths properties

Dijkstra's algorithm

edge-weighted DAGs

negative weights

" Do only what only you can do."

"In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."

"The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."

" It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."

"*APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.*"

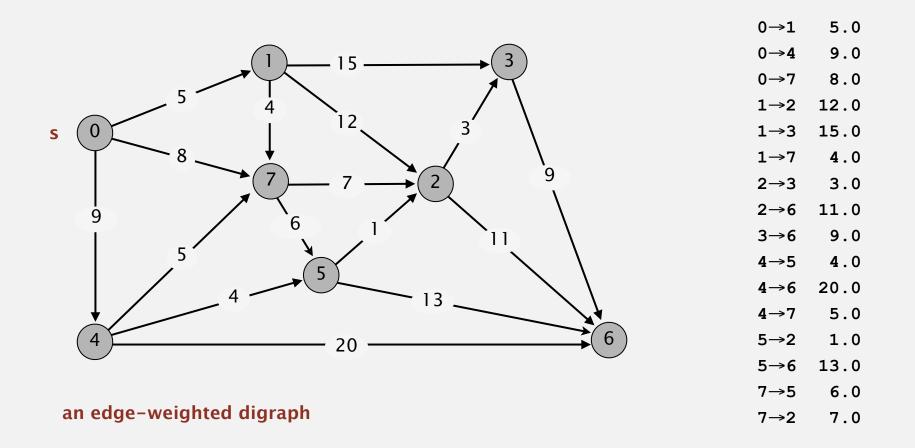
Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes



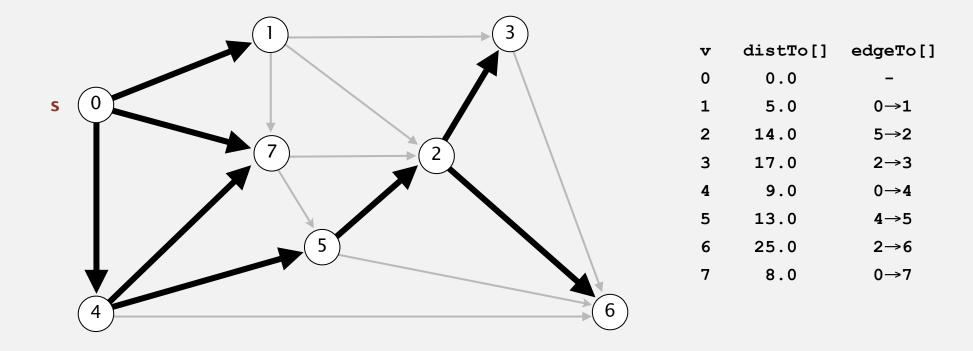
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distro[] value).
- Add vertex to tree and relax all edges pointing from that vertex.



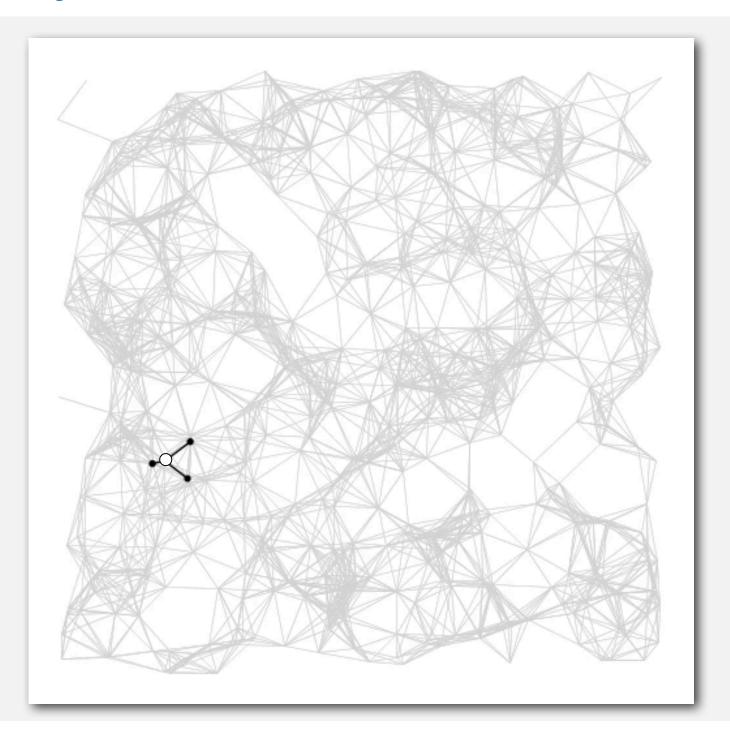
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distro[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

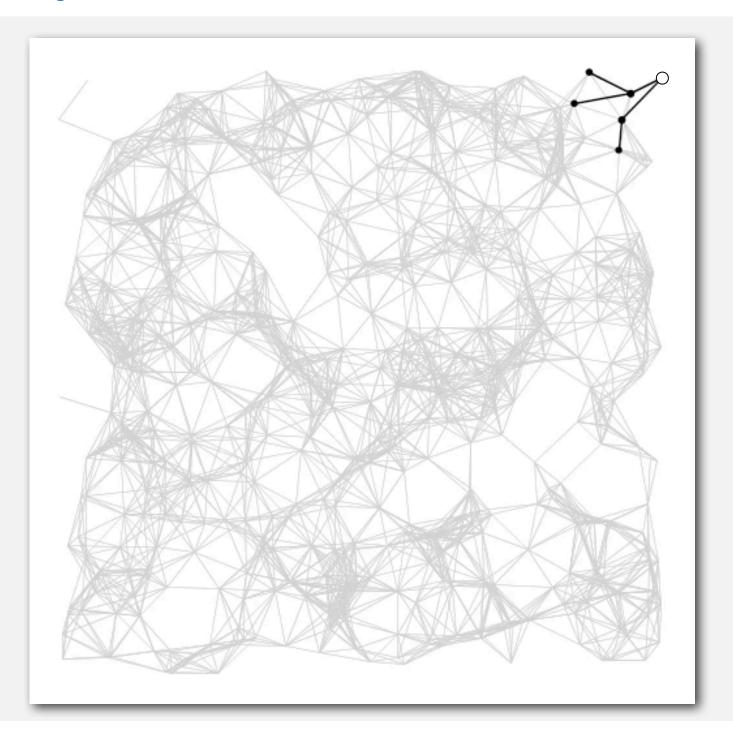


shortest-paths tree from vertex s

Dijkstra's algorithm visualization



Dijkstra's algorithm visualization



Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] Cannot increase <---- distTo[] values are monotone decreasing
- Thus, upon termination, shortest-paths optimality conditions hold.

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
   {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
                                                              relax vertices in order
      while (!pq.isEmpty())
                                                                of distance from s
      {
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
      }
 }
```

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	V 2
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)	1 †	log V †	1 †	E + V log V

† amortized

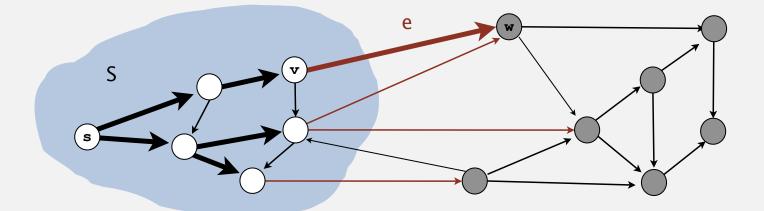
Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.
- DFS. Take edge from vertex which was discovered most recently.
- BFS. Take edge from vertex which was discovered least recently.
- Prim. Take edge of minimum weight.
- Dijkstra. Take edge to vertex that is closest to S.



Challenge. Express this insight in reusable Java code.

edge-weighted digraph API
 shortest-paths properties
 Dijkstra's algorithm

edge-weighted DAGs

negative weights

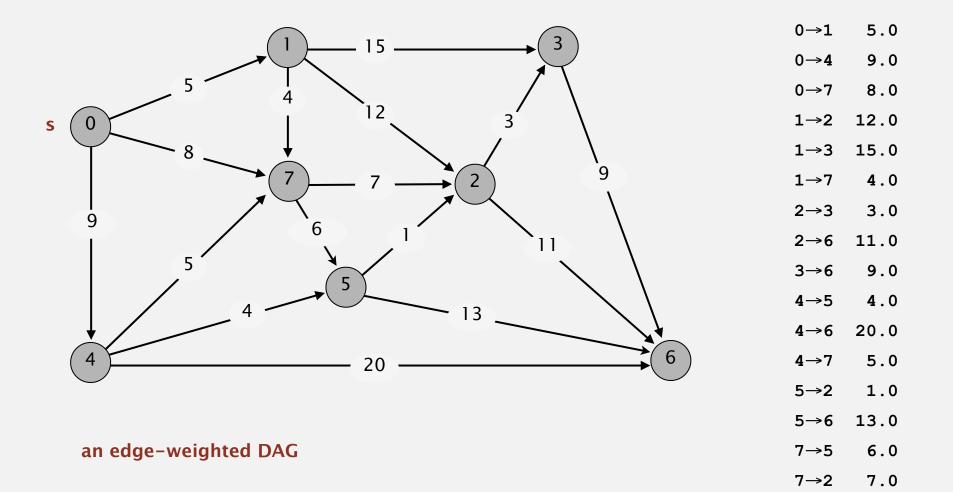
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!

Topological sort algorithm demo

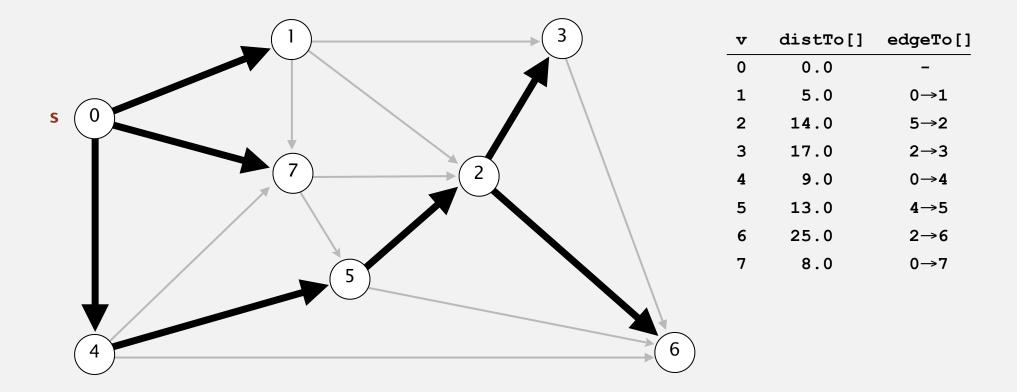
- Consider vertices in topologically order.
- Relax all edges pointing from vertex.



38

Topological sort algorithm demo

- Consider vertices in topologically order.
- Relax all edges pointing from vertex.



shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to E + V.

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- Thus, upon termination, shortest-paths optimality conditions hold.

can be negative!

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
{
  private DirectedEdge[] edgeTo;
  private double[] distTo;
  public AcyclicSP(EdgeWeightedDigraph G, int s)
   ł
     edgeTo = new DirectedEdge[G.V()];
     distTo = new double[G.V()];
     for (int v = 0; v < G.V(); v++)
        distTo[v] = Double.POSITIVE INFINITY;
     distTo[s] = 0.0;
     topological order
     for (int v : topological.order())
        for (DirectedEdge e : G.adj(v))
           relax(e);
   }
 }
```

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

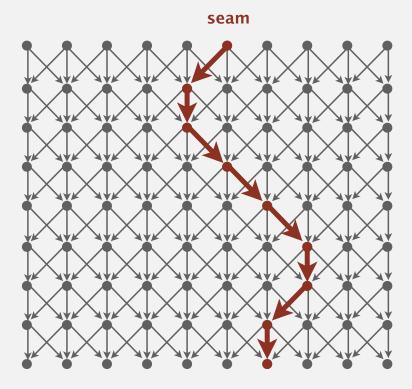
To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path from top to bottom.

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	٠

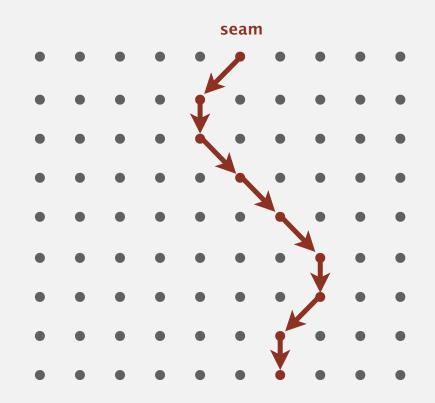
To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path from top to bottom.



To remove vertical seam:

• Delete pixels on seam (one in each row).



To remove vertical seam:

• Delete pixels on seam (one in each row).

٠	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•

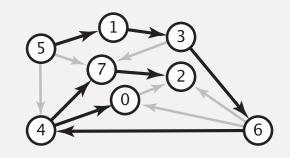
Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

equivalent: reverse sense of equality in **relax()**

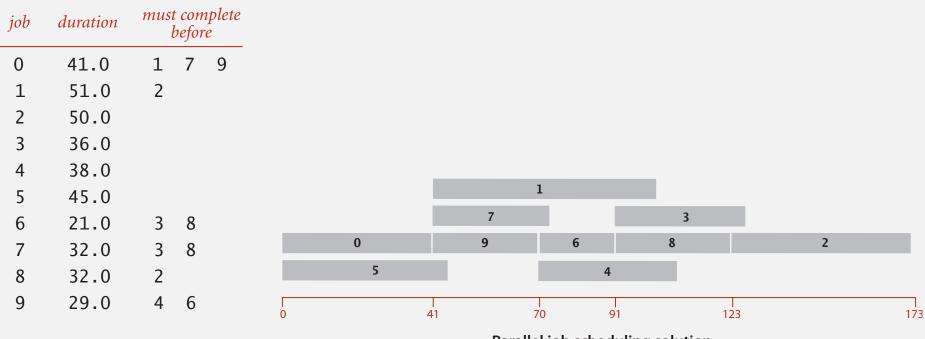
longest p	aths input	shortest paths input				
5->4	0.35	5->4 -0.35				
4->7	0.37	4->7 -0.37				
5->7	0.28	5->7 -0.28				
5->1	0.32	5->1 -0.32				
4->0	0.38	4->0 -0.38				
0->2	0.26	0->2 -0.26				
3->7	0.39	3->7 -0.39				
1->3	0.29	1->3 -0.29				
7->2	0.34	7->2 -0.34				
6->2	0.40	6->2 -0.40				
3->6	0.52	3->6 -0.52				
6->0	0.58	6->0 -0.58				
6->4	0.93	6->4 -0.93				



Key point. Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.



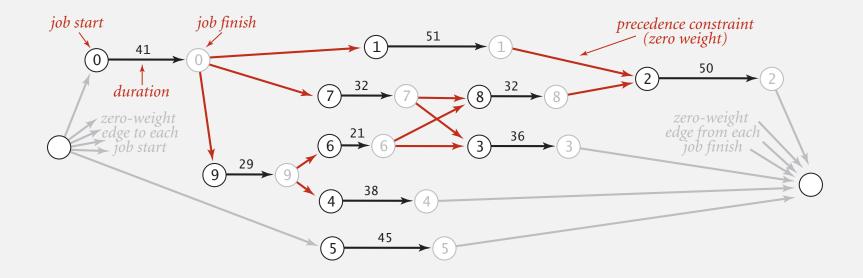
Parallel job scheduling solution

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

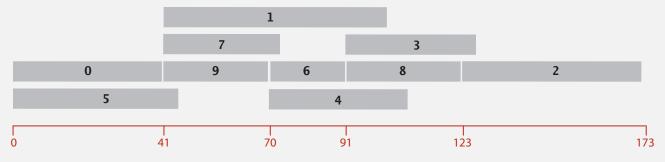
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

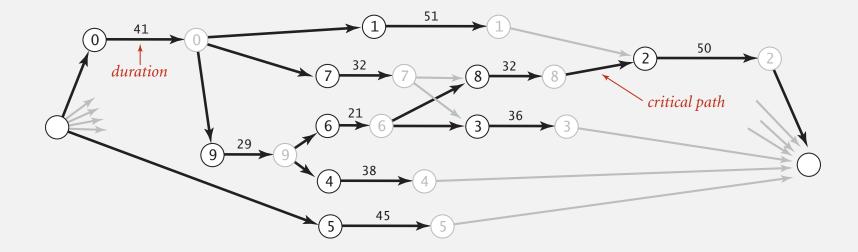
job	duration		t com befor	iplete e
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29.0	4	6	



Critical path method

CPM. Use longest path from the source to schedule each job.



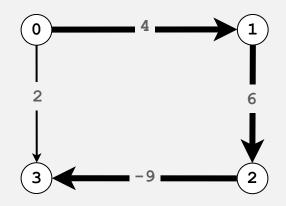


edge-weighted digraph AP
 shortest-paths properties
 Dijkstra's algorithm
 edge-weighted DAGs

negative weights

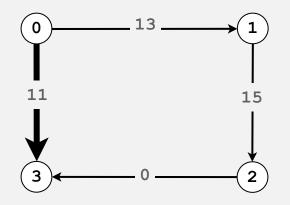
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.



Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

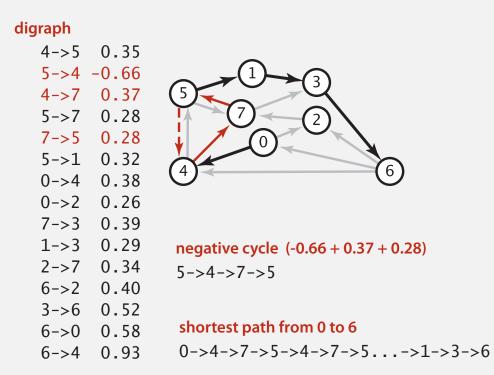


Adding 9 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Bad news. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.



Proposition. A SPT exists iff no negative cycles.

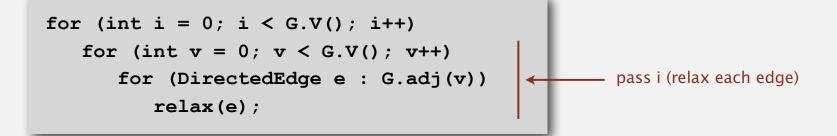
assuming all vertices reachable from s

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

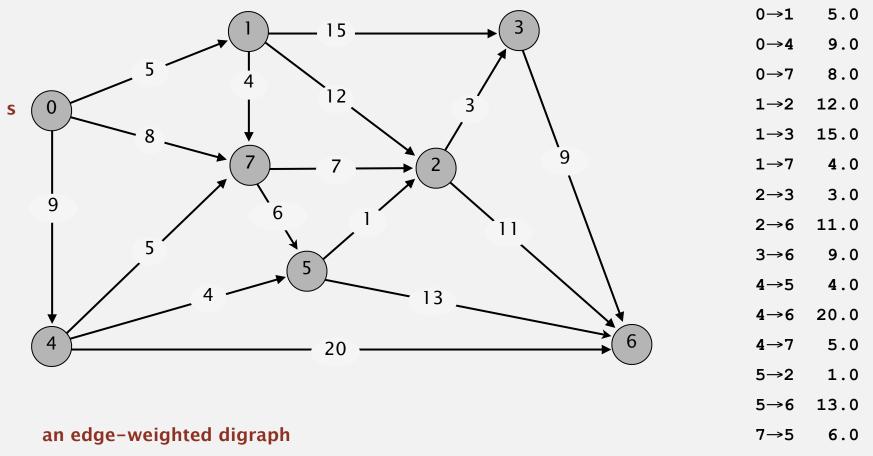
Repeat V times:

- Relax each edge.



Bellman-Ford algorithm demo

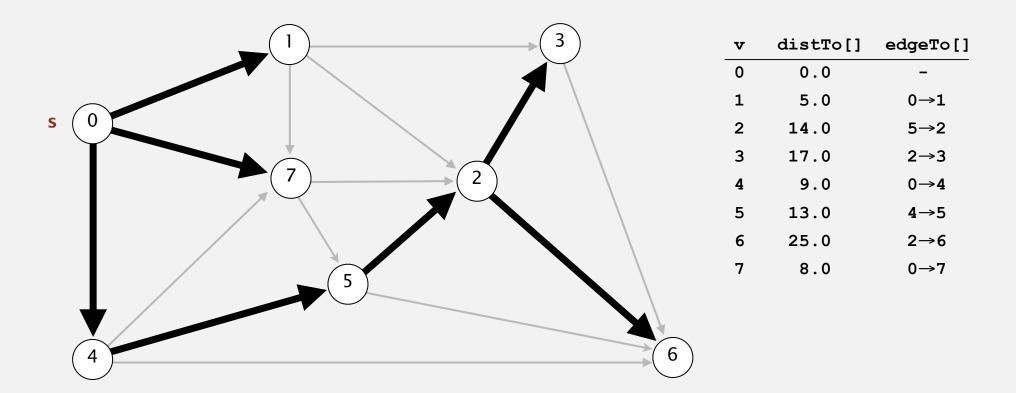
Repeat V times: relax all E edges.



7→2 7.0

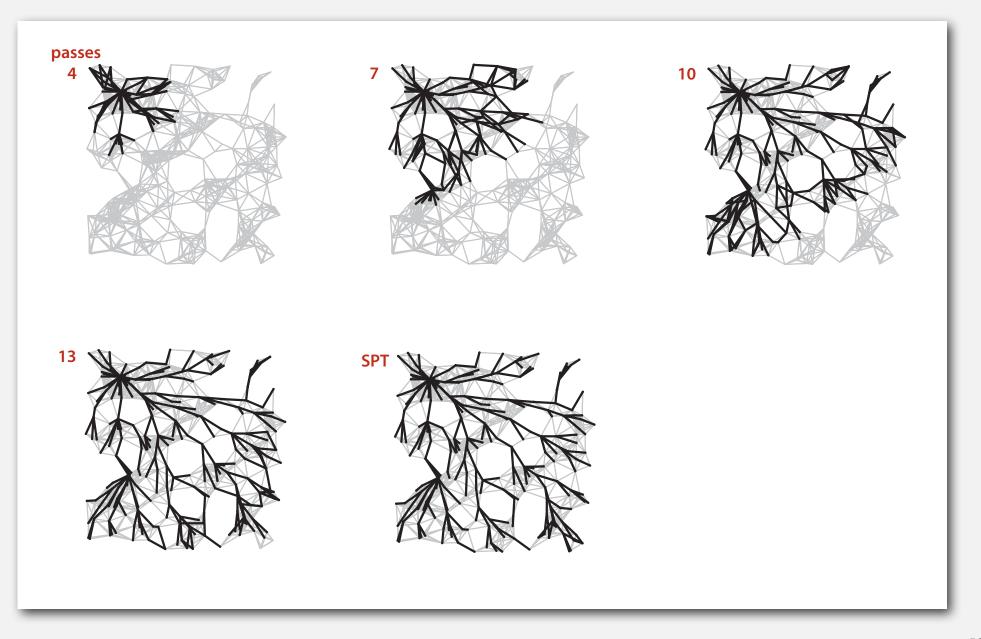
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.



shortest-paths tree from vertex s

Bellman-Ford algorithm visualization



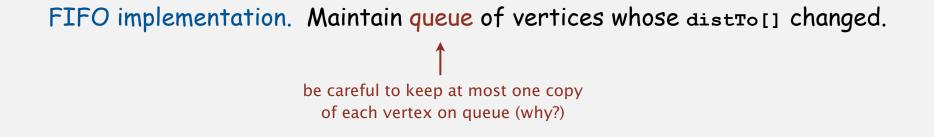
Be	llman-Ford algorithm
Ini	tialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices
Re	peat V times:
	– Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass *i*, found shortest path containing at most *i* edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i + 1.



Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Bellman-Ford algorithm: Java implementation

```
public class BellmanFordSP
Ł
   private double[] distTo;
   private DirectedEdge[] edgeTo;
                                                                      queue of vertices whose
   private boolean[] onQ;
                                                                      distTo[] value changes
   private Queue<Integer> queue;
   public BellmanFordSPT(EdgeWeightedDigraph G, int s)
   {
      distTo = new double[G.V()];
      edgeTo = new DirectedEdge[G.V()];
      ong = new boolean[G.V()];
      queue = new Queue<Integer>();
                                                     private void relax (DirectedEdge e)
                                                     ł
      for (int v = 0; v < V; v++)
                                                        int v = e.from(), w = e.to();
         distTo[v] = Double.POSITIVE INFINITY;
                                                        if (distTo[w] > distTo[v] + e.weight())
      distTo[s] = 0.0;
                                                        ł
                                                            distTo[w] = distTo[v] + e.weight();
      queue.enqueue(s);
                                                            edgeTo[w] = e;
      while (!queue.isEmpty())
                                                            if (!onQ[w])
      ł
                                                            {
         int v = queue.dequeue();
                                                               queue.enqueue(w);
         onQ[v] = false;
                                                               onQ[w] = true;
         for (DirectedEdge e : G.adj(v))
                                                            }
            relax(e);
                                                        }
      }
   }
}
```

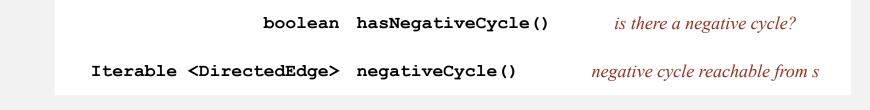
algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
Bellman-Ford	no negative	EV	EV	V
Bellman-Ford (queue-based)	cycles	E + V	EV	V

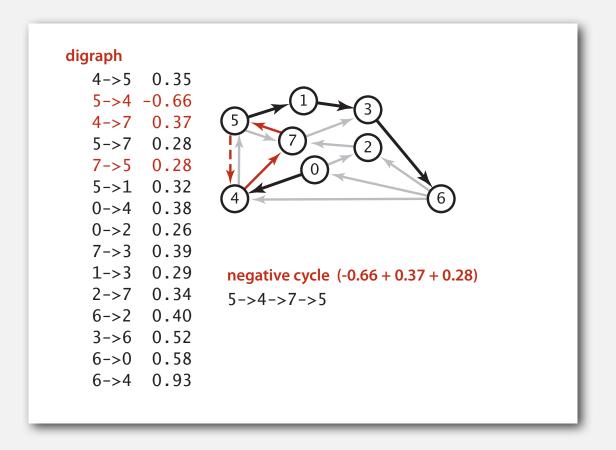
Remark 1. Directed cycles make the problem harder.

- Remark 2. Negative weights make the problem harder.
- Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

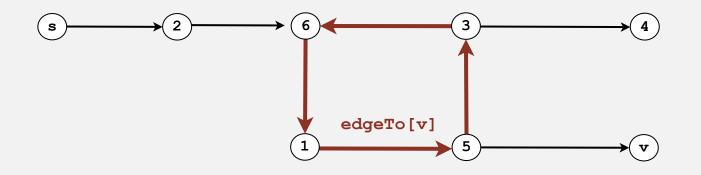
Negative cycle. Add two method to the API for SP.





Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distro[] and edgeto[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeto[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

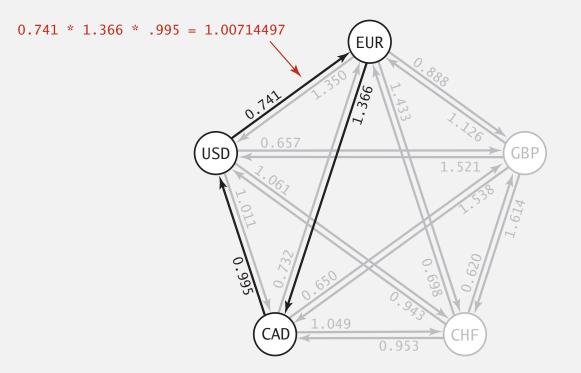
	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros} \Rightarrow 1,012.206 \text{ Canadian dollars} \Rightarrow $1,007.14497.$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

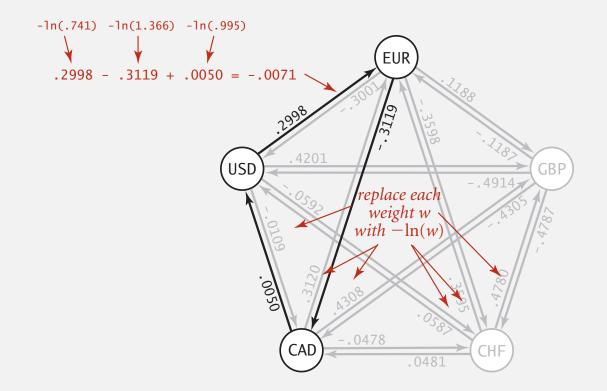


Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.