Linear Programming

- brewer's problem
- simplex algorithm
- implementations
- duality
- modeling

Overview: introduction to advanced topics

Main topics. [next 3 lectures]

- Linear programming: the ultimate practical problem-solving model.
- NP: the ultimate theoretical problem-solving model.
- Reduction: design algorithms, establish lower bounds, classify problems.
- Combinatorial search: coping with intractability.

Shifting gears.

- From individual problems to problem-solving models.
- From linear/quadratic to polynomial/exponential scale.
- From details of implementation to conceptual framework.

Goals

- Place algorithms we've studied in a larger context.
- Introduce you to important and essential ideas.
- Inspire you to learn more about algorithms!

Linear programming

What is it? Quintessential problem-solving model for optimal allocation of scarce resources, among a number of competing activities that encompasses:

- Shortest paths, maxflow, MST, matching, assignment, ...
- $A x=b$, 2-person zero-sum games, ...

maximize	13 A	+23 B		
subject	5 A	+	15 B	\leq
to the	4 A	+	4 B	\leq
constraints	35 A	+	20 B	\leq
	A	,	B	\geq

Why significant?

- Fast commercial solvers available.
- Widely applicable problem-solving model.
- Key subroutine for integer programming solvers.

Applications

Agriculture. Diet problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking.
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.

- brewer's problem

The Allocation of Resources by Linear Programming by Robert Bland, Scientific American, Vol. 244, No. 6, June 1981.

Toy LP example: brewer's problem

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.

- Recipes for ale and beer require different proportions of resources.

Toy LP example: brewer's problem

Brewer's problem: choose product mix to maximize profits.

Brewer's problem: linear programming formulation

Linear programming formulation.

- Let A be the number of barrels of ale.
- Let B be the number of barrels of beer.

	ale		beer			
maximize	13 A	+	23B			profits
subject	5A	+	15B	\leq	480	corn
to the	4A	+	4B	\leq	160	hops
constraints	35A	+	20B	\leq	1190	malt
	A		B	\geq	0	

Brewer's problem: feasible region

Inequalities define halfplanes; feasible region is a convex polygon.

Brewer's problem: objective function

Brewer's problem: geometry

Regardless of objective function, optimal solution occurs at an extreme point.
intersection of 2 constraints in 2d

Standard form linear program

Goal. Maximize linear objective function of n nonnegative variables, subject to m linear equations.

- Input: real numbers $a_{i j}, c_{j}, b_{i}$.
linear means no $x^{2}, x y, \arccos (x)$, etc.
- Output: real numbers x_{j}.

Caveat. No widely agreed notion of "standard form."

Converting the brewer's problem to the standard form

Original formulation.

maximize	13 A	+	23B		
subjec	5 A	$+$	15 B	\leq	480
to the	4A	+	4B	\leq	160
constraints	35A	+	20B	\leq	1190
	A	,	B	\geq	0

Standard form.

- Add variable Z and equation corresponding to objective function.
- Add slack variable to convert each inequality to an equality.
- Now a 6-dimensional problem.

Other reductions to standard form

Minimization problem. Replace $\min 13 A+15 B$ with $\max -13 A-15 B$.
\geq constraints. Replace $5 A+15 B \geq 480$ with $5 A+15 B-S_{C}=480, S_{C} \geq 0$.

Unrestricted variables. Replace A with $A=A^{+}-A^{-}, A^{+} \geq 0, A^{-} \geq 0$.

Geometry

Inequalities define halfspaces; feasible region is a convex polyhedron.

A set is convex if for any two points a and b in the set, so is $1 / 2(a+b)$.

An extreme point of a set is a point in the set that can't be written as $1 / 2(a+b)$, where a and b are two distinct points in the set.

Warning. Don't always trust intuition in higher dimensions.

Geometry (continued)

Extreme point property. If there exists an optimal solution to (P), then there exists one that is an extreme point.

- Number of extreme points to consider is finite.
- But number of extreme points can be exponential!

local optima are global optima (follows because objective function is linear
and feasible region is convex)

Greedy property. Extreme point optimal iff no better adjacent extreme point.

Simplex algorithm

Simplex algorithm. [George Dantzig, 1947]

- Developed shortly after WWII in response to logistical problems, including Berlin airlift.
- Ranked as one of top 10 scientific algorithms of $20^{\text {th }}$ century.

Generic algorithm.
never decreasing objective function

- Start at some extreme point.
- Pivot from one extreme point to an adjacent one.
- Repeat until optimal.

How to implement? Linear algebra.

Simplex algorithm: basis

A basis is a subset of m of the n variables.

Basic feasible solution (BFS).

- Set $n-m$ nonbasic variables to 0 , solve for remaining m variables.
- Solve m equations in m unknowns.
- If unique and feasible \Rightarrow BFS.
- BFS \Leftrightarrow extreme point.

Simplex algorithm: initialization

one basic variable per row

Initial basic feasible solution.

- Start with slack variables $\left\{S_{C}, S_{H}, S_{M}\right\}$ as the basis.
- Set non-basic variables A and B to 0 .
- 3 equations in 3 unknowns yields $S_{C}=480, S_{H}=160, S_{M}=1190$.

Simplex algorithm: pivot 1

maximize	Z				pivot								$\begin{gathered} \text { basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\ A=B=0 \end{gathered}$
	13A	+	23B						-	Z	$=$	0	
subject to the	5A	+	(15B +								=	480	$\begin{gathered} Z=0 \\ S_{C}=480 \end{gathered}$
constraints	4A	+	4B			S_{H}					=	160	$\mathrm{S}_{\mathrm{H}}=160$
	35A	+	20B				+	Sm			=	1190	$S_{M}=1190$
	A	,	B ,	Sc		SH	,	S_{M}			\geq	0	

substitute $B=(1 / 15)(480-5 A-S c)$ and add B into the basis
(rewrite 2 nd equation, eliminate B in 1 st , 3 rd , and 4 th equations)
which basic variable
does B replace?

Simplex algorithm: pivot 1

Q. Why pivot on column 2 (corresponding to variable B)?

- Its objective function coefficient is positive. (each unit increase in B from 0 increases objective value by $\$ 23$)
- Pivoting on column 1 (corresponding to A) also OK.
Q. Why pivot on row 2?
- Preserves feasibility by ensuring RHS ≥ 0.
- Minimum ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$.

Simplex algorithm: pivot 2

> substitute $A=(3 / 8)\left(32+(4 / 15) S_{C}-S_{H}\right)$ and add A into the basis (rewrite 3 rd equation, eliminate A in 1 st, 2 nd, and 4 th equations)
which basic variable does A replace?

Simplex algorithm: optimality
Q. When to stop pivoting?
A. When no objective function coefficient is positive.
Q. Why is resulting solution optimal?
A. Any feasible solution satisfies current system of equations.

- In particular: $\mathrm{Z}=800-S_{C}-2 S_{H}$
- Thus, optimal objective value $Z^{*} \leq 800$ since $S_{C}, S_{H} \geq 0$.
- Current BFS has value $800 \Rightarrow$ optimal.

maximize	Z									

Encode standard form LP in a single Java 2D array.
maximize $\quad Z$

$$
A, B, S_{C}, S_{H}, S_{M} \geq 0
$$

5	15	1	0	0	480
4	4	0	1	0	160
35	20	0	0	1	1190
13	23	0	0	0	0

initial simplex tableaux

Simplex algorithm transforms initial 2D array into solution.

maximize	Z									
			-	Sc	-	$2 \mathrm{SH}_{\mathrm{H}}$		- Z	$=$	-800
subject to the constraints		B	+	(1/10) Sc	+	$(1 / 8) S_{H}$			=	28
	A		-	$(1 / 10) \mathrm{Sc}$	+	$(3 / 8) S_{H}$			=	12
			-	$(25 / 6) \mathrm{Sc}$	-	$(85 / 8) \mathrm{S}_{\mathrm{H}}+$	SM		=	110
	A	B	,	Sc	,	S_{H}	S_{M}		\geq	0

0	1	$1 / 10$	$1 / 8$	0	28
1	0	$-1 / 10$	$3 / 8$	0	12
0	0	$-25 / 6$	$-85 / 8$	1	110
0	0	-1	-2	0	-800

final simplex tableaux

Simplex algorithm: initial simplex tableaux

Construct the initial simplex tableau.


```
public class Simplex
{
    private double[][] a; // simplex tableaux
    private int m, n; // M constraints, N variables
    public Simplex(double[][] A, double[] b, double[] c)
    {
        m = b.length;
        n = c.length;
        a = new double[m+1][m+n+1];
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                a[i][j] = A[i][j];
            for (int j = n; j < m + n; j++) a[j-n][j] = 1.0;
            for (int j = 0; j < n; j++) a[m][j] = c[j];
            for (int i = 0; i < m; i++) a[i][m+n] = b[i];
    }
```

Simplex algorithm: Bland's rule

Find entering column q using Bland's rule: index of first column whose objective function coefficient is positive.
private int bland()
private int bland()
{
{
for (int q = 0; q < m + n; q++)
for (int q = 0; q < m + n; q++)
if (a[m][j] > 0) return q;
if (a[m][j] > 0) return q;
return -1;
return -1;
}
}

entering column q has positive
objective function coefficient
optimal

Simplex algorithm: min-ratio rule

Find leaving row p using min ratio rule. (Bland's rule: if a tie, choose first such row)


```
private int minRatioRule(int q)
{
    int p = -1;
    for (int i = 0; i < m; i++)
    {
        if (a[i][q] <= 0) continue;
        else if (p == -1) p = i;
        else if (a[i][m+n] / a[i][q] < a[p][m+n] / a[p][q])
            p = i;
    }
    return p;
}
```

Simplex algorithm: pivot

Pivot on element row p, column q.


```
public void pivot(int p, int q)
{
    for (int i = 0; i <= m; i++)
        for (int j = 0; j <= m+n; j++)
            if (i != p && j != q)
                a[i][j] -= a[p][j] * a[i][q] / a[p][q];
    for (int i = 0; i <= m; i++)
        if (i != p) a[i][q] = 0.0;
    for (int j = 0; j <= m+n; j++)
            if (j != q) a[p][j] /= a[p][q];
    a[p][q] = 1.0;
}
```

Simplex algorithm: bare-bones implementation

Execute the simplex algorithm.


```
public void solve()
{
    while (true)
    {
        int q = bland();
            if (q == -1) break;
            int p = minRatioRule(q);
            if (p == -1)
            pivot(p, q);
    }
}
```

Simplex algorithm: running time

Remarkable property. In typical practical applications, simplex algorithm terminates after at most $2(m+n)$ pivots.

- No pivot rule is known that is guaranteed to be polynomial.
- Most pivot rules are known to be exponential (or worse) in worst-case.

Pivoting rules. Carefully balance the cost of finding an entering variable with the number of pivots needed.

Smoothed Analysis of Algorithms: Why the Simplex

 Algorithm Usually Takes Polynomial TimeDaniel A. Spielman Department of Mathematics

Simplex algorithm: degeneracy

Degeneracy. New basis, same extreme point.
"stalling" is common in practice

Cycling. Get stuck by cycling through different bases that all correspond to same extreme point.

- Doesn't occur in the wild.
- Bland's rule guarantees finite \# of pivots.
choose lowest valid index for
entering and leaving columns

Simplex algorithm: implementation issues

To improve the bare-bones implementation.

- Avoid stalling.
\longleftarrow requires artful engineering
- Maintain sparsity.
\longleftarrow requires fancy data structures
- Numerical stability. \longleftarrow requires advanced math
- Detect infeasibility. \longleftarrow run "phase I" simplex algorithm
- Detect unboundedness. \longleftarrow no leaving row

Best practice. Don't implement it yourself!

Basic implementations. Available in many programming environments.
Industrial-strength solvers. Routinely solve LPs with millions of variables. Modeling languages. Simplify task of modeling problem as LP.

Ex 1. OR-Objects Java library solves linear programs in Java.

http://or-objects.org/app/library

```
import drasys.or.mp.Problem;
import drasys.or.mp.lp.DenseSimplex;
public class Brewer
{
    public static void main(String[] args) throws Exception
    {
        Problem problem = new Problem(3, 2);
        problem.getMetadata().put("lp.isMaximize", "true");
        problem.newVariable("x1").setObjectiveCoefficient(13.0);
        problem.newVariable("x2").setObjectiveCoefficient(23.0);
        problem.newConstraint("corn").setRightHandSide( 480.0);
        problem.newConstraint("hops").setRightHandSide( 160.0);
        problem.newConstraint("malt").setRightHandSide(1190.0);
        problem.setCoefficientAt("corn", "x1", 5.0);
        problem.setCoefficientAt("corn", "x2", 15.0);
        problem.setCoefficientAt("hops", "x1", 4.0);
        problem.setCoefficientAt("hops", "x2", 4.0);
        problem.setCoefficientAt("malt", "x1", 35.0);
        problem.setCoefficientAt("malt", "x2", 20.0);
        DenseSimplex lp = new DenseSimplex(problem);
        StdOut.println(lp.solve());
        StdOut.println(lp.getSolution());
    }
}
```


Ex 2. QSopt solves linear programs in Java or C.

http://www2.isye.gatech.edu/~wcook/qsopt

```
import qs.*;
public class QSoptSolver {
    public static void main(String[] args) {
        Problem problem = Problem.read(args[0], false);
        problem.opt_primal();
        StdOut.println("Optimal value = " + problem.get_objval());
        StdOut.println("Optimal primal solution: ");
        problem.print_x(new Reporter(System.out), true, 6);
    }
}
```

```
% more beer.lp
Problem
    Beer
Maximize
    profit: 13A + 23B
Subject
        corn: 5A + 15B <= 480.0
        hops: 4A + 4B <= 160.0
        malt: 35A + 20B <= 1190.0
End
```

problem in LP or MPS format

```
% java -cp .:qsopt.jar QSoptSolver beer.lp
Optimal profit = 800.0
Optimal primal solution:
    A = 12.000000
    B = 28.000000
```


Ex 3. Microsoft Excel Solver add-in solves linear programs.

Ex 4. Matlab command linprog in optimization toolbox solves LPs.

```
>A = [5 15; 4 4; 35 20];
>>b = [480; 160; 1190];
>>c= [13; 23];
>> lb = [0; 0];
>> ub = [inf; inf];
>> x = linprog(-c, A, b, [], [], lb, ub)
x =
    12.0000
    28.0000
```


AMPL. [Fourer, Gay, Kernighan] An algebraic modeling language.

- Separates data from the model.
- Symbolic names for variables.
- Mathematical notation for constraints.

CPLEX solver. [Bixby] Highly optimized and robust industrial-strength solver.
but license costs \$
\$\$

```
[wayne:tombstone] ~> ampl
```

[wayne:tombstone] ~> ampl
ILOG AMPL 9.100
ILOG AMPL 9.100
AMPL Version 20021038 (SunOS 5.8)
AMPL Version 20021038 (SunOS 5.8)
ampl: model beer.mod;
ampl: model beer.mod;
ampl: data beer.dat;
ampl: data beer.dat;
ampl: solve;
ampl: solve;
ILOG CPLEX 9.100
ILOG CPLEX 9.100
CPLEX 9.1.0: optimal solution; objective 800
CPLEX 9.1.0: optimal solution; objective 800
2 dual simplex iterations (1 in phase I)
2 dual simplex iterations (1 in phase I)
ampl: display x;
ampl: display x;
x [*] := ale 12 beer 28

```
x [*] := ale 12 beer 28
```

```
% more beer.mod
set INGR;
set PROD;
param profit {PROD};
param supply {INGR}
param amt {INGR, PROD};
var x {PROD} >= 0;
maximize total_profit:
    sum {j in PROD} x[j] * profit[j];
subject to constraints {i in INGR}:
    sum {j in PROD}
        amt[i,j] * x[j] <= supply[i];
% more beer.dat
set PROD := beer ale;
set INGR := corn hops malt;
param: profit :=
ale 13
beer 23;
param: supply :=
corn 480
hops 160
malt 1190;
param amt: ale beer :=
\begin{tabular}{lrr} 
corn & 5 & 15 \\
hops & 4 & 4 \\
malt & 35 & 20.
\end{tabular}
```

" a benchmark production planning model solved using linear programming would have taken 82 years to solve in 1988, using the computers and the linear programming algorithms of the day. Fifteen years later-in 2003-this same model could be solved in roughly 1 minute, an improvement by a factor of roughly 43 million. Of this, a factor of roughly 1,000 was due to increased processor speed, whereas a factor of roughly 43,000 was due to improvements in algorithms!"

- Designing a Digital Future
(Report to the President and Congress, 2010)
speedup $=$ speedup due to big iron \times speedup due to better algorithms
43 million $\quad 1,000 \quad 43,000$

b brewer's problem simplex aloorithm

, duality

LP duality: economic interpretation

Brewer's problem. Find optimal mix of beer and ale to maximize profits.

coincidence?
Entrepreneur's problem. Buy resources from brewer to minimize cost.

- $C, H, M=$ unit prices for corn, hops, malt.
- Brewer won't agree to sell resources if $5 C+4 H+35 M<13$
or if $15 C+4 H+20 M<23$

minimize	480 C	+	160 H	+	1190 M	
subject	5 C	+	4 H	+	35 M	\geq
to the	15 C	+	4 H	+	20 M	\geq
constraints	C	,	H	+	M	\geq

LP duality: sensitivity analysis
Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
A. Corn $\$ 1$, hops $\$ 2$, malt $\$ 0$.
Q. How do I compute marginal prices?

A1. Entrepreneur's problem is another linear program.
A2. Simplex algorithm solves both brewer's and entrepreneur's problems!

LP duality theorem

Goal. Given real numbers $a_{i j}, c_{i}, b_{i}$, find real numbers x_{j} and y_{i} that solve:

Proposition. If (P) and (D) have feasible solutions, then max $=\min$.

LP duality theorem

Goal. Given a matrix A and vectors b and c, find vectors x and y that solve:

primal problem (\mathbf{P})	
maximize	$\mathrm{C}^{\top} \mathrm{x}$
subject	$\mathrm{A} x=\mathrm{b}$
to the	
constraints	$\mathrm{x} \geq 0$

dual problem (D)

minimize	$b^{\top} y$
subject	$A^{\top} y \geq c$
to the	$y \geq 0$

Proposition. If (P) and (D) have feasible solutions, then $\max =\min$.
1939. Production, planning. [Kantorovich]
1947. Simplex algorithm. [Dantzig]
1947. Duality. [von Neumann, Dantzig, Gale-Kuhn-Tucker]
1947. Equilibrium theory. [Koopmans]
1948. Berlin airlift. [Dantzig]
1975. Nobel Prize in Economics. [Kantorovich and Koopmans]
1979. Ellipsoid algorithm. [Khachiyan]
1984. Projective-scaling algorithm. [Karmarkar]
1990. Interior-point methods. [Nesterov-Nemirovskii, Mehorta, ...]

Kantorovich

George Dantzig

von Neumann

Koopmans

Khachiyan

Karmarkar

, brewer's problem
 > simblex aloorithm
 mpementations

> modeling

Modeling

Linear "programming."

- Process of formulating an LP model for a problem.
- Solution to LP for a specific problem gives solution to the problem.

1. Identify variables.
2. Define constraints (inequalities and equations).
3. Define objective function.
4. Convert to standard form.
this step automatically

Examples.

- Shortest paths.
- Maxflow.
- Bipartite matching.
- Assignment problem.
- 2-person zero-sum games.

Maxflow problem (revisited)

Input. Weighted digraph G, single source s and single sink t. Goal. Find maximum flow from s to t.

Modeling the maxflow problem as a linear program

Variables. $x_{v w}=$ flow on edge $v \rightarrow w$.
Constraints. Capacity and flow conservation.
Objective function. Net flow into t.

Linear programming dual of maxflow problem

Dual variables. One variable $z_{v w}$ for each edge and one variable y_{v} for each vertex. Dual constraints. One inequality for each edge. Objective function. Capacity of edges in cut.

Interpretation. LP dual of maxflow problem is mincut problem!

- $y_{v}=1$ if v is on s side of \min cut; $y_{v}=0$ if on t side.
- $z_{v w}=1$ if $v \rightarrow w$ crosses cut.

Linear programming perspective
Q. Got an optimization problem?

Ex. Shortest paths, maxflow, matching, ... [many, many, more]

Approach 1: Use a specialized algorithm to solve it.

- Algorithms 4/e.
- Vast literature on algorithms.

Approach 2: Use linear programming.

- Many problems are easily modeled as LPs.
- Commercial solvers can solve those LPs quickly.
- Might be slower than specialized solution (but might not care).

Got an LP solver? Learn to use it!

Universal problem-solving model (in theory)

Is there a universal problem-solving model?

- Shortest paths.
- Maxflow.
- Bipartite matching.
- Assignment problem.
- Multicommodity flow.
- Two-person zero-sum games.
- Linear programming.
tractable

- Factoring
- NP-complete problems.

Does $P=N P$? No universal problem-solving model exists unless $P=N P$.

