
From Programming Models for Massively Parallel Computers (MMPM’95),
IEEE Computer Society Press, 1996.

Provably Correct Vectorization of Nested-Parallel Programs

James Wheelis Riely,1 Jan Prins1 and S. Purushothoman Iyer2

1Univ. of North Carolina
Chapel Hill, NC 27599-3175 USA

{riely,prins}@cs.unc.edu

2North Carolina State Univ.
Raleigh, NC 27695-8206 USA

purush@csc.ncsu.edu

Abstract

The work/step framework provides a high-level cost model
for nested data-parallel programming languages, allowing
programmers to understand the efficiency of their codes
without concern for the eventual mapping of tasks to
processors. Vectorization, or flattening, is the key technique
for compiling nested-parallel languages. This paper presents
a formal study of vectorization, considering three low-level
targets: the erew, bounded-contention crew, and crew

variants of the vram. For each, we describe a variant of the
cost model and prove the correctness of vectorization for that
model. The models impose different constraints on the set
of programs and implementations that can be considered; we
discuss these in detail.

1 Introduction

Many complexity models (or cost models) have been
proposed for parallel programs. High-level models such
as Blelloch’s step/work metrics for nesl [3, 2] and
Skillicorn’s calculus for bmf [13] are based on a rich,
highly-parallel expression language with compositional
cost metrics: the complexity of an expression can
be understood by combining the complexities of its
subexpressions. Low-level models such as the pram [8],
vram [2] and bsp model [14] are statement-based with
very limited compositionality.

Cost models are important for programming because
they help guide the construction of efficient code. High-
level models allow each code-fragment to be considered
separately, so that optimizing any fragment in isolation
should improve overall performance.

There is a danger, however, in using high-level
models that do not have a proven relation to a
lower-level machine model and—therefore—to a working
implementation. An inaccurate cost model may be worse
than no model at all; it may encourage “optimizations”
that diminish the performance on an actual parallel
machine.

In this paper, we prove that the high-level step/work
metric accurately reflects the implementation of a nested-
parallel language on a vram. Blelloch [2] proved a similar
result for a limited class of expressions with no free

variables, but until now his work has stood in isolation.
Our proofs are both more formal and more general
than his, although we also must restrict our attention
to contained programs (see Section 4). Our work has
been motivated by—and is complementary to—ongoing
implementation and performance studies of the Proteus
programming language [7, 10].

Nested-parallel languages such as nesl and Proteus are
characterized by a nested sequence datatype along with
a set of second-order functions to manipulate them. The
main source of parallelism is the apply-to-each function;
both nesl and Proteus have a special form for this, the
iterator. For example, the expression

[
x ← 〈1..n〉 : z[x]

]
indexes the sequence stored in the variable z by each of
the values 1 through n, returning

〈
z[1], ..., z[n]

〉
.

Roughly speaking, the step complexity gives the
running time under the assumption that all specified
parallelism is realized; the work complexity counts the
total number of (scalar) operations performed.

Like the pram, the vram model has variants
such as erew and crew. In the erew case, the
step/work metrics accurately predict performance on
parallel machines that have sufficient memory bandwidth,
such as vector machines. The step/work metrics also
work well for crew and crcw models as long as memory
contention is bounded by a small constant. In general,
however, step and work complexity fail to predict eventual
performance when a vram supports crew operations
with unbounded contention. For a discussion, see [5].

In Section 3 we define a profiling semantics for a simple
nested-parallel programming language, giving an explicit
account of the step/work paradigm for this language.
For each possible input, the semantics specifies not only
the final output of a program, but also the number of
steps and total work required before the program halts
on that output. This semantics induces an equivalence
on programs: two programs are equivalent if on every
possible input they produce the same results with the
same steps and work. This equivalence is finer than we
would like, however, because it is sensitive to constant
factors. We define a more abstract equivalence which
ignores constant factors: the asymptotic efficiency (ae)
equivalence. Since we consider programs modulo this

1

Prog
[[·]]

((QQQQQQQQQQQQQQ

xform

��

I.F. Prog
[[·]]

// ∼A Env → Val⊥ × N
∞ × N

∞

I.F. Prog
[[·]]

//

impl

��

∼@ Env → Val⊥ × N
∞ × N

∞

vram
[[·]]′

// Env ′ → Val ′⊥ × N
∞ × N

∞

impl−1

OO

Figure 1: Proof outline.

equivalence, we call our semantics an “ae semantics.”
The notion of an ae equivalence may be new.

A formal semantics is a contract between a language’s
implementors and its users. Traditionally this contract
has been limited to the extensional aspects of a
language; in an ae semantics, intensional issues (that
is, performance) must be addressed as well. Tighter
cost bounds in the semantics make things harder for the
implementors, but easier for the programmers: they get
more ways to write efficient code.

In our language, the treatment of free variables has a
profound effect on the nature of this contract, and it is
the explication of this issue that is the main contribution
of our work, occupying Sections 4–6. In summary, we
report three alternative semantics:
• An ideal semantics, in which free variables are truly

free; the step complexity of an iterator is simply the
maximum of the steps taken by the iterator expression
under each binding of the variables. This semantics forces
a reference-based implementation of sequences, with the
necessity of unbounded contention on a crew vram.
• A construct-parameters semantics which copies

out the free variables—once for each binding—then
evaluates the iterator expression under each binding
simultaneously. This allows for implementation on an
erew vram but makes the cost model sensitive to the
presence of free variables, leading to counterintuitive
complexity results and complicating programming. This
is the approach taken in a recent implementation of nesl

[3].
• A construct-results semantics which strikes a middle

ground. It removes sensitivity to free-variables from
the cost model while allowing implementation on a low-
contention crew vram. There is some loss of generality,
however, which can be partially recouped using static
analysis. This is the approach taken in the current

x–z ∈ Var Variable names
f –g ∈ UserFun (user-defined) Function names

p ∈ PrimOp Primitive (operation) names
a–e ∈ Expr Expressions

F–G ∈ FunDecl Function declaration
P–Q ∈ Prog Programs

A–E ∈ Val Values
σ–ρ ∈ Env Variable environment

Table 1: Usual meaning of Metavariables.

implementation of Proteus [10].
We prove that these semantics are implementable on

a crew, erew, and bounded-contention crew vram,
respectively. The proof is accomplished in two steps,
outlined in Section 1: source-to-source transformation
to eliminate iterators, followed by implementation of the
iterator-free language on the vram. (The terms in the
figure are defined in Section 3.) This paper is devoted
almost entirely to the first part; we address the second
in Sections 4–6, but only informally. While we would
like to formalize this second step, we believe that it
has already been well established by implementation,
experimentation, and some less-formal proofs [4, 2, 10].

Because of space limitations, we have cut quite a bit
from this extended abstract. We assume that the reader
has a familiarity with the basic notions of operational
semantics [15]. For pointers to the literature on high-
level cost models, see the excellent summaries in articles
by Blelloch and Greiner [6] and Skillicorn and Cai [13];
these two articles are closely related to ours.

2 The language

Throughout the paper we use many metavariables, most
of which are listed in Section 1. The notation “x–z ∈
Var” indicates that the symbols x through z—possibly
decorated with overlines, primes, sub- or super-scripts—
are used to range over the set Var . We use h–n for
naturals and r–v for reals and write multiplication as infix
“∗”.

2.1 Values and Types

As a convenience every value in our language is considered
an element of a sequence type. A sequence type comprises
a scalar base type and a depth. For simplicity, we consider
only two scalar types, integers and Booleans. Zero-
depth sequences are simply scalars. Boolean constants are
drawn from the set {t, f}. We write (non-scalar) sequence
values as lists of elements between angled brackets; for
example, 〈〉 is the empty sequence, and 〈〈1, 2〉, 〈3, 4, 5〉, 〈〉〉

2

is a sequence of three elements, a “sequence of sequences
of integers.” All sequences have uniform depth. The
special value err represents run-time error and inhabits
all types.

We also use overlines to write literal sequences; thus,〈
1 2, 3 4 5, •

〉
, 〈1, 2〉 〈3, 4, 5〉 〈〉 and 1 2 3 4 5 • are all

synonymous with the previous example. This use of
overlines is distinct from that for metavariables. When
decorating a metavariable, the number of overlines
indicates the minimum depth of the value; thus A is a
value whose depth is at least two. The overline is not an
“operator” on metavariables: there is no implied relation
between the values A and A.

We define the depth D, length L1 and size S of a value
as follows:

DA
def=

{
0 , if A is a scalar
1 +DAj , any j , if A = 〈Aj 〉nj=1

L1A
def= n, if A = 〈Aj 〉nj=1

SA
def=

{
1 , if A is a scalar
1 +

∑n
j=1 SAj , if A = 〈Aj 〉nj=1

In the case of the example

C = 1 2 3 4 5 6 7 8 •
•

we have DC = 3, L1C = 3, and SC = 17.

2.2 Expressions

The abstract syntax of expressions is given inductively as
follows, where a–e are expressions:

a ::= x A

pk (a1, ..., a`)
f k (a1, ..., a`)
let x = a in c
if a then b else c
[y1 ← a1, ..., ym ← am : c]

Here x is a variable dereferencing, and A a constant. The
let and conditional constructs are standard.

Primitive operations of arity ` are applied by writing
pk (a1, ..., a`); likewise for user-defined functions. We
usually drop the parentheses if ` ≤ 1. Application is
call-by-value. The superscript k indicates the depth at
which the operation is to be applied. If k is zero, the
application is basic otherwise it is lifted ; we usually drop
k when it is zero. To avoid error, the nesting structures
of the arguments must be identical down to depth k . For
example:

plus (5, 6) = 11 plus1
(
4 3 1, 3 6 7

)
= 7 9 8

plus2
(
• 2 3, • 7 1

)
= • 9 4 plus1

(
4 3 1, 3 6

)
= err

Lifted calls need not appear in a source program; any
lifted call can be written using iterators and basic calls.
However, both basic and 1-lifted calls are necessary in the
iterator-free language of Section 4. The generalization
to k -lifted sequences is a convenience: it simplifies
the program transformations and helps to ensure the
production of efficient code.

Both the let and the iterator construct bind variables;
neither construct allows for recursive definition. The free
variables in an expression (free e) can be determined
statically using the usual definition. We write a
dependent-on x if x occurs free in a, and a independent-of
x otherwise.

The iterator construct allows several equal-length
sequences ah to be drawn from in correspondence.
Thus [x← x, y← y : x +y] is the same as plus1(x, y). The
expressions ah are evaluated independently.

We extend the ideas of depth, length and size to
expressions; thus if an expression has depth two then the
values that it yields are at least two deep.

2.3 Programs

A function declaration is a set of mutually recursive
definitions:

f1(x1, ..., x`1) def= d1

...
fm(x1, ..., x`m

) def= dm

For fh , we call x1 through x`h
parameters and dh the body.

Within a function body the only variable names that may
occur free are those of the parameters; any function name
may appear.

A program is a pair P ≡ (F , e) of a function declaration
and an expression. We require that programs be well
typed, although we do not present the details of the rules
for well-typing, which are very standard.∗ In addition, a
function name that occurs anywhere in a program must
have exactly one definition in the function declaration.

The variables that occur free in e are called input
variables. Intuitively, a program is executed by reading-
in values corresponding to each of the input variables;
the expression e is then evaluated in the context of these
variable bindings and of the function declaration F .

∗Well typing requires that input variables and occurrences of
the empty sequence be typed. If one imposes the restriction that
input variables have ground types, then polymorphic functions can
be eliminated via specialization and the depth of expressions in the
resulting program can be determined statically. nesl imposes this
restriction, allowing its implementors to claim that every instance
of a primitive call has constant step complexity.

3

2.4 Basic primitive operations

Although we do not precisely specify them, we assume a
set of basic primitive operations on scalar types—perhaps
with some special notation. For example, we make use of
plus (infix +), not (prefix ¬), and less-than (infix <).

Below, we give extensional descriptions of the sequence
primitives that we use. The running-time of a
primitive depends upon its implementation; we discuss
implementations and an intermediate form of primitive
specification in Section 3.3. Further motivation for the
use of these primitives can be found in [12, 10, 2,], and
formal definitions in the full paper.
• build` builds a `-length sequence out of its `

arguments. For example: build3(1, 2, 3) = 〈1, 2, 3〉 .
We allow a special notation with ` implicit: 〈a, b〉 def=
build2(a, b).
• len returns the length of its argument. For example:

len 〈9, 8, 7, 6〉 = 4. We allow a special notation: #a def=
len a.
• dist distributes a value, making a number of copies.

For example, dist(5, 1 2) = 1 2 1 2 1 2 1 2 1 2.
• iota is a function familiar from apl. dom is a related

function that returns the domain of a sequence when that
sequence is viewed as a function from positive integers to
values. For example: iota 5 = dom 9 8 7 6 5 = 1 2 3 4 5. In
general, iota n = 〈1, 2, ...,n〉 , and dom A = 〈1, 2, ...,#A〉 .
We allow a special notation: 〈1..a〉 def= iota a.
• rstr restricts a sequence to match the true elements of

a companion Boolean sequence. For example: .16667em

rstr(t f t f f, 1 3 2 4 5) = 1 2
rstr(t f t f f, 1 3 2 4) = err

• comb combines two sequences based on a Boolean
sequence. For example: .16667em

comb(t f t f f, 1 2, 3 4 5) = 1 3 2 4 5.
comb(t f t f f, 1 2, 3 4) = err

Let not1 be the lifted logical negation operator. When
#B = #A, rstr and comb are complementary in the
following sense: comb(B, rstr(B,A), rstr(not1B,A)) = A.

In order to describe the remaining primitives concisely,
we use the following example sequence:

A = 1 2 3 4 5 6 7 8 •
•

• elt` is the element retrieval or “index” operation. It
takes a sequence and ` integers. An error occurs if an
attempt is made to index beyond the boundaries of a
sequence. For example: .16667em

elt1(A, 1) = 1 2 3 4 5 6
elt3(A, 1, 3, 2) = 6
elt3(A, 1, 3, 3) = err

We allow a special notation with ` implicit: a[b, c] def=
elt2(a, b, c).
• extrk extracts k levels from a sequence, flattening it.

For example:

extr0 A = A

extr2 A = 1 2 3 4 5 6 7 8

• insrtk inserts the top k levels of the structure from
one sequence onto another. For example: .16667em

insrt0(A, 9 8 7) = 9 8 7

insrt2(A, 9 8 7 6 5 4 3 2) = 9 8 7 6 5 4 3 2 •
•

insrt2(A, 9 8 7 6 5 4 3) = err

There is a close relation between extr and insrt; for all
k ≥ 0: insrtk (A, extrkA) = A.
• promk promotes a value to match the top k levels of

the structure of a sequence. For example:

prom0(A, 6) = 6

prom3(A, 6) = 6 6 6 6 6 6 6 6 •
•

3 Semantics and complexity

We present a profiling semantics for the language given in
the last section and define an asymptotic efficiency (ae)
preorder on programs. Intuitively, Q is ae-greater than
P if they compute the same things and Q is more efficient
than P , with allowances made for constant overhead
and slowdown. It is these “allowances” that make
our preorder an asymptotic efficiency preorder. Simple
efficiency preorders [1] do not make such allowances, but
rather compare the absolute running times of programs.

In addition to being more efficient, we also allow that
an ae-greater program be more defined. This coarser
definition lessens the burden of proof in Sections 4–6,
allowing us to simplify the program transformations used
there. In this context, non-termination is less defined
than run-time error which is in turn less defined than any
other value. Thus, the smallest programs with respect to
the preorder are those that never terminate. (Note that
if our language included error-handling, we would have
to use the finer preorder; this would require us to change
the transformation rules id and const.)

Ideally an implementation should be ae-equivalent to
it’s specification in the semantics. However, we believe
that it is acceptable for an ae-semantics to overestimate
the cost of a program in some cases. If the overestimation
is too great, however, the semantics looses much of its
value.

3.1 The profiling semantics

In giving the semantics of our language we make use of
the notion of an environment, which is a mapping from

4

x ∈ Var) σ F̀ x ⇒ σx ` ;1 ` ;1

A ∈ Val) σ F̀ A⇒ A ` ;DA ` ;SA A 6= err

Let)

σ F̀ a ⇒ A ` ; ta ` ; wa

σ{|A/x |} F̀ c ⇒ C ` ; tc ` ; wc

σ F̀ let x = a in c ⇒ C ` ;ta + tc ` ;wa + wc

A 6= err

Cond)

σ F̀ a ⇒ t ` ; ta ` ; wa

σ F̀ b ⇒ B ` ; tb ` ; wb

σ F̀ if a then b else c ⇒ B ` ;ta + tb ` ;wa + wb

σ F̀ a ⇒ f ` ; ta ` ; wa

σ F̀ c ⇒ C ` ; tc ` ; wc

σ F̀ if a then b else c ⇒ C ` ;ta + tc ` ;wa + wc

p ∈ PrimOp)
{ σ F̀ ai ⇒ Ai ` ; tai

` ; wai
}`i=1

σ F̀ p0(a1, ..., a`)⇒ D ` ;
(∑`

i=1 tai

)
+ td

` ;
(∑`

i=1 wai

)
+ wd

Ai 6= err
δp(A1, ..., A`) = D ` ;td ` ;wd

f ∈ UserFun)

{ σ F̀ ai ⇒ Ai ` ; tai ` ; wai }`i=1

{|A1/x1, ...,A`/x`|} F̀ d ⇒ D ` ; td ` ; wd

σ F̀ f 0(a1, ..., a`)⇒ D ` ;
(∑`

i=1 tai

)
+ td

` ;
(∑`

i=1 wai

)
+ wd

Ai 6= err
f (x1, ..., x`)

def= d in F

g ∈ PrimOp
∪UserFun

) { σ F̀ ah ⇒ 〈Ahj 〉nj=1 ` ; tah
` ; wah

}mh=1

{ {|A1j/y1, ...,Amj/ym |} F̀ gk (y1, ..., ym) ⇒ Cj ` ; t jc ` ; w j
c }nj=1

σ F̀ gk+1(a1, ..., am)⇒ 〈Cj 〉nj=1 ` ;
(∑m

h=1 tah

)
+
(

maxn
j=1 t jc

)
` ;
(∑m

h=1 wah

)
+
(∑n

j=1 w j
c

) Ahj 6= err

Iterator)

{ σ F̀ ah ⇒ 〈Ahj 〉nj=1 ` ; tah
` ; wah

}mh=1

{ σ{|A1j /y1, ...,Amj /ym |} F̀ c ⇒ Cj ` ; t jc ` ; w j
c }nj=1

σ F̀ [y1 ← a1, ..., ym ← am : c]⇒ 〈Cj 〉nj=1 ` ;
(∑m

h=1 tah

)
+
(

maxn
j=1 t jc

)
` ;
(∑m

h=1 wah

)
+
(∑n

j=1 w j
c

) Ahj 6= err

Error) rules for Val , Let , Cond , PrimOp, UserFun and Iterator if A = err,
and for PrimOpk+1, UserFunk+1 and Iterator if Ai have differing lengths.

Table 2: Ideal dynamic semantics.

5

variable names to non-erroneous values: Var → Val \
{err}. We write {|A1/x1, ...,An/xn |} for the environment
in which each variable xi is mapped to the value Ai .
We use the same notation for the pointwise perturbation
function: σ{|C/y |} is equivalent to σ at all points, with
the possible exception of y .

We give a big-step or “natural” operational semantics
[15] in Section 2. The inference rules define a 6-ary
relation

σ F̀ a ⇒ A ; t ; w

which should be read “when expression a is evaluated
in environment σ using function declaration F , it yields
value A; further, the process of determining the value
takes O (t) steps and O (w) work.” We use the big-
O notation informally to communicate that we are not
interested in constant factors; indeed, the ae preorder is
insensitive to such constants. Thus we have not needed
to include implementation-specific constant factors in our
semantics, as would have been necessary had we used an
efficiency preorder.

Our semantics does not include the costs of input and
output. Nor does it calculate the cost of evaluating
erroneous expressions. We adopt the convention that the
cost of an erroneous computation is infinite; the semantics
has the property that if σ F̀ a ⇒ err;t ;w then t = w =∞.

We now describe the rules in Section 2. Variables
are dereferenced using the current environment, with
constant access time. Values yield themselves, taking
steps proportional to their depth and work proportional
to their size. The rules for let and the conditional are
straightforward. In reading them, it may help to think
that the metavariables to the left of the ⇒ are “bound”
below the line; whereas those to the right are “bound”
above.

The remaining rules look complicated, but have much
common structure. The rules for basic function and
primitive calls are very similar, as are those for lifted calls
and iterators.

The semantics assumes that there exist
implementations of the primitive operations; these
implementations are described by a family of functions
δp—one for each primitive p. Intuitively, δp(A1, ...,
A`) = D ; td ; wd if p takes td steps and wd work to
produce the result D on input (A1, ..., A`). Section 3.3
discusses δp in more detail.

A basic primitive call p0 is performed by evaluating
the arguments and using the resulting values as input to
δp . For a basic function call a new environment is created,
binding the actual- to the formal-parameters; the function
body is then evaluated in this environment. Note that
non-local variables are prohibited inside a function body.

A lifted function call gk+1(a1, ..., am) specifies the
parallel application of gk to the sequences Ah . The
semantics is given by induction on k . The arguments

must evaluate to equal length sequences Ah = 〈Ahj 〉nj=1

for some n. (If no such n exists, then the result is err.)
Chose a set of m distinct variable names, y1, ..., ym . For
each j , a new environment is built that maps Ahj to yh ,
and gk (y1, ..., ym) is evaluated in this environment. The
results are then combined. Because we want to ensure
parallel execution of each gk , we take the step complexity
to be the maximum of each. Note that the use of variables
here is a “trick” to get the right complexities; the simpler
solution—to recurse on gk (A1j , ...,Amj)—overcharges.

Iterator expressions are evaluated much like lifted
function calls. The differences are that 1. an arbitrary
expression c is evaluated in the subcalls (rather than
gk), and 2. the ambient environment σ is not lost in
the subcalls—“non-local” references are possible. In an
iterator expression, a non-local reference is an occurrence
of any variable other than one bound by the iterator. It
is the possibility of non-local reference within an iterator
expression that forces us to abandon this ideal semantics
in Section 5.

The semantics of Section 2 is deterministic: if a
program has a derivation under environment σ, then it
has only one. It is also partial : non-terminating programs
have no finite derivation under σ. For clarity, we extend
the semantics to a total function on programs by adding a
bottom element to the set of values and mapping infinite
computations there. We define a “nearly-flat” domain
Val⊥ with ordering:

A v B iff A = ⊥ ∨ (A = err & B 6= ⊥)

The signature and definition of the semantic function are:[[
·
]]

:Prog → Env → Val⊥ × N
∞ × N

∞

[[
F , a

]]
σ =

{
A ; ta ; wa , if σ F̀ a ⇒ A ; ta ; wa

⊥ ;∞ ;∞ , otherwise

From
[[
·
]]
, we derive functions

[[
·
]]E , [[·]]T and

[[
·
]]W which

return, respectively, the extensional meaning, the step
complexity and the work complexity of a program. We
sometimes drop the function declaration when it is clear
from context, writing these as a functions on expressions
rather than programs.

3.2 The asymptotic efficiency preorder

We use the big-O/Ω notation with functions on values
and environments. For example, let f , f ′ map
environments to N

∞. Then we say that f ′ = O (f) iff
there exist r and u such that for all σ, f ′σ ≤ r ∗ (f σ) + u.
We now define the ae-preorder (∼@).

Definition 1. P ∼@ P ′ iff there exist real numbers r , s, u,
and v , such that for every environment σ, if

[[
P
]]
σ = A;t ;w

6

and
[[
P ′
]]
σ = A

′ ; t ′ ; w ′ then:

A v A
′ & t ′ ≤ r ∗ t + u & w ′ ≤ s ∗ w + v

We write h for the induced equivalence.
For P ⊆ Prog , we define e ∼@P e ′ iff for every function

declaration F such that (F , e) ∈ P:

(F , e ′) ∈ P & (F , e) ∼@ (F , e ′)

We drop the superscript when P = Prog . �

An important fact about these relations is that they
are indeed preorders (that is, reflexive and transitive).
In addition, they are substitutive for our language (and
for the classes of programs P that we consider): Define
a program context P [] to be a program in which one
expression has been removed and replaced with a hole,
written “[]”; P [a] is then the program in which a is
substituted into the hole. We then have that if a ∼@ b
then P [a] ∼@ P [b] for all P [].

3.3 Primitive specifications and language
implementations

The semantics of the language is parametric with respect
to a primitive specification: a set {δp | p ∈ PrimOp} of
functions, one for each of the primitive functions. δp
gives the (asymptotic) intensional meaning of the p. For
a primitive p of arity `, δp is a total function with the
following signature:

δp : (
∏

` Val)→ Val × N
∞ × N

∞

As we did for
[[
·
]]
, we derive functions δEp , δTp and δWp

from δp . We call this a primitive specification because it
constrains the possible implementations of the primitives.
A primitive specification is more concrete than an abstract
datatype, which is purely extensional. We require that all
primitives in the specification be strict in err and have
infinite step and work complexities on err.

An implementation of the language need not follow the
structure of the operational semantics. We only require
that the implementation of each program be ae-greater
than its definition in the semantics. In particular, we do
not expect implementations to support iterators or lifted
function calls.

The implementations discussed in this paper assume
that the vram supports basic and 1-lifted calls for every
primitive. (k+1)-lifted calls can be implemented in terms
of 1-lifted calls via the following equation:

gk+1(a1, ..., a`) ∼@ insrtk (a1, g1(extrka1, ..., extrka`))

For the implementations we discuss, this equation is true
for any primitive or user-defined function. This allows the

implementation to create only basic and 1-lifted versions
of each user-defined function.

The costs that can be reported in a primitive
specification are constrained by the requirement that
lifted primitive calls cost no more than allowed by
the semantics: the costs reported for primitive calls
must be “scalable”. This fact makes it impossible for
our semantics to accurately capture the costs of some
implementations. For example, in Section 5 we describe
an implementation in which extr0 is more efficient than
extr1; however, the tighter bounds for extr0 cannot be
reported in the primitive specification, because this would
cause the semantics to underestimate the cost of lifted
calls to extr1, making the semantics unsound.

4 The ideal semantics and iterator removal

A crew vram can support a reference-based
implementation of sequences. As noted in Section 3.3,
however, we do not expect the vram models to support
iterators—or any higher-order construct—directly. Thus
the main implementation problem is iterator removal.

In Section 3, we present a simple set of conditional
rewrite rules, or program transformations, which can
be used to eliminate iterators from a program. These
transformations can be applied to any subterm of
a program, forming a rewrite system [11]. The
transformations are terminating but non-confluent
(const conflicts with the other rules.)

The main theorems of this paper state—for each
semantics—the class of programs for which this rewrite
system preserves the ae-preorder. The theorems are
stated for a single step a b; soundness of iterator
removal follows because the ae-preorder is transitive and
substitutive and because the transformations terminate.

For the ideal semantics, let us attempt to prove that
a b implies a ∼@ b. We do so by case analysis on the
transforms and find that the cases for const and cond

will not go through without further assumptions.
First, we must constrain the complexities of the

primitives that are introduced by the transformations:
all of these must have constant step complexity; len and
not must have constant work complexity; dist(n,A) must
have work proportional to n; and comb and rstr must have
work proportional to the length of their first arguments.
Note that these restrictions point to a reference-based
implementation.

More important, the cond transformation severely
limits the programs that can be considered. In the
source expression, instances of b and c are evaluated
in parallel, whereas in the target the b’s are evaluated
separately from the c’s. This is not a problem for
the work complexities, since the same b’s and c’s are
evaluated and the combining function (sum) doesn’t

7

id

[x1 ← e1, ..., xh ← eh , ..., xm ← em : xh]

eh

const

[xh ← eh : a]

 if ∀h : a independent-of xh

if e1 = 〈〉 then 〈〉 else dist (lene1, a)

app[
xh ← eh : gk (a1, ..., a`)

]

gk+1
(

[xh ← eh : a1] , ..., [xh ← eh : a`]
)

for g ∈ PrimOp ∪UserFun.

let

[xh ← eh : let y = a in c]
 [

xh ← eh , y ← [xh ← eh : a] : c
]

cond

[xh ← eh : if a then b else c]

comb
(
a,
[
xh ← rstr(a, eh) : b

]
,[

xh ← rstr(not1a, eh) : c
])

where a def= [xh ← eh : a].

Table 3: Program transformations.

change via transformation. But it is a problem for
the step complexity, where the combining function does
change: from max to sum. Blelloch originally noticed
this problem and defined a class of programs for which
this transformation was sound: contained programs [2].
Intuitively, contained programs are those that do not have
recursive calls on both sides of a conditional.

Definition 2. A program is contained if every
conditional expression has one branch whose step
complexity is bounded. The step complexity of an
expression e is bounded if

[[
e
]]T = O (1) . �

Theorem 3. Assume the ideal semantics and a primitive
specification that meets the constraints outlined in this
section. Let C be the class of contained programs. Then
a b implies a ∼@C b. �

To see that the ideal semantics forces a reference-based
implementation of sequences, consider the expression
[x ∈ 〈1..n〉 : y] . Referring to the semantics, an evaluation
of this expression must create a sequence of n copies of y,
and must do so with a constant number of steps and work
proportional to n. This implies that the representation of
the value σ y must have a constant size, regardless of size
of the value itself.

5 The construct-parameters semantics

Unfortunately, the ideal semantics is not implementable
on an erew or bounded-contention crew vram. The
constant cost of variable dereferencing is the source of the
problem. An obvious solution is to modify the semantics
for variable dereferencing to “charge” for the size of the
value returned; however, the semantics must then charge
for the full size of a variable each time it is passed to a
function, getting asymptotically wrong complexities for
recursive functions. Another solution would be to charge
for input, or—thinking compositionally—for the size of
the evaluation environment σ; however, this turns out
to be equivalent to charging for variable references. A
restricted version of this idea is useful, however, and will
be developed below.

The central idea of the construct-parameters semantics
is that free variable references inside an iterator should
not be free: the semantics should charge for copying them
out. This is the semantics adopted by nesl. The new
semantics changes the rule for iterators in Section 2. For
the iterator [y1 ← a1, ..., ym ← am : c] let X be the set
(free c) \ {y1, ..., ym}. Then the work complexity for an
iterator in Section 2 is changed to:(∑m

h=1 wah

)
+
(∑n

j=1 w j
c

)
+
(

n ∗
∑

x∈X S(σx)
)

Likewise, the step complexity is changed to:(∑m
h=1 tah

)
+
(

maxn
j=1 t jc

)
+
(∑

x∈X D(σx)
)

Given this semantics (and the new ae-preorder derived
from it), what constraints must we place on programs and
primitive specifications for the program transformations
to be sound? Not surprisingly, programs must still be
contained, but the complexity bounds on the primitives
are relaxed considerably.

In the case of the primitives introduced by the
transforms, all but dist must have work complexities
bounded by the sum of the sizes of their arguments (not
lengths) and step complexities bounded by the max of
the depths of their arguments (not constant). The work
complexity of dist(n,A) must be bounded by n ∗ (SA).

The soundness proof also requires that the size of
the result of an expression be bounded by the size of

8

elt-bar[
xh ← eh : eltk` (a, c1, ..., c`)

]
 if ∀h : a independent-of xh

eltk+1
`

(
a, [xh ← eh : c1] , ..., [xh ← eh : c`]

)
 if ∃h : a dependent-on xh

eltk+1
`+1

(
[xh ← eh : a] ,
prom1

k ([xh ← eh : c1] , dom e1) ,
[xh ← eh : c1] , ..., [xh ← eh : c`]

)
Table 4: Transformation rules for elt.

free variables in that expression plus the work done to
compute the result. This is true as long as all of the
primitives of the language satisfy this constraint. We say
that a primitive p is non-magical iff:

S δEp(A1, ..., A`) = O
(
(
∑

i SAi) + δWp (A1, ..., A`)
)

D δEp(A1, ..., A`) = O
(
(maxi DAi) + δTp (A1, ..., A`)

)
The primitives that we use are implemented by the

Data-Parallel Library (dpl) [9], an extension of the C
Vector Library [4]. The implementation is non-magical
and meets the other constraints given above.

Theorem 4. Assume the construct-parameters
semantics and a primitive specification that meets
the constraints outlined in this section. Then a b
implies a ∼@C b. �

6 The construct-result semantics

The construct-result semantics takes a complimentary
view of the problem, charging for “output” rather than
“input”. This gives a natural cost calculus to pro-
grammers—similar to the ideal semantics—but greatly
complicates implementation. As we shall see, there is
also a further loss of generality.

In the construct-result semantics, the work and step
complexities for iterators are given respectively by:(∑m

h=1 wah

)
+
(∑n

j=1 w j
c + SCj

)
(∑m

h=1 tah

)
+
(

maxn
j=1 t jc +DCj

)
Using this semantics and derived ae-preorder,

soundness of the app transformation imposes a much
more rigid constraint on primitives than it did in the
construct-parameters semantics. Each primitive p must

fully use its parameters, that is, must satisfy the following
equations:∑

i SAi = O
(
S δEp(A1, ..., A`) + δWp (A1, ..., A`)

)
maxi DAi = O

(
D δEp(A1, ..., A`) + δTp (A1, ..., A`)

)
All but five of the primitives in dpl meet this criterion.
We divide these in two groups: elt and rstr, and len, insrt
and prom.

One can easily see that the app rule is unsound
for elt`(a, c1, ..., c`) if a is independent of the iterator
variables: in the target, the semantics requires that
we pay for constructing [xh ← eh : a], which could be
enormous. Palmer et al . [10] propose a solution to
this problem which avoids “pushing the iterator” around
a. They replace occurrences of elt with the new
function elt which has a non-standard semantics for lifted
applications: eltk (a, c1, ..., c`)

def= eltk (dist(#c1, a), c1, ...,
c`). Correspondingly, they modify the transformation
rule app to include the special cases in Section 4; this
modification of app ensures that the transformation is
sound (relative to the ae-preorder) for elt. With high
probability, the implementation of elt in dpl incurs little
contention on an crew vram.

The app transformation is unsound for rstrk (b, a) only
when a evaluates to a value of depth greater than k ; in
this case, the problem is reminiscent of that for elt and
can be handled by writing rstr in terms of elt.

The functions len, insrt and prom are a bit more
difficult. Consider the example [x← x : len x] , which
has work L1(σ x). After transformation this becomes
len1 [x← x : x] , with the iterator subexpression having
work S(σ x) due the construct-result rule. Our solution
to the problem is to ban this expression and others like it
where the argument of len is dependent on the iterator
variable but is neither fully constructed nor fully-used
within the iterator.

Definition 5. An expression e is fully constructed iff:[[
e
]]W = Ω(S

[[
e
]]E). An expression context E [] is similar to

a program context, defined in section Section 3.2. We say
that E [] is fully used iff for every expression e:

[[
E [e]

]]W =
Ω(S

[[
e
]]E),

A program is fully constructed iff for every occurrence
len e inside an iterator such that e depends on an iterator
variable: either e is fully constructed or e appears in a
context E [e] within the same iterator and E [] is fully used.
In addition, we require the same for occurrences of insrt
and prom, regardless of whether the expression depends
on an iterator variable. �

Occurrences of len e in which e is independent of all
iterator variables can be handled by using the const rule;
a wise thing to do in any case.

9

The requirement that programs be fully constructed
does not significantly limit the expressiveness of the
language. After all, the length of a sequence is usually
of interest only when that sequence is otherwise used in
an expression. The restrictions are still less onerous for
insrt and prom: these functions are designed specifically
to support our program transformations and are of little
independent interest.

Finally, we address the issue of user-defined functions,
which inherit problems from the primitives used to define
them. Within the limits of static analysis, it is possible to
detect parameters that are never used outside of calls to
elt or rstr and to treat these parameters as we did those of
elt; however, we have yet to fully explore this approach.
Here, instead, we present a simple-minded solution
that treats the five troublesome primitives uniformly,
drastically reducing the expressiveness of the language.
We require that each user-defined function fully use its
parameters (defined in analogy to full-use for primitives).

Theorem 6. Assume the construct-result semantics and
a primitive specification that meets the constraints
outlined in this section. Let F be the class of contained
and fully-constructed programs in which each user-defined
function fully uses its parameters. In addition, modify
to ensure that const is applied whenever possible. Then
a b implies a ∼@F b. �

7 Conclusions

This study has clarified many issues which arise in
the implementation of a “flattening” compiler for a
nested-parallel programming language. In addition to
the treatment of free variables, our work has suggested
techniques for dealing with constant factors in the
implementation, and for integrating flattening with other
forms of program optimization. Our proof technique—
using a profiling semantics, ae-equivalence, and program
transformations—appears to be novel and may be
independent interest.

There are several directions for further work. On
the theoretical side, we have extended our results to a
language with a fuller type system, including products,
sums, and higher-order functions. More pragmatically,
we hope to develop full implementations of both our
ideal and construct-result semantics and conduct some
performance studies. Most important here is the
development of static analyses to lessen the restrictions on
function declarations imposed in Theorem 6. Finally, we
have embarked on an effort to improve the expressiveness
of the language and to reduce some of the constant factors
in the implementation.

Acknowledgments

Our thanks go to Dan Palmer, Lars Nyland and
Rik Faith for their work developing and implementing
the techniques discussed here, and to Guy Blelloch
for discussing with us the subtleties of his nesl

implementation.

Keywords

Data-parallelism, nested-parallelism, vectorization,
flattening, nesl, work/step complexities, vram,
profiling semantics, efficiency preorder.

References

[1] S. Arun-Kumar and Matthew Hennessy. An efficiency
preorder for processes. Acta Informatica, 29:737–760,
1992.

[2] Guy E. Blelloch. Vector Models for Data-Parallel
Computing. MIT Press, 1990.

[3] Guy E. Blelloch. NESL: A nested data-parallel
language (version 3.0). Technical report, Carnegie-Mellon
University, Department of Computer Science, 1994.

[4] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C.
Hardwick, Margaret Reid-Miller, Jay Sipelstein, and
Marco Zagha. CVL: A C vector library. Technical
Report CMU-CS-93-114, Carnegie-Mellon University,
Department of Computer Science, February 1993.

[5] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and
Marco Zagha. Accounting for memory bank conetention
and delay in high-bandwidth multiprocessors. In
Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 84–94, Santa
Barbara, CA, July 1995. ACM Press.

[6] Guy E. Blelloch and John Greiner. Parallelism in
sequential functional languages. In Proceedings of the
Conference on Functional Programming Languages and
Computer Architecture, pages 226–237, June 1995.

[7] Allen Goldberg, Peter Mills, Lars Nyland, Jan
Prins, John Reif, and James Riely. Specification
and development of parallel algorithms with the
Proteus system. In G.E. Blelloch, K.M. Chandy,
and S.Jagannathan, editors, Specification of Parallel
Algorithms, volume 18 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS
Press, May 1994.

[8] Joseph JáJá. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[9] Daniel W. Palmer. DPL: Data Parallel Library manual.
Technical Report 93:064, University of North Carolina,
Department of Computer Science, November 1993.

[10] Daniel W. Palmer, Jan F. Prins, and Stephen Westfold.
Work-efficient nested data-parallelism. In Frontiers ’95,
1995.

10

[11] David A. Plaisted. Term-rewriting systems. In Dov M.
Gabbay, Christopher John Hogger, and J.A. Robinson,
editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 2 Deduction Methodologies.
Oxford University Press, 1993.

[12] Jan F. Prins and Daniel W. Palmer. Transforming high-
level data-parallel programs into vector operations. In
Proceedings of the Symposium on Principles and Practice
of Parallel Programming, pages 119–128, San Diego, May
1993. (ACM SIGPLAN Notices, 28(7), July, 1993).

[13] D. B. Skillicorn and W. Cai. A cost calculus for parallel
functional programming, 1994. Queens University
Department of Computer Science TR-93-348.

[14] Leslie G. Valiant. A bridging model for parallel
computation. Communications of the ACM, 33(8):103–
111, August 1990.

[15] Glynn Winskel. The Formal Semantics of Programming
Languages: An Introduction. MIT Press, 1993.

11

	Introduction
	The language
	Values and Types
	Expressions
	Programs
	Basic primitive operations

	Semantics and complexity
	The profiling semantics
	The asymptotic efficiency preorder
	Primitive specifications and language implementations

	The ideal semantics and iterator removal
	The construct-parameters semantics
	The construct-result semantics
	Conclusions

