A Typed Language for Distributed Mobile Processes
(Extended abstract)

James Riely and Matthew Hennessy

Abstract Our goal has been to develop a robust and useful seman-
tic theory for a process language in which computation is

We describe a foundational language for specifying dynam- distributed over differenibcations in which processes may
ically evolving networks of distributed processesz.Drhe migratefrom one site to another, and in which sites nfiaiy.
language is a distributed extension of tiiealculus which We present a foundational language, calley far describ-
incorporates the notions of remote execution, migration, and ing distributed systems. The starting point is thealculus,
site failure. Novel features of Dinclude a language in which processes are described in terms of
their ability to send and receive values along communica-
tion channels. Although the values allowed in thealculus

nel and its location. are very §imple — only names may be communicated —the
2. Names are endowed withermissionsthe holder of a calculus is stlll_very powerful, due_to the ability to gengrate

name may only use that name in the manner allowed newnames which can be communicated and shared privately
between processes.

As in [2, 17] we use a subset of names to repredent
A type system is proposed in which the types control the al- cations or sites which can also be freshly generated and
location of permissions; in well-typed processes all names exchanged between processes. Distribution is achieved by
are used in accordance with the permissions allowed by therequiring that eachasicprocess (othread belocated The
types. We prove Subject Reduction and Type Safety The- threadP running at site’ is denoted/[P]; collections of such

orems for the type system. In the final section we define aterms are calledocated processes (or simplprocesses
semantic theory based drarbed bisimulationgnd discuss Thus, in the process
its characterization in terms of a bisimulation relation over a

1. Communication channels aexplicitly located the
use of a channel requires knowledge of both the chan-

by these permissions.

relativized labelled transition system. (vea) (¢[P][K[Q]) | £[R]
location/ is running thread® andR, wherea is running
1 Introduction threadQ; in addition, P and Q share a private channal

located at!. Newly created locations are also located and
Due to the rapid advances in networking technology there therefore the collection of extant locations formtssbased
has been a recent proliferation of commercial programming on asublocationrelation. As in TeleScript, communication
languages for distributed processes, such as TeleScript, Javg purely local; in order to send a value on a charmel
and ActiveX. This has been accompanied by the develop- thread must first move to the location at whits declared.
ment of prototype languages — such as Obliy Pict [17], Thus the communication construct of DJoin is here syntacti-
Oz [27), Facile [L] and the join calculus (DJoin)i[, 17] cally split in two, with the syntax more closely matching the
— within the programming language research community, reduction semantics. In addition certain forms of site failure
and the development of more abstract calculi, such as thecan be modeled using a “halt” primitive. The syntax af D
ecalculus [L5] and its variations, 3, 18, 20, 21, 27], that and its reduction semantics are giverSiaction2.
directly address semantic and verification issues. This work |n Section3, we introduce a type system forrbwhich
should be considered a contribution to this last research ef-ajlows a programmer to control thwapabilities or permis-
fort. sions associated with each instance of a channel or location.

*Research funded by HCM EXPRESS and EPSRC project For example, one may wish to export the capability to com-

ﬁgR”éi?;?cts ﬁ‘;‘icors'ofa%%rg;; Egngg: Oérigﬁ?o’:lﬂvgl\ﬁ}l”dgéﬁmgl}f' municate with a particular location without also exporting
{jamesri,matthewh}Gcogs . susx.ac.uk ' * 77 the capability to halt all processes running at that location

(i.e. to “kill” the location). Channels are constrained by the

values which they may transmit and both locations and chan-

To appear irConference Record of the ACM Symposilim ne!s are _constrained by the followipgrmissionswhich re-
on Principles of Programming LanguageSan Diego, strict their use:
January 1998. ACM Press. snd to senddata along a channel,

rcv to receivedata along a channel,

run torun athread at a location,
newc to createnew channelst a location, Predt ¢, = Tu|-u|—u|u=v
subl to placesublocationsat a location,

mig to movea location (with its threads and subloca- £ '0¢ P-R = nil | PIQ | vak)P | vmnP | «P
tions), and | Siw?(X:g)R [u(v)P
halt to kill a location, stopping it from running any | uzP | migu.P| halt
threads. | if ¢ then Pelse Q
We prove a Type Safety Theorem using a tagged version [proc P-R :: = nil | P|Q| wakP | (me:)\)P

of the language, where each occurrence of a name is explic- (P.Q € LProc}
itly tagged with a set of permissions indicating the manner ’

in which that instance of the name may be used. When a | 4P {P € BProc}
name is communicated, certain permissions are communi-

cated with it, as negotiated at the time of communication. Type K = chany yC {sndrev}
Well-typed terms are guaranteed to use received names only A = locy YC {run halt,mig, newc,subl}
as allowed by the received permissions. GE = k| M| Nk Z
The typing system is based on that of Pierce and San-
giorgi [16]; however, the related theorems and proof tech- Id: uvw = x|ay |4
niques — in particular our formulation of the tagged lan- Val UV == u|uV|(VL.V", n>0
guage — appear to be novel. Pat X-Z == x|x:X | (XL.X"),n>0
In Section4 we outline a semantic theory fortD We T
define a variation obarbed congruencg’(] relativized to a
typing constraint on the environment. Suppose thahdQ
are processes arilis a type environment intended to con- Table 1: Syntax
strain the activity of processes interacting witlandQ. We
then say, roughly, the® andQ arebarbed congruent a identifier, F is anabstraction(X:Z) P, andC is aconcretion
if for every well-typed contex which satisfies the con- /) Q. More generally we allow finite choice of input guards
straintA, C[P] andC[Q] arebarbed bisimilar[2C]. We dis- s, 2(x:z;) R, wherei ranges over an implicit finite index
cuss an alternative characterization of this congruence as &gy
labelled bisimulation relation over a labelled transition sys- In addition to communication, terminationil), parallel

tem for well-typed processes, relativized to constraints. The composition P|Q), iteration &P), and restriction @r)P) —
labels in the transition system identify the actions of input ;| of which appear in some form in thecalculus — the

and output, failure and migration. _ thread language includes the constructs:
We discuss related work in the conclusion.

Due to space limitations, proofs are presented in out- ® UxP, pronounced “go ta”", which moves the threag

line form and the details of the labelled bisimulation relation to locationu,
(Sectiond) have been omitted entirely. e migu.P, pronounced “migrate ta”, which moves the
current locationof the thread to be a sublocation of
2 Language Iocation.u, _
e halt, which halts the current location, and
2.1 Syntax o ifd _t_hen P else Q, which allqws the thread to test the
positionof the current location (relative to the sublo-
The language we define,) may be seen as a distributed cation relation), to test the running/haltsttusof any
version of core Pict, 7], with facilities for local syn- location and to compare named.((mis)matching in
chronous communication, code movement, and failure. theTecalculus).

The syntax is defined using a $etic of locationsor sites
k-m, a setChanof channelsor ports a-c and a sewar of
variables x-z. We letr ands range over the set afames
Name= LocuChan The setd of identifiers u-w, includes

The threadP running at site/ is denoted([P]; collec-
tions of such terms are callddcatedprocesses (or simply
processes Thus, as explained in the Introduction, in the

names and variables, as describe&actionl. For the mo- process
ment we will ignore types(, and tagsy, in our description wa (2P 1Kk IR
of the language. vea) (¢[P] [K[Q]) | ¢[R
The syntax ofbasic processesr threads given in location/ is running thread® andR, whereas is running

some extensions. Input and output operations are placedocated at’. We say that is thecurrent locationof P and
at channels using the prefe?= or ulC, whereu is an Q andk is the current location of. (It is worth noting that

while we distinguish basic and located processes, we use thdion name it is natural to wish to limit the use of that location
metavariable®-R for both; the intended meaning should be by the recipient. We use the set of permissions given in the
clear from context.) Introduction. These are indicative examples chosen from a
large range of possibilities. One can easily think of other
capabilities that would be interesting to control, such as the
ability to test for equality between names,dommunicate
them, or even to communicate them with restricted permis-
sions.

The syntax for types(, is built up using sets of the ca-
pabilities,y, as given inSectionl. Channels and locations
are of typex andA respectively, whereas tuples of values

Restriction. For located processes, there are two forms of
restriction, for channels and locations, respectively. When a
thread running af creates a new namrethe name is con-
sidered to be located &t At the level of located processes,
we note this by writingv,r), indicating that/ is the par-

ent ofr. The parent location of a channel is static, whereas
the parent of a location may change as a result of a migra-

tion. In addition, a location, once created, may have one of have typeZ. The channel types generalize those of Pierce
two states: runningf{ and halted [). Within a thread this YPeG. ! ypes g .
. . and Sangiorgi]6] and location types are an extension of the
information need not be recorded as we assume that every : i

same approach to locations. Note that in the channel type,

location is live when it is first created. Within a process, chanZ, y dictates the use of the channel (send, receive, nei-

however, the state of a location may _change as a result of %her or both) while the typé constrains values that can be
halt operation and therefore we additionally record the state : . ~
communicate@n the channel. The meaning of the typx

of a bound location. ThL(s'gm:Z)P indicates that the located
: . ST . is less obvious. Values of this type are used to communi-
process has a private locatiom which is alive child of ¢, .
. R ; . . cate channels at fresh locations. For example, the process
while (v,m:{)P indicates thamis a privatedeadchild of /. i . .
N) . . : ¢[al (kzb)] may send the valuk:b along channeh. This
Admittedly the latter is of little use but since locations can ; .
value informs the receiver (who must also be locatet] af

be killed, and their status tested, this information must be .

) . . locationk and of the channdd located ak. In order to usé
retained for the operational semantics. The general form ofin any way .g. to distinguish it from other names k;, the
restriction for locations is;?m:b whered € {1,1}. yway ¢€.g. 9

receiver must receive th@n capability onk.

Names, variables and values. IntheTtt-calculus the only Note that, as in1€] in the syntax for processes all bound
valuesthat can be transmitted between processes are namesccurrences of identifiers must have associated with them
Here we allow a more general set of values, and therefore inan explicit type. Thus in the threaaP(X:{) P, the type(

the input construca?(X:{) P, X is apatternagainst which indicates the type of value which can be received, whereas
the more general values may be matched. The allowed classn the processv,r:&)P the type determines the capabilities

of values, and associated patterns, are definé&tkitionl. of the newly created name here we call areception type
(For (X:C) P to be well formed, the patteix must beinear, andg anallocation type

i.e. each variable may appear at most once, and the structure As stated above we are mainly interested in the type sys-
of X must match the structure df) Note that the set of tem as a way of controlling permissions, and thus we have
values includes the set of patterns. We say that a value isnot endowed it with features such as recursive types, poly-

closedif it contains no variables. morphism, linearity, etc., many of which are entirely sepa-
Closed values of channel type have the famvhereas rate concerns; for example, the generalization to recursive
those of location type may have the forhor the form/:a types is straightforwardlL[, 24].

Intuitively, when a location is communicated, a process may In Section3 we introduce a type system forfand prove
also communicate a subset of the channels defined at thathat well-typed programs are free of runtime type errors; to
location. For example, a process that receives the valueprove that the type system is safe, we also give a definition
¢:(a,b) is granted knowledge of the locatidrand the chan- of runtime errorin Section3. The definition formalizes the
nelsa andb located at. intuition that an error occurs when there is an arity mismatch
We assume the standard notionfigfe andboundoccur- in a communication (as in the polymorphiecalculus), or,
rences of variables and names. Variables are bound by thefor example, when a process attempts to use a name without
input construct, whereas names are bound by restriction. Aobeying the proper restrictions on its permissions. Consider
term with no free variables islosed Except where noted, a procesd which sends a fresh locatiohto Q, explicitly
we assume all terms are closed. We also assume the standardienying thehalt capability; if Q subsequently attempts to
notions ofalpha-conversiorand substitution whereP{Yx} kill ¢ then a runtime error occurs. Note that different in-
denotes the capture-avoiding substitutionuofor x in P. stances of a name may have different permissi¢dhsnay
The notationP{Y/x|} generalizes this in an obvious way; for have thehalt capability on¢, even though it does not com-
{Y/x]} to be well-defined, it must be that the structure of the municate this capability t.

U exactly matches the structureXf Tags. In order to define runtime errors, all instances of

Types. Our main interest in introducing types is to con- names in Draretaggedwith a capability set (excluding the
trol thecapabilities or permissionsassociated with each in- restriction operators, whose meaning is independent of tags).
stance of a name. For example when exporting a new loca-The name tagged with capabilitiegis writtenr,. However

the type system, iBection3, does not refer to these tags,and 6 € {1,]}. We suppose that the root node of the tree is al-
after proving the Type Safety and Subject Reduction Theo- ways live, as otherwise reduction is impossible. Below the
rem these tags can be ignored so long as one considers onlyoot, the “top-level” locations are meant, intuitively, to cor-
well-typed processes. For this reason in most of the informal respond to physical machines or network addresses, while

examples discussed in the paper tags will not be used. subsequent descendants might correspond to “processes” or
“subprocesses”.

Notation. We end this introduction to the syntax with a de- We do not give an implementation of location trees, but

scription of some convenient notation. rather describe them abstractly. Location trees support the

e We write fn(P) for the function which returns the set following predicates:

of free names occurring iR. Similarly, locgP) re- e L Tk if kand all of its ancestors are alive;
turns the set of free locations occurringfnand n(P) e L -k if kis the parent of; and
returns the set adll names occurring iR. These func- e Lk —kif kis an ancestor of (other than its parent).

tions are also defined, in the obvious way, for other
syntactic categories.

e We routinely drop annotations from terms when they
are uninteresting or clear from context; thus we may
write (v2m:Q) asvom), (v,m), (vm:g) or simply (vm.

o We often denote groups of similar things using a tilde;
e.g. we write (V)P instead ofvr?)...cvr")P anda in-
stead of(a'...a"). We also adopt other standard abbre-
viations from there-calculus.

These predicates, together with the (mis)matching construct
u =YV, make up the formula¢ of Sectionl. We writel - ¢
if the location/ is unimportant for establishing the property
¢; note that this is the case for the matching predicate. In the
semantics we also use conjunction and negation, with the
obvious meanings.

Location trees also support the following functions,
which we write postfix:

e We use underscoreg.f). randr) to indicate that a o L, Ee adds locatior? as a childk with statusd. To be
name is tagged, and define the projection functions defined,k must appear i, and/ must not; therefore
“name” and “perm” in the obvious way. We adopt the in £, 2¢ the node/ is a leaf.
meta-syntactic convention that nafne= namer) = e L{¢—K] changes the tree ordering so tkas the par-

r, although perr(r) and pernfr) may differ. We also ent of . To be defined the operation must preserve the
use the function “perm” on simple types: for example, tree structure.
perm(chanyk) =. O o L{ |/} marks/ as dead.

)) The definition of the judgments>P — L'>P' is given
2.2 Reduction semantics in Section2 where it is assumed that all the process configu-

We give the operational semantics tar terms of a reduc- rations arewvell formed i.e. all of the free locations if? are
tion relation betweeprocess configurationdhe judgments ~ foundin£ (i.e. locs(P) C locs(L)).

are of the form Structural equivalence. Following [5, 14], we define re-
duction using an auxiliary structural equivalence, which we
now explain. The structural equivaleneeincludes many
standard rules and axioms. As usual, we presuppose that
= is, in fact, an equivalence (reflexive, symmetric and tran-
sitive) and that it relates all terms that differ only in the
names of bound identifiers. Also as usual, we suppose that
= is preserved by composition and restrictiare.(P=
Q impliesP|R= Q|R and (vr)P = (vr)Q), and obeys the
monoid axioms for compositionP = P |nil, P|Q=Q|P
andP| (Q|R) = (P|Q) R

The axioms specific to Dare given below:

LoP— L'>P

whereP and P’ are (closed) located processes, @&and

L’ are runtime environments for the system, recording the
position and status of each location. We sometimes refer to
L'>P' as thecontinuationor theresidualof L P.

To see that the position and status of locations must be
recorded dynamically, observe that the position may change
due tomigration and the status may change due to a halt.
Note that even without the conditional construct, the position
and status of a locatiodo affect the meaning of processes.
For example, the ter#{P] is unable to reduce if or any of

) . o : ; (s-rep) {[+P] = ([P]| £[*P]

its ancestors is halted. In addition to direct execution of the (s-nil) ¢[nil] = nil

halt qperation, a location will halt if it migrates to a parent (s-split) E[ﬁ Ql = P |4[Q]

location that is halted. (s-chan) LvayP] = (val[P] if newc € perm({)
Location trees. To represent the runtime environmentwe (s-loc) LvmP] = (vjm£[P] if subl € perm(()
take L to be alocation tree i.e. a tree with nodes drawn andm# ¢

from Loc (each location name may appear at most once). In (s-extr) Q| vSP = (s (Q|P) if s¢M(Q)
addition to the position of locations in the trele records (s-swap) (WNH(VSP = (WP if s¢ {kr}
also the status of each node € locg(L), where as before andr ¢ {/,s}

(r-comm) L £[3ia?(X:Zi)R] | £[b! (V) Q] — Lo L[R{V/x]] 1£[Q]
if L+ 7¢anda =bandrefingV, ¢;) =V’

(r-condy) L £|if ¢ then Pelse Q| — L>(|P if LETLAG
(r-condy) L> £|if ¢ then Pelse QJ — L/ Q]] if LHT¢A—¢
(r-goto) L £[k:P] — Lok[P] if LFT¢ATK
(r-mig) L £|migk.P] — L=k} > £[P] if LF10
(r-halt) L £[halt] — L{ L} o il if L1/
£2meP— L, SmeP L>P— L/sP

(r-rstr) -
L ©EMP — L v mP’

L>P— L/>P
L>R|P — L'oR|P

(r-str)

Lo wvaP — L'>wva)P

P=Q LrQ—L>Q Q=P

LoP— L'>P

Table 2: Reduction relation

Of these,s-rep, s-extr and s-swap are standard axioms,
merely adapted to our syntax. The rulail allows for the
garbage collection of threads, whereasplit allows the
threadP | Q to split into two independent threa@sand Q.
The rules-split provides a clear contrast between the treat-
ment of locations in M and the treatment aéimbientdn the
ambient calculusd]; in the ambient calculuss-split does
not hold. The rule-chan states that[(va)P] is equivalent to

refing(ay, chan,{) =a, if y2y

refingky, locy) =ky if yDOY

refing(uzU, Azk) =wviV if refine(u, A) =v
s _and refingU, K) =V

refingU, Q) =V if Vi: refingU', ') =V!

Table 3: The partial function “refine”

(ve@)l[P] as long ag contains the permission to create new
channels. Note that when a channel declaration is “pulled
out” of a thread its location is recorded. Ruléoc states
that the same is true for location declarations, although her
we also record the fact that the new location is presumed to
be alive (at least until a reduction occurs).

running code, whereas goto moves inactive code; and mi-
egration maintains location boundaries, whereas goto does
not — when using goto, the exported thread merges into
the threads of the new location. Movement operators which
combine these attributes in other ways are also possible;
Reduction. We now briefly describe some of the rules in some of these are discussedh [

the reduction semantics. The goto rule The ruler-comm is the most complicated of the rules in
Section2. Here, an abstractiofX:{) Q and a concretion
(V)P are ready to synchronize at chanteof location /.

The permissions required by the abstraction are advertised
by the reception typé, whereas the permissions offered by
the concretion are manifest in the tagged valu®©bviously

for a communication to occur, the arities éfand { must
match, as in the polyadie-calculus. In addition, the permis-
sions offered by must satisfy the requirements &f For
example, if the abstraction expects to receive a location with
only the halt permission, but the concretion offers a value

to become a child ok (assuming that is alive), and subse- without this permission, then communication cannot occur
quently the threa® andany other threads running atare (in fact there is a runtime error, as discussecdbaction3).
executed under the new set of ancestors. Note that, unlikeFurther, we wish to guarantee that the tagged vllusade
goto, the effect of a migration ison-local The same is true available to the body of the abstraction includes only those
of halt. It is for this reason that the effect of these operators Permissions requested liyand does not include any extra

is recorded in the runtime environmebt rather than in the ~ Permissions that happen to be availabl&/ibut aren’t sub-
local process term. ject to negotiation. Continuing the above example, even if

In Cardelli and Gordon’s terminologys], migration is the concretion offers a instance of locatiowhich happens
subjective— a local thread initiateg’s move to the new O have thamig permission in addition thalt, the abstrac-
parent location — whereas goto @bjective— a foreign tion should only be able to exploit thealt permission, since
thread “invades” locatiofk. In addition, migration moves N0 mention is made ahig in {.

Lolk:P] — LK[P] if LF1T¢

states that the thredd: P, running at the live locatio, can
move the threadP to locationk. In contrast, the migration
rule

L5 l[migk.P] — LYK} > €[P] if L+ 1¢

does not change the location®fbut rather th@arent loca-
tion of the current location{. In this reduction/ is moved

We formalize these activities — extended arity check-
ing and permission refinement — using the partial function
“refine”. If the permissions offered by satisfy the require-
ments oft, then refingV, ¢) will be defined. In addition, the
valueV’ returned by refingV,) is refinedin the sense that
the permissions on the tagsVhare reduced to match those
declared inl. In r-comm it is the refined valu&/’ that is
substituted into the body of the abstraction. The definition
of “refine” is given inSection3. For example:

refing{(kg,mg), locy) is undefined
refine(Kyuny » 10C{run,natey) IS undefined
r.eﬁne<k{run,halt.mig}7 IC’C{run,halt}) = k{run,halt}

Note that if refiné¢,V) = V', thenV andV’ are the same
when tags are ignored.

The use of tags and tag refinement is the major difference
between our reduction semantics and thail6f.[Here when
values are communicated the associated permissions are e
plicitly communicated as well, appropriately refined by the
type of the channel used for the communication, while in
[16] only the names but not the permissions are communi-
cated.

The rules for the other constructs of the language are
straightforward although it is worth noting how the rules for
restriction are used. For example, using the structural equiv-
alence and the migration ruleystr can be used to derive:

L vem) m{(migk.nil) | Q] — L (wm) m[Q)

Here the private sublocatian of ¢ has been moved from
to k; one effect of this is to move the thre@dfrom ¢ tok as
well.

But for the use of “refine”, our reduction semantics takes
no account of the type of identifiers or the tags on names.
In fact, these rules allow reductions which should be forbid-

den by the explicit permissions on names. We address this

issue with a typing system and a notion of runtime error in
Section3.

This ends our description of the reduction semantics. We
should point out that, independently of the explicit use of lo-

cations, the presence of permissions in types makes the lan-

guage considerably more complicated than thealculus.
Consider the process locatedkat

K[(vo) (¢: (vayvb)P)]
which can reduce to:
(Vi) (V) (veb) ([P

This process has a private locatibmwith two private chan-
nelsa andb at/, with their capabilities specified by the allo-
cation typed,, {5 and{y, respectively. As in thercalculus
the threadP may make these private resources known to
other threads via communication. Here, howewreneed

not communicate all of’s resources at once. For example,
if P contains a component such as

ke (ul (¢za)w! (£:b) nil)

then the receptor on channelill gain knowledge only of

a, whereas the receptor am will gain knowledge only of

b. More importantly, the permissions received with these
names are determined by the channetsxdw, and in gen-
eral (in a well-typed system) the reception types will be more
restrictive than the allocation types. Thus as the system
evolves individual components will gain different views of
the capabilities associated with channels and locations.

2.3 Examples

We now present a series of examples based on a simple
read/write cell. The examples use recursive definitions of the

Jorm A < P, whereP is a basic process. It is well-known

that such recursive definitions can be implemented using the
replication operatokP (see for examplel[4]). First consider
the following definition of a “cell'C(v).

C(v) <= p?(X)C(x) + g?(y=2) (C(v) |y=2Z! (v)nil)

C(v) contains two channelsp for “putting” data into the

cell andg for “getting” data out. To read the value of the
cell, a user must send the name of a continuation channel on
g, along with the location of that channel. For example, a
“user” atk can be defined:

iI?2(y)Ui(y) | £z g! (ki) nil

Then the systend[C(v)] | k[U1] can reduce, via code move-
ment, to

Uy < (Vi)

(C)] | Llgt (ki) nil] | K[i?(y) Up(y)]
then, via local communication &t to
(C(v)] | elkzit(v)nil] | K[i2(y)U1(y)]
then, via code movement to
(V)] | K[t (v)nil] | K[i2(y)U1(y)]
and finally, via local communication &t to:
(C(v)] | KU1(v)]

In this final configuration, the cell has returned to its initial
state and the user has obtained the cell’s current contents
In this example, the asynchronous output of thand join
calculi is mimicked by a particularly simple form of code
movement followed by local communication; indeed in fur-
ther examples we will use the abbreviatidai! (v)” for the
thread k::i! (v) nil.”

As a variation, we now define a “cell server” which gen-
erates “new cells” on request from a client. In the following

example, the server creates the cell at a new location andthe sublocations of the new cells may be killed by arbitrary

then informs the client of its whereabouts.

CS — req?(x1y) (NG |CS)
1vp,8) (Cog | Xy (m:(p,g)))

whereC, ; is the code for a cell, with some appropriate ini-
tial value.

A user which requests a new cell from the cell server
located at might take the form:

NG < (vmm

Uy < L.req! (kzi) | i2(x:(y,2))Us(X, Y, 2)

Then the systemCS)] [k[U2] can evolve to:

(CS) | (vem)(vmp, g)(M[Cpg] | K[U2(M,p,g)])

In this configuration, there is a new cell running at location
m, and the user has knowledge of this location together with
its methods andg. Note that here the new cell is running
at the serveri.e. the cell locatiormis a sublocation of the
server locatiort.

An alternative is to define the server so that it generates
the new cell at a sublocation of the client, or more generally
at a location determined by the client.

CS « req?(x:i) (NG3|CS)
NGCs <= xz(vp,g)(Cog |i! (p,g))

Here the server receives a locatiotogether with a channel
at that location. It first goes to the received locatiomhere

clients, or the methods might be interfered with: a client
may start new threads at the sublocatiarthat intercepts
data received on these channels. This undesirable activity
can be constrained by restricting the capabilities passed to
users. For example ifis defined to communicate values of

type
IOC{run} “ (Chan{snd}z p> Chan{snd}zg)

then any user of the cell will only be able to use the chan-
nelsp andg to sendvalues. Additional constraints can be
specified in the type&, and{y.

3 The Typing System

Judgments of the type system for basic processes have the
orm

ARy P:proc

which may be read: “in the type environmenthe proces®
is properly typed to run at locatiom” For located processes,
the scriptw is dropped.

Type environments. Inthe example judgment above, the
type environmenh records the type and location of the free
identifiers inP. We represent type environments, () as
partial maps ind — Typex Id and adopt several related no-
tations. Data stored in a type environment is retrieved us-
ing the projection functions “typ€ and “loca” which return

the type and location of an identifier, respectively. After al-

it starts a new cell and, in parallel, sends the names of the|gcation, the location of an identifier is only significant for

cell's methods on the local channel

channel types. For channel identifierdoca (u) returns the

To use such a server, a user might generate a new sublojgcation at whichu was allocated.

cation with an associated channdbr receiving informa-

The updatefunction is written postfix ad, yu:Z, which

tion; then send these names to the server; and finally start &jenotes the environment obtained by adding the identifier
process at the new location to receive the names of the cellig A with type at locationw. To be well definedw must be

methods. Such a user is defined as follows:
Uz <= (vmym:: (i) Lreq! (m(i)) | i2(x,y)Us(x,y))

Now the systemf[CS;] | k[Us] evolves to a configuration in
which a new cell is generated at the client ite

(CS] | (M) (Vmp, g)(C p,g] ‘ m[Ué(p,g)]),

We should point out a similar cell generator could also
be defined using the migrate primitive:

CS, = req?(x:i) (NC4|CSy)
NCs <= (Vym)(Vmp,g)M: (Cp g | migx.x.i! (M

:(p.g)))

On receiving a request first the generator creates a new local

sublocationm and starts a new cell there. This sublocation
then migrates to the client’s location and informs the client
(e.g. W) of the new method names.

These cell generators are open to various forms of inten-
tional and non-intentional misuse by clients. For example

a location already defined ih andu must be fresh. In fact,
we make a stronger requirement: for locationss, yu:A” is
defined only if

subl € perm(type, (w))

and, similarly for channels &, yu:k” is defined only if

newc € perm(type,(w))
For example, assuming that has thesubl and newc per-
missions inA, we have the following:
typeA.wu:K(u) =K IOCA,WUIK(U) =W
typeA7Wu:)\(u) =A |OCA,Wu:)\(u) =u
The update function is generalized, structurally, to val-
ues. Thus, we writd, ,U:{ for the extension ofA with the
identifiers inU at typel and locationw. For example:
A, w(m,a):(AK) =
A, w(m:a):(AiK) =

A, WM pak
A, wmA, makK

typey (X) <k AFPQ AP Q
(V1) loca(X) =w (L1 (B1)
ARy XK Abnil AFP|Q Akynil Al «P AR P|Q
typey(a) <K A jakk-P A wakhky P
v2) loc (L)— (B2) ————
ARy ak AF (viak)P ARy (vak)P
typey(x) <A A /mAEP A wmA R P
(L) ——— (B3) —————
ARy XA AFXA A (vim\P Ak, (vmA)P
type,(¢) <A At Llocruny AEP Aty ulociyn AP
(L4) (B4)
ARy OGN AF LA A [P Ay u:P
Vii Ak VT A by WEIOC (g}, UzlOC gy P
Vo) ————=—=— (BS)
ARy Vi Ay uid, vil ARy migu.P
~ P)—
ARyuN AgViK Aty U= Vv:bool ARy wiloc paiy
(V6) — (Bg) —————————
ARy (UuzV):(AzK) ARy A ARy halt
Ay Tubool Aly —u:bool Aty —u:bool Ak ¢:bool, P, Q

Table 5:

chany ' < chany
Iocy/ <locy
Nzl <N

(&L..&8M < (¢t..7M

Vii AkyUichangen & A, wXidi tw P

7)
Al if ¢ then Pelse Q

(B8)

Al 3iu?(X:G) R

Ay uchang,g1(, Vi(, Q
9)
Aty Ul (V)Q

Typing relation for values (V), located processes (L), predicates (P), and basic processes (B)

if y Dy andif rev € ythenl’ <
if snd e ythenl <7

ify' Dy
if A <Aandl' <
if & <Z,1<i<n

Table 4: The subtyping relation

Subtyping. The typing system is built up using tkabtype
relation defined inSectiond, which adapts the subtyping re-
lation of [16] to our type system. Intuitively < { indicates
that¢ is less restrictivehan(, in the sense that whenever a
context is well formed under the assumption thags type
¢, then it is also well formed assuming thrahas the more
general typ&. Said another way, every value of tyges

also a value of typé.

For example, if a context is well formed assuming that
has the permissiorun, then clearly it is also well formed
under the assumption thdthas the permissionsun and
mig. Thereforeloc(,,n mig) IS CONsiderednore permissive

thanlocy,ny; that is:

IOc{run,mig} < Ioc{run}

Note that more permissive types dogver in the ordering.

In the case of channel typesan,{, the parametef con-
stitutes a contract between sender and receiver. A receiver
may use the received value witt mostthe capabilities
specified byl. More permissive types allow the receiver to
assume that the data has more capabilities. For example:

Chan{rcv} (loc{run,mig}) < Chan{rcv} (loc{run})

On the other hand, a sender is obliged to send values that
haveat leastthe capabilities specified &y More permissive
types allow the sender to send data with fewer capabilities.
Thus:

Chan{snd} (Ioc{run}) < Chan{snd} (Ioc{run,mig})

In short, input ¢cv) is covariant and outputsfd) is con-
travariant. For further discussion, seej

Typing. The judgments of the typing system are given in
Section5, where we abbreviate the statemeftsy, P:proc”
to “Aky P” and “A+ P:proc” to “At+ P". In the table two
auxiliary typing judgments are also given: for values and
predicates. The typing system is defined on expli¢atyged
terms, although it ignores tags entirely. Tags are included so
that runtime error and type safety can be defined below.
Many of the rules are adapted from those of][al-
though the style of presentation is somewhat different. We
make heavy use of judgments concerning identifiers. The

judgmentA K, u:k should be read “id\, uis a channel iden-
tifier at locationw with at leastthe permissions declared in
K.” Similarly, bothA K, u:A andA F u:A should be read “in
A, uis a location identifier with at least the permissions de-
clared inA.”

As an example of the use of the type rules, consider the
judgmentA Ky u?(X:{)P. To infer thatu?(X:{) P is well-
typed to run atv it must be that:

o the identifieru is a channel aiv which has at least the
permissiorrcv and a transmission type at least as per-
missive ag; and

e the continuatiorP is typable given the additional as-
sumption that the values to be input have the ®pe

So in order to infer thaa?(x:k) P is well-typed at, it must
be thatP is typable using the extra assumption tkas a
channel (of typex) located atw. Similarly, to infer that
a?((z:x):(A:k)) P is well-typed, it must be tha® is typable
under the extra assumptions tlzas a location (of type\)

andx a channel (of typ&) located atz.

It is worth pointing out a difference between rul@s)
and (s5) for thread movement and migration, respectively.
To typemigu.P atw it must be thatP is well-typed at the
samelocation,w. On the other hand, to type: P at w it
must be thaP is well-typed to at theewlocationu.

There is also a subtlety concerning the matching of chan-
nel names. In well-typed terms channels can only be com-
pared at their home location. Let us wrie= b]P as an
abbreviation for the matching terifia = b then P else nil.
This term can only be typed in an environment in which
loca(a) = loca(b). This means that

a?(xzy) b?(Xzy) [y=Y]P

cannot be typed. However the following term is typable,
assuming thaP can also be typed in the appropriate envi-
ronment:

a?(x:(y,y)) x:[y=y]P

The typing system satisfies a humber of standard prop-
erties which are collected below. First we lift the subtyping
relation to type environments. We say tliais refined byA
(I < 4) if for everyuin dom(A):

type- (u) < typey(u) and log (u) = loca(u)

Lemma 3.1 (Weakening, narrowing).

(@) If A+ P thenA, wu:{ - P.

(b) If A, wu: =P andg < { thenA, yu:€ - P.

(c) IfAFPandl <Athenl - P.
Proof. (c) is immediate from (a) and (b). (a) and (b) follow
by induction on the type relation, relying on similar results
for basic processes. O

err

(e-run) L[P] if run ¢ perm(¢)
(e-rev) (viai) £[31&?(X) R] =5

if k= ¢orrcv ¢ perma)
(e-snd) (wa) £[a! (V) Q] =% if k # £ orsnd ¢ perm(a)

(e-comm) £[¥;a?(X:¢i) R] | £[b! (V) Q] =5

if Ji: & =Db: refingV, ;) undefined
(e-cond;) (W) £[if a=Dbthen Pelse Q] =% if k#¢
(e-conds) (Wb) £[if a=bthen Pelse Q] =% if k#¢
(e-goto) ([k:P] &% if run ¢ perm(k)
(e-mig) {migk.P] =% if mig ¢ perm(¢)
orsubl ¢ permk)
(e-halt) ([halt] = if halt ¢ perm(¢)
(e-loc) L[(vmP] =5 if subl ¢ perm(£)
(e-chan) {[va)P] 2% if newc ¢ perm(£)
p -£m, P=Q Q.
(e-str)
vnP &L P|R-EL p &

Table 6: The error predicate

Theorem 3.2 (Subject Reduction).
(a) If P =P thenAF Pifand only ifA- P'.
(b) If L>P — L'>P thenA - P impliesA+ P'.

Proof. By induction on the definitions of structural equiva-
lence and reduction, respectively. The only non-trivial case
is the reduction rule for communication. O

Runtime errors. We now turn our attention to explaining
in what way our typing system excludes the possibility of
runtime error. Informally, a process produces a runtime error
if:
e it attempts to send a value on a channel that violates
the channel’s type, or
¢ it attempts to perform an action without having the nec-
essary permissions.

In Section6, we formalize this intuition by defining an er-
ror predicate on terms (which we write postfix Bs®™):
if P €% thenP may immediately produce a runtime error.
The definition is long but straightforward. For example the
processt[k: p] produces a runtime error if the term lacks
permission either to run dt(run ¢ perm(¢)) or to run atk
(run ¢ perm(k)).

The most complicated case is for a potential communica-
tion:

R=([a?(X:{)P]|£[a! (V) Q]

Note that here, according to our conventions, name-
namer) =r, so both the abstraction and the concretion must
be at the same location and channel in order for communi-
cation (or error) to occur. This terR produces a runtime
error under any of the following conditions:

alacksrcv permission,

alacks thesnd permission,

either/ or ¢ lacks therun permission, or

the valueV is incompatible with the received tyde
i.e. refingV, () is undefined.

R will also produce an error if it is placed within a context
that allocates at a locatiork different from¢.

Type safety. In general it is not reasonable to expect
that well-typed terms are free of runtime errors for the sim-
ple reason that, by design, the typing systigmores tags
which, instead, are the basis for the definition of runtime er-
ror. For example, ihalt is not in the permissions df then
{]halt] will generate a runtime error, even though the term
can be typed by any that provides? with run and halt
permissions. The problem is that the permissions decorat-
ing £ need not beonsistentvith the type environment. The
problem is resolved by adding side conditions to the rules
for names inSection5. These rules become:

(@) <K Jocy(a) =w
v perm(a) 2 perm(k)

: typea(£) <A
Ay ON A LA

perm(£) 2 perm(\)

We write A I- P to indicate thatA - P can be derived in
this slightly more exacting typing system, where the tags on

Lol[yia?(X)Ql a2
Lol[al (V)P la
LrevaPlg

Lo vmP g
L>P|Qlg

LePlg

if L1714

if LF1¢

if L>P|g anda ¢ n(p)
if L>Plg

if LoPlg

if P=QandLrQlg

Table 7: The commitment predicates

[20]. The basic approach is to say that two proces$saad
Q are semantically equivalent if in eveayppropriatecontext
C, C[P] = C|Q], where= is a simple behavioral equivalence
based on some notion observation For this simple equiv-
alence~ we adapt the definition dfarbed bisimulationwe
are then left with the question of what are appropriate con-
texts in this typed language.

We first adapt the definition of barbed bisimulatici]
to Dt At this point we ignore entirely the tags on names,
instead working with closed, well-typed terms. Throughout
this section, let\ andl" range oveclosedtype environments
(i.e. environments whose domain contains no variables). For
convenience, we extend our type system to process configu-
rations using the rule

identifiers are examined to ensure that they are consistent

with their intended use, as indicated by their derived types.
We have the following:

Theorem 3.3 (Type Safety).

(@) If L-P — L'>P thenAl- P impliesA I- P'.

(b) AlFP implies— (P &%),
Proof. The proof of (a) is readily adapted from the proof of
Theoren3.2 (b) is proved contrapositively, by induction on
the definition of errors, relying on the fact that “untypability”
is preserved by, composition and restriction. O

In light of the Type Safety Theorem, we are justified in
dropping tags from well-typed terms; in particular the reduc-
tion relation, given inSection2, can safely be interpreted
on untagged processes. Aft- P is a closed term, we can
generate an error-free tagged term simply by decorating ev-
ery occurrence of a namrén P with the permissions found
in type,(r) (of course A must be augmented when passing
through a restriction). Note, however, that this translation is
not preserved by reduction: the permissions associated with
an instance of a name amefinedwhen the name is commu-
nicated.

4 The Semantic Theory

In this section we show how a semantic theory can be de-
veloped for Dt, using the ideas dfarbed congruencéom

10

AFP locgL) ClocgA)
AFL>P
and define:
PConfig = {M|3A: AFM}

PConfigh) £ {M| AFM}

The (strong) commitment predicates, defined over con-
figurations inSection7, determine the ability of a located
process to immediately communicate on a specific chan-
nel. We usef to range over the set ofommitments
{al,a?|ac Chan}. The commitmen@? indicates that a
process is willing to accept data on chanagWhereas the
commitmenta! indicates that it is willing to offer data on
channela. The strong commitment predicates are gener-
alized toweak predicates in the standard manner: de¢
denote the reflexive transitive closure-ef:, and letM | if
M = M’ andM’ |g.

Definition 4.1 (Barbed bisimilarity). For each A, let
~p be the largest symmetric relation ovBConfigA) x
PConfigA) such that wheneve ~; N:

(a) VB: Mg _impl_iesN I, and '

(b) YM’: M — M’ implies3N’: N= N"andM’ =~ N'.
We say that configuratiord andN arebarbed bisimilar at
Aif M A, N. O

We now define the related contextual congruence. Intu-
itively we wish to say thaM is equivalent taN at A if M

andN are inPConfigA) and for everyappropriatecontext

C, C|M] =, C|N]. These contexts are intended to provide
testingscenarios for the terml and N [10]; therefore it

is sufficient to restrict our attention to contexts in which a
located procesR (the experimenter, or observer) is run in
parallel withM andN. Thus, barbed equivalencat 4, (
=) is derived from barbed bisimilarity by quantifying over
a restricted set of contexts:

Definition 4.2 (Barbed equivalence).(L>P) ~p (KX>Q)
if VR: AFR: (L>P|R) =) (KrQ|R) O

Note that while thefree namesn R are constrained b,
this property is not preserved by reductidhmay export an
arbitrary number of private names infband Q, effectively
making these names free in the continuationR.of

Barbed equivalence provides a primitive proof technique
for reasoning about processes. Indeed, substantial theorem
can be established this way€ 1]. Proofs using the def-
inition of barbed congruence directly, however, are hard
work due to the quantification over all possible observers.
It is useful, therefore, to find alternative characterizations
of the equivalence which do not involve universal quantifi-

cation over observers. Such alternative characterizations,

in the form of (labelled) bisimulation relations, have been
given, for example, for the synchronous and asynchronous
T-calculi [] and for distributedccs [1€]. In the full

paper, we present such an alternative characterization of

barbed equivalence for @ for image-finite processes.
Space does not permit us to present the full definition here,
rather we discuss some of the issues involved in developing
thelabelled transition systerfLTs) which is the basis of the
alternative characterization.

In constructing a labelled transition relation for the or-
dinary tcalculus [L5, 20, 4], one must be careful to distin-
guish the communication of free name(which a testing
context may already know about) from the communication
of a bound namgwhich is guaranteed to be fresh for any
testing context). In thetcalculus only thepossessionf a
name is important: either a tester has a name or it doesn
(i.e. either the name is free or it's not).

In D1tthe story is more complex. A testing context may
have a channel, for example, without having the permission
to communicate on it; or it may have a location, without
having permission to kill it. To see the effect that this will
have on the labelled transition relation, consider the process

t

P = ¢[vay(vm) c! (a,m) (Q]| a?(z) nil)]

wherec has the typec = chanyyc, sna} (Ka,Am) andka =
chang,e, sna} (Aa). Using the ordinary sorting rules of the
calculus, a process that receives the vdhen) is immedi-
ately able to send the valumeon channel. Thus in thaLTs,
one expects the transitions:

p ualumeam, ¢iq) | ¢fa?(Z)ni] 22 [Q)

11

In D1, the permission capabilitiesy,, andA, (given in the
typeskc andky, above) are crucial in determining whether
there is any context that can observe this series of actions.
Aa specifies the capabilities required for values that are sent
on a, and\, specifies the capabilities that the context may
assume to be present in the received locationThus, the
edge labelledd?(m)” is possible only if the received capa-
bilities satisfy the requirements @y i.e. Am < Aa. There-

fore the transitions of thers must be parameterized by a
type constraint, expressing the knowledge of the context or
environment.

Continuing to discuss this example, note that while the
context’s ability to use the received valaés constrained by
the type of the channel on which the value was received, this
is not true for the threa®. The use of the namesandmin
Q is constrained only by the allocation type of these names
(via the restriction operator). The allocation type is in gen-
&ral more permissive than the received type. In particQar,
may be able to seneh on a, even though no valid context is
able to do this.

A second complication arises due to the fact that the
name of a location may be communicated while the name
of the location’s parent remains hidden, or private. For ex-
ample, we will have (for appropriats):

Lo (k) (vemy £[al (m) al (k) P] -2+ alm

vk (L, ¢k, km > £[al (k) P])

Note that in the residual, the restriction ois lifted, while
that on its parenk is maintained. In additior. must be
updated to record the ancestryngfwhich of course includes
k, and thus the restriction ok is forced to sit outside the
configuration, encompassing

In such a restricted configuration, the restriction operator
limits the power of an outside observer to establish the struc-
ture of the location tree. Suppose in the above example that
m s alive and is communicated with tlran capability. In
this case an observer can establish thas an descendant
of ¢ (using the predicate»¢ at m) but cannot establishn's
parentageij.e. for no k will the predicate—k be true aim.
From the standpoint of the receiver, the locatiofs anor-
phan In the example, the subsequent communicatiok of
helps to clarify the ancestry ofi

(k) (L, (k, km > £[al (k) P]) -2 alkL, k, gm > £[P]

The reverse situation occurs when a process receives
a location from the environment without knowledge of its
parentage. Rather tharrestricted configurationthe result
is a configuration with gartial location tree i.e. a local
tree in which some nodes are “missing”. Titws is defined
over these restricted, partial configurations.

The transitions of theTs are labelled with actiong, de-
fined as follows:

uoo=1|av:g| vhanv
| 1e] L] =k]| e~k | Lok

Here, the labet represents aautonomousction,i.e. an ac- A similar problem arises with permissions: receiving two
tion that does not require the cooperation of the surrounding copies of a name, one witind permission and another with
context. These include internal communication, goto, mi- rcv permission, does not grant the same capabilities as re-
gration, halt and conditional testing. Note that some of these ceiving a single copy of the name with bothd and rcv
actions are not “internal” in the traditional sense. In the full permissions. This characteristic is shared by both remote
paper, we prove thats and the reduction relation coincide. and local communication, as exemplified®andQ, above.

The other actions all require participation by the surrounding Our solution to the problem is to define bisimulation with
context. Four of these forms of actions are straightforward, respect to a more general notion of type environment which
being simple generalizations of those usedlif] allows us to distinguish permissions associated with each in-
stance of a name. A similar approach has been developed
independently by Boreale and Sangiorgi in order to define
bisimulations for thetcalculus without matchingd].

alV:(the context receiveg with permissiong.
(vhaV the context sendg, revealing private names
£ the context kills locatiord.

/—k the context movesto k.

)) . . Conclusions
The other three forms of actions involve the manipulation of

private locations maintained by the context but hidden from \we have presented a novel foundational languags, D
the process. In the first of these, the context moves locationfor the study of typed distributed systems. The language
¢'to be a child of a private location. includes constructs for process migration and failure. In
¢~k the context moveéto a private descendant kof the opera_tio_nal semant_ics, explicit tags are used to indicate
the permissions associated with each instance of a name;
In the last two forms of action, the context manipulates l0- \when passing values, processes communicate tags as well
cations which are already sublocated at a private Iocation.as names, possib|y reducing the permissions available on
In the following explanations, suppose thais a set of or- 3 name before sending it. We then defined a type system
phans and tham is a hidden ancestor of (all locations in) for Dt which ensures that for well-typed terms, tags can
L, and thatmis a descendant of all known ancestors of (all pe ignored without the risk of names being used in ways

locations in)L. that violated their permissions. Finally we defined barbed
IL the context killsm, a private ancestor df. congruence under constrait and outlined the design a
L~k the context moves, a private ancestor df, to k labeled transition system which captures this relation.
or to a private descendant lof Related work. There are two strains of related work; the

first concerns the language itself, the second, the type sys-

Having defined theTs, we face one remaining compli- tem. Our model of location hierarchy, migration and fail-
cation before arriving at a suitable notion of bisimulation. ure is similar to model used in the distributed join calculus
In the ordinaryre-calculus, when a context receives a name (DJoin) of Fournet, Gonthier and their co-workeis]} DTt
repeatedly it is only the first reception that “matters”; after s a larger language, however; in addition to permissions,
the first reception the name is known, and it remains known Dttincludes Synchronous communication, the goto operator,
henceforth. In Bx, again, the situation is more subtle. Con- for code movement, and position testing; all of these require
sider the process: nontrivial encodings in DJoin. In addition, message routing
is not “automatic” as it is in DJoin. To send a message to a
remote location in B, a process must first spawn a thread
which goes to that location. These features make locations
more “visible” in Drtthan they are in DJoin.

The goto operation is based on the “spawn” operation
found in Facile [3] and related calculif, 3]; this operator
is objective B] and operates only omactive code, mak-
ing it very inexpensive to implement. By contrast, the sub-

P = (yma)(vmb) ¢[c! (m:a) c! (m:b)]

After a context receives both communications on it
“knows” of both channels andb atm. We might expect
that it could, therefore, send the pda,b); however, no
well typed context is capable of sending this value. The
two copies ofm are received into separate variables with

separate typings. jective “migration” operator of DJoin operates on running

Itis worthwhile pointing out that communication lofcal R : . .
: - _..code, making it more flexible and costlier to implement. By
names is somewhat more powerful than the communication . i i
S including both types of code movement imPwe bring the
of remotenames. For example, consider:

semantics of these operations up to the “top level” of the

Q = (V@) (Vimb) £[mz ¢! (a) ! (b)] calculus, rather than relying on complex encodings whose
semantic implications are difficult to ascertain.
After receiving botha andb from Q, a context can indeed Process movement is also the central concern of Cardelli
send the paifa,b), as evidenced by the process: and Gordon’s ambient calculus][although in their work
locations (orambient} are used to model a hierarchy of ad-
k[m: c?(x)c?(y)d! (x,y)] ministrative domains, rather than, as imDa hierarchy of

12

physical distribution as determined by failure dependencies. [7] G. Boudol. Asynchrony and the-calculus. Research Report 1702,

Dmtarose from an attempt to understand the use of per-

missions in distributed systems and in this sense, it is related [8]
to work on the spi-calculusl] of Abadi and Gordon. There,
however, the permissions are used to control the ability to [l
interpret data that has been received.

The type system most closely related to ours is that of

Pierce and SangiorgiL[]. Besides the fact that we treat a
distributed language, with an extended collection of types,
we have made two main contributions, building orf]f

First we presented our language in such a way that the com-
munication of permissions is explicit; we believe that this
gives our Type Safety Theorem more operational intuition
than that of [6]. Second, we have outlined an alternative
characterization of barbed congruence, relativised to a typ-

ing constraint, as a bisimulation relation. We have been care-
ful to construct the language so that a context can determine[

[10]

[11]

[12]

the structure of entire location tree and can test every name
for equality. Without these properties our alternative charac- [14]
terization would fail.

Other type systems for controlling the use of names in

distributed systems have been presented by Amadliard
Sewell P7]. Amadio’s type system seeks to guarantee that |15
names are defined at only one location; his type system also
guarantees that at every moment there is exactly one abstrac-
tion placed at each channel. Sewell studies a language sim{16]
ilar to D, but closer in spirit to the join calculus. He gen-

eralizes the type system of Pierce and Sangiorgi by distin- , .

guishing local from non-local communication, with the goal
of allowing compiler optimizations.

Recently, Boreale and Sangiorg] have presented an al-

ternative characterization of the equivalence studied i [
for a calculus without matching. Using their technique, one
should be able to extend our results to a distributed language
with the ability to match names explicitly predicated upon a
permission.

References

(1]

(2]

(3]

(4]

(5]

(6]

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Technical Report 414, University of Cambridge
Computer Laboratory, January 1997.

R. Amadio and S. Prasad. Localities and failuresPioc. 14th Foun-
dations of Software Technology and Theoretical Computer Science
volume 880 ofLecture Notes in Computer Scien&pringer-Verlag,
1994.

Roberto Amadio. An asynchronous model of locality, failure, and
process mobility. ITCOORDINATION '97 volume 1282 ol_ecture
Notes in Computer Scienc8pringer-Verlag, 1997.

Roberto Amadio, llaria Castellani, and Davide Sangiorgi. On bisimu-
lations for the asynchronouscalculus. In U. Montanari and V. Sas-
sone, editorsCONCUR: Proceedings of the International Conference
on Concurrency Theorywolume 1119 oL ecture Notes in Computer
Sciencepages 147-162, Pisa, August 1996. Springer-Verlag.
Gerard Berry and @rard Boudol. The chemical abstract machine. In
Conference Record of the ACM Symposium on Principles of Program-
ming Languagespages 81-94, San Francisco, January 1990. ACM
Press.

Michele Boreale and Davide Sangiorgi. Typed bisimulation for the
pi-calculus. Talk at EXPRESS97, September 1997.

13

[18]

[29]

[20]

[21]

[22]

[23]

[24]

INRIA, Sophia-Antipolis, 1992.

L. Cardelli and A. D. Gordon. Mobile ambients, 1997. Draft, Avail-
able fromhttp://www.cl.cam.ac.uk/users/adg/.

Luca Cardelli. A language with distributed scop€omputing Sys-
tems 8(1):27-59, January 1995. A preliminary version appeared in
Proceedings of the 22nd ACM Symposium on Principles of Program-
ming.

R. De Nicola and M. C. B. Hennessy. Testing equivalences for pro-
cessesTheoretical Computer Sciencg4:83—-133, 1984.

C. Fournet and G. Gonthier. The refliexive CHAM and the join-
calculus. InConference Record of the ACM Symposium on Principles
of Programming Language®aris, January 1996. ACM Press.

C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A
calculus of mobile agents. In U. Montanari and V. Sassone, editors,
CONCUR: Proceedings of the International Conference on Concur-
rency Theoryvolume 1119 ofLecture Notes in Computer Science
pages 406-421, Pisa, August 1996. Springer-Verlag.

13] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of

concurrent and functional programmirigternational Journal of Par-
allel Programming 18(2):121-160, 1989.

Robin Milner. The polyadigrcalculus: a tutorial. Technical Re-
port ECS-LFCS-91-180, Laboratory for Foundations of Computer
Science, Department of Computer Science, University of Edinburgh,
UK, October 1991. Also itogic and Algebra of Specificatipad. F.

L. Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mo-
bile processes, Parts | and linformation and Computatiori00:1—
77, September 1992.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes.Mathematical Structures in Computer Science
6(5):409-454, 1996. Extended abstract in LICS '93.

1 Benjamin C. Pierce and David N. Turner. Pict: A programming lan-

guage based on the pi-calculus. Technical Report CSCI 476, Com-
puter Science Department, Indiana University, 1997. To appear in
Proof, Language and Interaction: Essays in Honour of Robin Milner
Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, MIT Press.

James Riely and Matthew Hennessy. Distributed processes and lo-
cation failures. Computer Science Technical Report 2/97, University

of Sussex, Department of Computer Science, 1997. Available from

http://www.cogs.susx.ac.uk/.

James Riely and Matthew Hennessy. A typed language for distributed
mobile processes. Computer Science Technical Report 4/97, Univer-
sity of Sussex, Department of Computer Science, 1997. Available
fromhttp://www.cogs.susx.ac.uk/.

Davide Sangiorgi.Expressing Mobility in Process Algebras: First-
Order and Higher-Order ParadigmsPhD thesis, University of Edin-
burgh, 1992.

Davide Sangiorgi. Localities and true-concurrency in calculi for mo-
bile processesTheoretical Computer SciencEs5, 1996.

Peter Sewell. Global/local subtyping for a distributeetalculus.
Technical Report 435, Computer Laboratory, University of Cam-
bridge, August 1997.

Gert Smolka. The oz programming model. In Jan van Leeuwen, edi-
tor, Computer Science Todayolume 1000 of_ecture Notes in Com-
puter Sciencepages 324-343. Springer-Verlag, 1995.

David Turner. The Polymorphic Pi-Calculus: Theory and Implemen-
tation. PhD thesis, Edinburgh University, 1995.

	Introduction
	Language
	Syntax
	Reduction semantics
	Examples

	The Typing System
	The Semantic Theory
	The Semantic Theory

