
Trust and Partial Typing in Open Systems of Mobile Agents
(Extended Abstract)

James Riely∗ Matthew Hennessy†

Abstract

We present apartially-typed semantics for Dπ, a distributedπ-
calculus. The semantics is designed for mobile agents in open dis-
tributed systems in which some sites may harbor malicious inten-
tions. Nonetheless, the semantics guarantees traditional type-safety
properties at “good” locations by using a mixture of static and dy-
namic type-checking. We show how the semantics can be extended
to allow trust between sites, improving performance and expres-
siveness without compromising type-safety.

1 Introduction

In [12] we presented a type system for controlling the use of re-
sources in a distributed system, or network. In particular it guar-
antees that resource access is always safe,e.g. integer resources
are always accessed with integers and string resources are always
accessed with strings. While this property is desirable, it is a prop-
erty of the network as a whole. In open systems it is impossible to
verify the system as a whole,e.g.to “type-check the web”. In this
paper, we present type systems and semantics which guarantee safe
resource access for open systems in which some sites are untyped.

Any treatment of open systems must assume some underlying
security mechanisms for communication between sites, or loca-
tions. One approach would be to add security features directly
in the language, as in Abadi and Gordon’s Spi calculus [2]. In
such languages code signatures and nonces are directly manipula-
ble as program objects. Here we take a more abstract approach,
presenting a “secure” semantics for a language without explicit se-
curity features. Of the underlying communication mechanism, we
assume only that it delivers packets uncorrupted and that the source
of a packet can be reliably determined.

We start our development from the following principles:

1. Sites are divided into two groups: thegood, or typed, and
thebad, or untyped, the latter of which may harbor malicious
agents.

∗http://www.csc.ncsu.edu/eos/users/r/riely/www/. Department of
Computer Sciencess, North Carolina State University, Raleigh, NC 27695-7534 USA.
riely@csc.ncsu.edu. Research funded by NSF grant EIA-9805604.

†http://www.cogs.susx.ac.uk/users/matthewh/. School of Cognitive
and Computing Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH UK.
matthewh@cogs.susx.ac.uk. Research funded by CONFER II and EPSRC project
GR/K60701.

To appear in the 26th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, January
1999, San Antonio, Texas. Full version available as Com-
puter Science Technical Report 98/04, University of Sussex,
http://www.cogs.susx.ac.uk/.

2. Malicious agents should not be able to corrupt computation at
good sites; however, not all agents at bad sites are malicious.
Thus, the static notions of good and bad should not be used
to prevent actions by an agent; rather, some form of dynamic
typechecking is necessary.

3. Because agent interaction is commonplace, agent movement,
rather than interaction, should be subject to dynamic type-
checking.

In practice, the distinction between good and bad sites is made
relative to a particular administrative domain. In the narrowest set-
ting, only one particular virtual machine (VM), or location, might
be considered good, or well-typed, whereas all other machines on
the network are considered potentially malicious. In this case, the
goal of a security mechanism is to protect the local machine from
misuse, while at the same time allowing code from other machines
to be installed locally. More generally, the distinction between
good and bad might be drawn between intra- and inter-net, with
corporate or departmental machines protected by well-typing.

Here we are interested in preventing misuse based on type-
mismatching — for example, a foreign agent attempting to access
an area of memory which is unallocated, or is allocated to a dif-
ferentVM ; or an agent attempting to read an integer location as an
array, and thus gaining access to arbitrarily large areas of memory.
Such type violations may lead to core dumps, information leakage
or the spread of viruses and other virtual pestilence.

We study these issues in the formal setting of Dπ, a distributed
variant of theπ-calculus [17]. The calculus was introduced in [23],
but here we use the more recent formulation given in [12]. In Dπ
resources reside at locations and mobile agents may move from site
to site, interacting via local resources to affect computations. The
typing system of Dπ is based onlocation typeswhich describe the
resources available at a site. For example

loc{puti:res〈int〉, geti:res〈int〉, putl:res〈loc〉, getl:res〈loc〉}

is the type of a location with four resources, two for manipulating
integers and two for manipulating location names. A feature which
distinguishes Dπ from related languages [10, 4, 25] is that resource
names have only local significance,i.e. resource names are unique
locally, but not globally across the network.

To formalize the notion of “bad sites” in Dπ, we add a new
location type,lbad, to the language. Agents residing at locations
of type lbad are effectively untyped, as are references to resources
at bad locations, regardless of where these references occur. This
weaker form of typing is achieved by adding a new inference rule to
the typing system and a new form of subtyping. We call the result-
ing typing system apartial typing system, as agents and resources

http://www.cogs.susx.ac.uk/

at bad sites are untyped. Nevertheless partial typing ensures that
resources at good sites are not misused.

The weakness of partial typing allows for the existence of ma-
licious agents at bad sites. Further, since agents can move, unpro-
tected good sites can easily be corrupted; an example of this phe-
nomenon is described inSection3.2. Technically this means that
partial typing is not preserved by the standard reduction semantics
of Dπ; a good site will cease to be well-typed if an untypable agent
moves there from an untyped site. The object of this paper is to
formalize a protection policy for good sites against such malicious
attacks.

As in [27, 19, 15, 18], the basic idea is to require that code
be verified before it is loaded locally. Unlike these references,
however, our work is explicitly agent-based, and allows incoming
agents to carry references to resources distributed throughout the
network; further, our approach supports the introduction oftrust
between sites, as described below.

Verification of incoming agents takes the form of dynamic type-
checking, where incoming code is compared against afilter for the
target site. Filters provide an incomplete, or partial, view of the
types of the resources in the network, both local and remote. Since
the information in filters is incomplete, the dynamic typechecking
algorithm must be able to certify agents even when the filter con-
tains little or no information about the agent’s site of origin; other-
wise, it would forbid too many migrations. But this is potentially
very dangerous, as malicious agents may lie about resources at their
origin or at a third-party site.

We avoid this danger by developing an adequate semantics
based on the notion ofauthority. An agent moving from location
k to ` is dynamically typechecked under the authority ofk, using
the filter for`; every resource access must be verified either by the
filter or the authority. The full development is given inSection4,
where we prove Subject Reduction and Type Safety theorems for
this semantics, ensuring that resource access at good locations is
always type-safe. This approach should be contrasted with that of
[13], which gives an adequate semantics for networks in which the
authority of incoming agents cannot reliably be determined.

One drawback of this framework is that every agent must be
dynamically typechecked when moving from a site to another. To
alleviate this burden, inSection5 we introduce a relationship of
trust between locations, formalized using the location typeltrust.
We then modify the operational semantics so that agents originating
at trusted locations need not be typechecked. Although technically
this is a simple addition to the type system, it is also very expres-
sive. The result is that the network is divided intowebs of trustand
agents can only gain entry to a web of trust via typechecking. Once
entry to a web of trust has been earned, however, an agent can move
freely around the web; it will only be typechecked again if it leaves
a web and subsequently wishes to reenter. Moreover these webs
of trust may grow dynamically as incoming agents inform sites of
other sites that they can trust.

The paper proceeds as follows. InSection2 we review Dπ
and its standard semantics, including the standard typing system.
Section3 introduces the notion of partial typing and shows that
partial typing is not preserved by the standard reduction relation.
Section4 presents the formalization of filters and dynamic typing,
showing how these are incorporated into the run-time semantics.
In Section5 this framework is extended to include trust. The paper
ends with a brief discussion of related work.

In this extended abstract all proofs are omitted, as is much of
the discussion. The full version [22] is available atftp://ftp.
cogs.susx.ac.uk/pub/reports/compsci/cs0498.ps.Z.

Table 1Syntax

Names: e ::= k Location
a Resource

Values: u,v,w ::= bv Base Value
e Name
x Variable
(u1, .., un) Tuple

Patterns: X,Y ::= x Variable
(X1, .., Xn) Tuple

Threads:P,Q,R ::= stop Termination
P|Q Composition
(νe:T)P Restriction
gou.P Movement
u!〈v〉P Output
u?(X:T)P Input
∗P Replication
if u = v then P else Q Matching

Networks:M,N ::= 0 Empty
M |N Composition
(νke:T)N Restriction
kJPK Agent

2 The Language and Standard Typing

In this section we review the syntax and standard semantics of Dπ,
extended with base values. For a full treatment of the language,
including many examples, see [12].

2.1 Syntax

The syntax is given inTable1, although discussion of types, T, is
postponed toSection2.3. The syntax is parameterized with respect
to the following syntactic sets, which we assume to be disjoint:

• Base, of base values, ranged over bybv,
• Loc, of location names, ranged over byk–m,
• Res, of resource names, ranged over bya–d,
• Var, of variables, ranged over byx–z.

The main syntactic categories of the language are as follows:

• Threads, P–R, are terms of the ordinary polyadicπ-calculus
[16] with additional constructs for agent movement and re-
striction of locations.

• Agents, kJPK, are located threads.
• Networks, M–N, are collections of agents combined using the

static combinators of composition and restriction.

These, in turn useNames e, which include location names and re-
source names,Values, u–w, which include base values, names, vari-
ables and tuples of values andPatterns, X–Y, which include vari-
ables and tuples of patterns; we require that patterns be linear,i.e.
that each variable appear at most once.

As an example of a network, consider the term:

`JPK | (ν`a:T)
(
`JQK |kJRK

)
This network contains three agents,`JPK, `JQK andkJRK. The first
two agents are running at location`, the third at locationk. More-
over Q andR share knowledge of a private resourcea of type T,
allocated at̀ and unknown toP.

ftp://ftp.cogs.susx.ac.uk/pub/reports/compsci/cs0498.ps.Z
ftp://ftp.cogs.susx.ac.uk/pub/reports/compsci/cs0498.ps.Z

In the sequel we use fv(N), respectively fn(N), to denote the
set of variables, respectively names, that occur free inN. A term
with no free variables isclosed. We writeP{|u/X|} for the capture-
avoiding substitution ofu for X in P. We adopt standard abbrevi-
ations from theπ-calculus [17], e.g.dropping final occurrences of
stop, writing u1, .., un as ũ, and identifying terms up to renaming
of bound names and variables. We also systematically omit type
annotations when they play no role in the discussion, for example
renderingu?(X:T)P asu?(X)P.

2.2 Standard Reduction

The standard reduction semantics is defined using two relations
over closed network terms, a reduction relation (M 7−→ N) and a
structural equivalence (M ≡ N). The relations are defined using
a set of axioms. So that these axioms may be applied anywhere
within a network context, we introduce the idea of a network pre-
congruence. A relation� over networks is defined to be anetwork
pre-congruenceif N� N′ implies

• N |M � N′ |M,
• M |N � M |N′, and
• (νke:T)N � (νke:T)N′.

The reduction pre-congruence is formalized as the least net-
work pre-congruence which satisfies the axioms given inTable2.
The reduction axioms for communication(r-comm) and matching
(r-eq) are taken directly from theπ-calculus, with a few changes
to accommodate the fact that agents are explicitly located. Note
that communication can only occur between colocated agents.
The most important new rule is(r-move), kJgo`.PK 7−→ `JPK,
which states that an agent located atk can move tò using the
move operatorgo`.P. Also significant is(r-new), kJ(νe:T)PK 7−→
(νke:T)kJPK, which states that a name created by a thread can be-
come available across the network. Note that when a new name
is lifted out of an agent, the network-level restriction records the
name of the location which allocated the name; these location
tags are used only for static typing. Finally, the rule(r-split),
kJP |QK 7−→ kJPK | kJQK, allows an agent to spawn off subagents
which are able to move around the network independently. The
only reduction rules that vary significantly in later sections are
(r-move) and(r-new).

The structural congruence is defined similarly; it is the least net-
work pre-congruence that satisfies the axioms ofTable2, together
with the laws for equivalences and the standard monoid laws for
parallel composition.1 The axioms given inTable2 provide means
for the extension of the scope of a name, for garbage collection
of unused names and terminated threads, and for the replication of
agents.

The main reduction relation we are interested in is(−→) =
(≡ · 7−→ · ≡); this allows structurally congruent networks to be
considered “the same” from the point of view of reductions. As an
example, suppose that we wish to write a network with two agents,
one atk and one at̀ . The agent atk wishes to send a fresh inte-
ger channela, located atk, to the other agent using the channelc,
located at̀ . This network could be written:

`Jc?(z,x)QK | kJ(νa) (P | go`.c!〈k,a〉)K
−→ `Jc?(z,x)QK | (νka)

(
kJP | go`.c!〈k,a〉K

)
(r-new)

−→ `Jc?(z,x)QK | (νka)
(
kJPK | kJgo`.c!〈k,a〉K

)
(r-split)

−→ `Jc?(z,x)QK | (νka)
(
kJPK | `Jc!〈k,a〉K

)
(r-move)

−→ (νka)`JQ{|k,a/z,x|}K | kJPK (s-extr)(r-comm)(s-grbg2)

1The equivalence laws are:M ≡M, M ≡N impliesN≡M, andM ≡N andN≡O
imply M ≡ O. The monoid laws are:M | 0 ≡ M, M |N ≡ N |M, andM | (N |O) ≡
(M |N) |O.

Table 2Standard Reduction

Reduction pre-congruence:

(r-move) kJgo`.PK 7−→ `JPK
(r-new) kJ(νe:T)PK 7−→ (νke:T)kJPK if e 6= k
(r-split) kJP|QK 7−→ kJPK |kJQK

(r-comm) kJa!〈v〉PK | kJa?(X)QK 7−→ kJPK | kJQ{|v/X|}K
(r-eq1) kJif u = u then P else QK 7−→ kJPK
(r-eq2) kJif u = v then P else QK 7−→ kJQK if u 6= v

Structural congruence:

(s-extr) M | (νke:T)N ≡ (νke:T)(M |N) if e /∈ fn(M)
(s-grbg1) (νke:T) 0 ≡ 0

(s-grbg2) kJstopK ≡ 0
(s-copy) kJ∗PK ≡ kJPK |kJ∗PK

Beside each reduction, we have written the axioms used to infer
it, omitting mention of the monoid laws. An example of a process
Q that uses the received value(z,x) is ‘goz.x!〈1〉’, which after the
communication becomes ‘gok.a!〈1〉’.

2.3 Types and Subtyping

The purpose of the type system is to ensure proper use of base
types, channels and locations. In this paper we use the simple type
language from [12, §5]. We use uppercase Roman letters to range
over types, whose syntax follows:

Res: A–D ::= res〈T〉
Loc: K,L ::= loc{a1:A1, .., an:An,x1:B1, .., xn:Bn}
Val: S,T ::= BT K A K[A1, .., An] (T1, .., Tn)

The syntax provides types for base values, locations, local re-
sources and tuples. Types of the form K[Ã] aredependenttuple
types, which allow communication of non-local resources; we dis-
cuss these further in the next subsection.

We require that each resource name and variable in a location
type appear at most once. Location types are essentially the same
as standard record types, and we identify location types up to re-
ordering of their “fields”. Thusloc{a:A, b:B} = loc{b:B, a:A}.
We write ‘loc’ for ‘ loc{}’. Note that in general location types may
contain variables. This is convenient for typing, but in the syntax
of threads and networks, given inTable1, we restrict all types to be
closed, i.e.no variables can appear in location types in terms.

The subtyping preorder (T<: S) is discussed at length in [12].
On base types and channel types there is no nontrivial subtyping;
for example,res〈T〉 <: res〈T′〉 if and only if T = T′. On location
types, the subtyping relation is similar to that traditionally defined
for record or object types:

loc{ũ:Ã, ṽ:B̃} <: loc{ũ:Ã}

On tuples, the definition is by homomorphic extension:

S̃ <: T̃ if ∀i : Si <: Ti
K[Ã] <: L[B̃] if K <: L and Ã <: B̃

An important property of the subtyping preorder is that it has a
partial meet operatoru, which will enable us to accumulate typing
information associated with identifiers.

Table 3Standard Typing

Values (rules for base values not shown):

Γ(u) <: T
Γ ẁ u:T

Γ(w) <: loc{u:A}
Γ ẁ u:A

Γ ẁ ui :Ti (∀i)
Γ ẁ ũ:T̃

Γ ẁ u:K
Γ ù ṽ:B̃

Γ ẁ (u, ṽ) :K[B̃]

Threads:

Γ ẁ u:loc
Γ ù P

Γ ẁ gou.P

Γ ẁ u:S
Γ ẁ v:T
Γu{wu:T}u{wv:S} ẁ P
Γ ẁ Q

Γ ẁ if u = v then P else Q

Γ ẁ u:res〈T〉
Γ ẁ v:T
Γ ẁ P

Γ ẁ u!〈v〉P

Γ ẁ u:res〈T〉
fv(X) disjoint fv(Γ)
Γu{wX:T} ẁ Q

Γ ẁ u?(X:T)Q

Γ ẁ P
Γ ẁ Q

Γ ẁ stop, P|Q, ∗P

e /∈ fn(Γ)
Γu{we:T} ẁ P

Γ ẁ (νe:T)P

Networks:

Γ k̀ P

Γ ` kJPK

e /∈ fn(Γ)
Γu{ke:T} ` N

Γ ` (νke:T)N

Γ `M
Γ ` N

Γ ` 0, M |N

Definition 1. A partial binary operatoru on a preorder(S,�) is
a partial meet operator if it satisfies the following for everyr, s,
t ∈ S:

(a) r � t andr � s imply tusdefined andr � tus
(b) tusdefined impliestus� t
(c) (tus)u r = tu (su r)
(d) tus= su t

In the last two conditions= refers to partial equality; if one of the
expressions is defined the other must also be defined. �

Proposition 2. The set of types, under the subtyping preorder, has
a partial meet operator.

Proof. (Outline) On location types this operator is induced by the
following equation:

loc{ũ:Ã}u loc{ṽ:B̃}= loc{ũ:Ã∪ ṽ:B̃}
if ∀i, j :ui = vj implies Ai = Bj

For example:

loc{a:A, b:B}u loc{b:B, c:C}= loc{a:A, b:B, c:C} �

2.4 Standard Typing

Judgments in the typing system take three forms:

Γ ` N NetworkN is well-typed
Γ ẁ P ThreadP is well-typed to run at locationw
Γ ẁ v:T Valuev can be assigned type T at locationw

HereΓ and∆ range overtype environments, which map location
names to location types and variables to base types or location
types.2 For example, the following is a type environment:

Γ =
{
`:loc{a:A,x:B}, y:int, z:loc{a:A′}

}
We writeΓ(u) to refer to the type of identifieru in Γ. So forΓ as
defined above,Γ(z) = loc{a:A′} whereasΓ(u) is undefined.

The standard typing system is defined inTable3. We presup-
pose a set of rules for base values, which, for example, say that
integer constants have typeint and the boolean constantst and f
have typebool. In Table3, there are two rules for identifiers. The
first applies to “universal” identifiers in the domain of the type en-
vironment: location names and variables of location or base types.
The second applies to “local” identifiers in location types: resource
names and variables of resource type. Universal identifiers have a
consistent meaning across all sites, whereas local identifiers do not;
e.g.the location namè refers to the same thing no matter where it
occurs, whereas the resource namea does not.

Note that when typing a dependent tuple(u, ṽ), the typing of
ṽ is deduced with respect to the location identifieru. Thus if
Γ ẁ (k,a) :(K,A) thenk anda are two independent values whose
type consistency is checked independently. On the other hand if
Γ ẁ (k,a) :K[A] thena is considered to be a resource at the loca-
tion k, and this judgment depends ona be well-typed atk, Γ k̀ a:A.
We emphasize this use of dependent types with some notation:

Notation. In examples, we useu[̃v] def= (u, ṽ) to indicate that the
tuple(u, ṽ) has a dependent type, K[Ã]. �

For networks and threads, the main rules of interest are for
agents and movement, respectively. For the agent`JPK to be well-
typed,P must be well-typed at locatioǹ; whereas for the thread
gou.P to be well-typed at some locationw, P must be well-typed
at the target locationu.

The rules for input and restriction are intuitive, although they
make use of some notation for updating environments, defined in
AppendixA. Suppose, for example, we wish to infer the judgment
Γ ẁ u?(X:T)Q. By α-conversion we may assume that the variables
in the patternX are distinct from those in the environmentΓ. So
we need to establish two facts:

• relative toΓ, the identifieru is a resource at the locationw,
i.e. Γ ẁ u:res〈T〉, and

• the continuationQ is well-typed relative toΓ augmented with
the typing information inX:T.

This extension of the type environment is represented asΓ u
{wX:T}, the meet ofΓ and the environment constructed fromX
and T relative tow, {wX:T}. For example ifX:T has the form
x:A then the extra information added toΓ is the environment
{wx:A} = {w:loc{x:A}}; in typing Q we are therefore allowed to
assume thatx is a resource of type A local tow. On the other hand
if X:T has the formz[x]:K[A] then the extra information added toΓ
is the environment{wz[x]:K[A]} = {z:Ku loc{x:A}}. Here when
typecheckingQ we can assume thatx is a resource of type A at
locationz, which in turn has the type Ku loc{x:A}.

Similarly the network(νka:A)N is well-typed with respect to
Γ if a does not appear inΓ andN is well-typed with respect toΓu
{k:loc{a:A}}, since{ka:A} works out to be{k:loc{a:A}}. Also
provingΓ ẁ (νk`:L)N involves establishingΓu{`:L} ẁ N since
{k`:L}= {`:L}.

2For simplicity, the typing system defined here requires that every tuple be fully
decomposed upon reception;i.e., terms of the forma?(x:(int, int))P are not typable.
The more general case is straightforward, but requires a more complex treatment of
location types.

The rule for matching allows the combination of capabilities
available on different instances of a location name. Note that the
rule may only be applied when SuT is defined. In the case that
S= T, the rule degenerates to the standard rule for conditionals:

Γ ẁ u:T, v:T, P, Q

Γ ẁ if u = v then P else Q

The extra generality of the rule is necessary to type threads such as
the following:

a?(z[x]) b?(w[y]) if z= w then goz.
(
x?(u) y!〈u〉

)
This thread receives two remote channels from different sources,
then forwards messages from one channel to the other. Further
examples are given in [12] where we argue that the more general
rule is crucial for typing many practical applications.

The typing system satisfies several standard properties such as
type specialization, weakening and a substitution lemma, as de-
scribed in [12]. The following result establishes the fact that well-
typedness is preserved by reduction. Together with a Type Safety
theorem, again described in [12], this ensures that well-typed terms
are free of runtime errors throughout their execution.

Theorem 3 (Subject Reduction for the Standard Semantics).
If Γ ` N and N−→ N′ thenΓ ` N′. �

3 Partial Typing

The purpose of this paper is to study systems in which only a sub-
set of agents are known to be well typed. Since agents themselves
are unnamed and can move about the network, we draw the distinc-
tion between the typed and the untyped worlds usinglocations, or
sites. In this section we first define apartial typing systemwhich
allows agents at certainuntyped, orbad, locations to have arbitrary,
potentially malicious behavior. We then present an example which
shows that the standard semantics is inadequate for partially typed
systems and finally point to the solution proposed in later sections.

3.1 The Partial Typing Relation

To capture the notion of auntypedlocations formally, we introduce
a new location type,lbad, into the type language. We use the terms
untypedandbad interchangeably, similarlytypedandgood. Loca-
tion types are now defined:

K,L ::= loc{ã:Ã, x̃:B̃} lbad

We sometimes refer to types in the augmented language aspartial
types. The subtype relation is extended to partial types by adding
the following subtyping rule:

lbad <: loc{ũ:Ã}

This reflects the fact that channels at an untyped location may
have any type and consequently behavior at bad locations is un-
constrained. With the addition oflbad, the partial meet operator
becomes total on location types.3

3 loc{ũ:S̃} u loc{ṽ:T̃} =
{

loc{ũ:S̃∪ ṽ:T̃} if ∀i, j :ui = vj implies Si = Tj

lbad otherwise
lbad u loc{ṽ:T̃} = lbad

loc{ũ:T̃} u lbad = lbad

Table 4Partial Typing Relation

All rules fromTable3 but those for restriction (ν)

(t-bad)
Γ(w) = lbad

Γ ẁ P
(t-newg)

T 6= lbad
e /∈ fn(Γ)
Γu{we:T} ẁ P

Γ ẁ (νe:T)P

(n-newb)

Γ(k) = lbad
` /∈ fn(Γ)
Γu{`:lbad} ` N

Γ ` (νk`:L)N
(n-newg)

T 6= lbad
e /∈ fn(Γ)
Γu{ke:T} ` N

Γ ` (νke:T)N

Type environments are now more expressive. A typical exam-
ple is given by:

Γ =

k : loc { a: res〈int〉}

` : loc

{
b: res〈loc[res〈bool〉]〉
c: res〈loc[res〈int〉]〉
d: res〈lbad〉

}
m : lbad

 (*)

Here we have three locations,k, ` andm, the first two of which are
typed, and the last untyped. Of the good (typed) sites, we know
thatk has an integer channela, and` has three channels:c, which
communicates dependent tuples with the second element being an
integer channel;b, which communicates dependent tuples with the
second element being boolean channels; andd which communi-
cates untyped locations. We will use this environment in most sub-
sequent examples in this section and the next.

The typing relation given inTable 3 may now be applied to
this extended language of partial types with the result that untyped
locations enjoy many expected properties. For example, since
lbad <: loc{a:res〈int〉} and lbad <: loc{a:res〈bool〉}, we can in-
fer

{m:lbad} m̀ (a,a):(res〈int〉, res〈bool〉)

In general we can infer that a resource at an untyped location has
any resource type, meaning that local computations at these loca-
tions are unconstrained by typing considerations; this is the case
even if the resource is restricted.

Agents can also use the type information to infer that a remote
location is untyped. For example consider the network

`Jb?(z) c?(w) if z= w then d!〈z〉K

which is well-typed with respect toΓ, from (*). If an agent receives
the same dependent pair (sayn[a]) on both the channelsb andc,
then it can determine that locationn is untyped. Thus the agent can
subsequently outputn on d, a channel that transmits locations of
the typelbad.

Despite these examples, the standard typing system does not
quite capture the notion of “untyped location”, even with the addi-
tion of lbad. Most important, the standard typing rule for move-
ment does not allow untyped locations to send malicious agents
to typed locations. We would like to have thatΓ `mJgok.a!〈t〉K.
Here an untyped agent atm attempts to move tok and misuse the
integer channela by sending on it the boolean valuet. The standard
typing rule for movement, however, does not allow this judgment,
since it requires thata!〈t〉 be well-typed atk, which definitely is
not the case.

Thepartial typing relationis defined inTable4. All of the rules
of the standard type system carry over to the partial typing system

but for those concerning restriction, which require an additional
side condition. The introduction of the rule(t-bad) allows untyped
locations to have truly arbitrary behavior, including the ability to
(attempt to) send malicious agents to good locations. Thus the par-
tial typing relation validates the judgmentΓ `mJgok.a!〈t〉K; here
the malicious sitem attempts to send to the good sitek an agent
which will misuse the resourcea.

The rule(n-newb) says that locations created at untyped loca-
tions should themselves be untyped. This rule is required to main-
tain well-typing under reductions such as:

kJ(ν`:L)go`.PK 7−→ (νk`:L)kJgo`.PK 7−→ (νk`:L)`JPK

The rules(t-newg) and(n-newg) are as in the standard type sys-
tem, but require that typed locations not create untyped ones. This
“reasonableness requirement” is necessary to establish Type Safety,
as formulated inTheorem12.

3.2 An Example

Consider a system with two agents at`, waiting to receive data on
channelsc andb, respectively. The first agent will expect, as the
second element of the tuple it receives, the name of an integer chan-
nel, whereas the second will expect the name of a boolean channel.
In addition suppose that there are agents atk andm poised to send
data to` on channelsc andb, respectively. Such a system is the
following:

N = `Jc?〈w[y]〉 gow.y!〈0〉K
| `Jb?〈z[x]〉 goz.x!〈t〉K
| kJgo`.c!〈k[a]〉K
| mJgo`.b!〈k[a]〉K

Here the agents at̀andk are all quite reasonable; they could be
typed using the standard type system ofTable3. The final agent,
at m, however, flagrantly violates the types of channelsa andb;
this agent intends to send an integer channel (a) where a boolean
channel is expected (onb).

One can easily see that, using the standard typing system (with-
out lbad), for no ∆ do we have∆ ` N. This is because channela
at k may be bound to eithery or x, and these identifiers are subject
to conflicting uses. There is no assignment of standard types toa,
b andc that satisfies all of the constraints given inN. On the other
hand, using the partial typing system, we haveΓ ` N, whereΓ is
as in (*). This well typing, however, is not preserved by reduction.

The agents communicating onc reduce unproblematically, first
with a move fromk to `, then a communication, then a move from
` to k. All of these reductions preserve well-typing underΓ.

The agents communicating onb evolve in the same way, the
only difference being that the first move is fromm, rather than from
k. Using standard reduction (Table2), we have:

`Jb?〈z[x]〉 goz.x!〈t〉K | mJgo`.b!〈k[a]〉K (1)

−→ `Jb?〈z[x]〉 goz.x!〈t〉K | `Jb!〈k[a]〉K (2)

−→ `Jgok.a!〈t〉K (3)

−→ kJa!〈t〉K (4)

Here, however, (2)–(4) are not well-typed underΓ. This fact is ob-
vious when considering (4) where an agent atk attempts to send a
boolean on an integer channel. Already in (2), however, typing un-
derΓ fails. In order to inferΓ ` `Jb!〈k[a]〉K we must establish that
for some T,Γ `̀b:res〈T〉 andΓ `̀k[a]:T. Given the type ofbat`, we
would have to take T= loc[res〈bool〉], butΓ 0̀ k[a]:loc[res〈bool〉],
sincea is an integer channel atk.

The semantics presented in the following section will prevent
the reduction of (1) to (2) by dynamicallytyping certain agents
when they move from one location to another. To accomplish this,
we augment the standard reduction semantics with type informa-
tion detailing the resources available at each site. Significantly, this
type information is heldlocally at each site, and thus sites will have
differentviewsof the network. Crucial to this semantics is the abil-
ity of a location to determine theauthorityof an incoming thread,
i.e. the location from which the thread was sent. This semantics
is improved inSection5 by addingtrusted locationsto the type
system. In each of these sections, the main results are Subject Re-
duction (for the partial typing relation) and Type Safety.

It is worth contrasting this approach with the “purely local” ap-
proach adopted for “anonymous networks” in [13]. In anonymous
networks, the authority of incoming threads is not known. The se-
mantics of [13] uses a weaker typing system requiring consistency
only of local resource types. Thus, in that work, (2) is taken to be
well-typed, with subject reduction failing only in the move from
(3) to (4). The chief advantage of the current work is that it permits
the use oftrust, which appears to be incompatible with terms such
as (2).

4 Filters and Authorities

In this section we propose a semantics which recovers subject re-
duction for partially-typed networks. The solution assumes that the
origin, orauthority, of incoming agents can be reliably determined.

4.1 Syntax and Semantics

To accomplish dynamic typechecking, it is necessary to add type
information to running networks. We do this by adding afilter
k〈〈∆〉〉 for each locationk in a network. The filter includes a type en-
vironment∆ which givesk’s view of the resources in the network.
Suppose that in a networkN, locationk knows that there is resource
nameda of type A at locatioǹ . This intuition is captured by re-
quiring thatN have a subtermk〈〈∆〉〉 such that∆(`) <: loc{a:A}.

Formally we extend the syntax of networks (Table1) to include
filters, as follows:

N ::= . . . k〈〈∆〉〉

We say that a termk〈〈∆〉〉 is afilter for k. Intuitively each location
k should have exactly one filter associated with it. This constraint
could be formalized within the typing system, but for simplicity we
prefer to treat it separately.

Definition 4. We say that a networkN is well formedif for every
k∈ fn(N) there is exactly one subterm ofN which is a filter fork,
and for every subterm(νm`:L)M of N there is exactly one subterm
of M which is a filter for`. �

We refer to networks with filters asopen networksand for the rest
of the paper, we assume they are always well-formed.

Static Typing The static typing relation extends that ofTables3
and 4 with the two rules for filters, given inTable 5. The rule
(n-filterg) requires that a filter for a good locationk must have full
knowledge of the resources atk (Γ(k) = ∆(k)) and a view of the
rest of the world that is consistent with reality(Γ <: ∆). The rule
(n-filterb) indicates that filters for bad locations may be arbitrary.
These typing rules guarantee that whenever a filter exists, it must
have a reasonable view of the world.

Table 5Typing and reduction using filters

Static typing: all rules fromTable4

(n-filterg)

Γ <: ∆
Γ(k) = ∆(k)
Γ ` k〈〈∆〉〉 (n-filterb)

Γ(k) = lbad

Γ ` k〈〈∆〉〉

Reduction:(r-split), (r-eq1) and(r-eq2) from Table2

(rf -move) kJgo`.PK | `〈〈∆〉〉
7−→ `JPK | `〈〈∆〉〉
if k = ` or ∆ k

` P

(rf -newr) kJ(νa:A)PK | k〈〈∆〉〉
7−→ (νka:A)

(
kJPK | k〈〈∆u{ka:A}〉〉

)
if a /∈ fn(∆)

(rf -newl) kJ(ν`:L)PK | k〈〈∆〉〉
7−→ (νk`:L)

(
kJPK | k〈〈∆u{`:L}〉〉 | `〈〈{`:L}〉〉

)
if ` /∈ fn(∆)∪{k}

(rf -comm) kJa!〈v〉PK | kJa?(X:T)QK | k〈〈∆〉〉
7−→ kJPK | kJQ{|v/X|}K | k〈〈∆u{kv:T}〉〉

Dynamic typing: all rules fromTable4, ‘ k
w’ replacing ‘ ẁ’

(vf -self1)
lbad <: K

∆ k
w k:K

(vf -self2)
∆ k

k a:A

(tf -return)
∆ k

w gok.P

Reduction The reduction relation for open networks is also
given in Table 5. The purpose of filters is to check that incom-
ing agents are well-typed. Thus, the main change to the semantics
is the replacement of the reduction rule(r-move) with:

`〈〈∆〉〉 | kJgo`.PK 7−→ `〈〈∆〉〉 | `JPK if k = ` or ∆ k
` P

Here∆ k
` P is adynamic typing relation, discussed below, which

intuitively says thatP is well-formed to move to locatioǹ, if acting
underauthority of k. Agents originating locally are assumed to be
well-typed and therefore need not be checked dynamically.

As a network evolves, the filter at a site should be augmented
to reflect that sites increasing knowledge of the network. At the
very least this should include updates with information about new
local resources. The rule(rf -newr) says that when a new resource
a is created atk, the type of that resource is recorded in the filter
for k. This ensures thatk continues to have full knowledge of local
resources. Similarly when a new location` is created byk, a new
filter should be created for̀and the filter fork updated to establish
a view of`. This is achieved by the rule(rf -newl).

In addition, filters may take other measures to increase their
knowledge of the network. One possibility is that information is
extracted from values which are communicated at the site: when a
value is received at a site, the site’s filter is augmented to include
any new information that can be gleaned from the communicated
value. The rule(rf -comm) formalizes this idea. Alternatives are
discussed in the full version.

Dynamic Typing One approach to dynamic typing would be to
take the dynamic typing relation to be the same as the static typing

relation:(k
w) = (ẁ). In effect, this would limit incoming agents to

include only names of resources that are known in advance. While
this is certainly sound, it is much too restrictive; for example, new
resources could only be used by agents that originated locally. Con-
sider the system (where the filter atk is omitted):

kJ(νa)go`.b!〈k[a]〉K | `Jb?(z[x])PK | `〈〈∆〉〉 (5)

Here k creates a new resource and wishes to communicate it to
`. However with(k

w) = (ẁ) the move fromk to ` is refused —
(rf -move) cannot be applied — since the filter∆ at ` can have no
knowledge of the new resourcea.

At the opposite extreme, we might allow threads to include any
reference to non-local resources. However, this approach is clearly
unsound from the counter-example given in the last section. The
difficulty is that threads from bad locations may provide incorrect
information about good locations, breaking subject reduction.

To straddle the gap between sound-but-useless and unsound-
but-expressive, we introduce the notion ofauthority. We say that
an agent leaving a locationk actsunder the authority of k. When
an agent with authorityk enters another location, we say thatk is
theauthorityof the agent.

While it is not safe to allow incoming agents to refer toany
non-local resources, it is safe to allow them to refer to resources
located at their authority,i.e. at their “home” location. Intuitively
this is true because, under this discipline, “bad” agents can only
“lie” about resources located at their authority, which must have
been a bad location to begin with. Lies about bad locations don’t
hurt well-typing, since bad locations are untyped.

Formally, the rules for runtime typing extend those of the static
type system given inTables 3 and4 with two additional rules for
values and one for threads. These rules allow references to an in-
coming agent’s authority to go unchecked. The rule(vf -self1) al-
lows an incoming agent to refer to its authorityk, regardless of
whether the filter environment∆ contains any information aboutk.
(Note that the conditionlbad <:K is vacuously satisfied; we include
it here only for reference in the next section.) The rule(vf -self2)
allows an incoming agent to refer to resources at its authority. As
an example, let∆` = {`:loc{a:res〈K[B]〉}}. Although we cannot
infer that∆` `̀ a!〈k[b]〉 using the static typing system, we can de-
duce∆` k

` a!〈k[b]〉 using the dynamic typing relation. Thus the
following reduction is allowed by the semantics:

kJgo`.a!〈k[b]〉K | `〈〈∆`〉〉 −→ `Ja!〈k[b]〉K | `〈〈∆`〉〉

The rule (tf -return) allows a thread to return to its home loca-
tion without subjecting the returning thread to further typecheck-
ing. This rule allows some additional expressiveness and reduces
the burdens of typechecking somewhat.

Note that while the static typing system interprets the rules of
Tables 3 and4 with respect to an omniscient authority (Γ), the dy-
namic type system interprets these rules with respect to the knowl-
edge contained in a filter (∆, whereΓ <: ∆). Whereas untypability
with respect toΓ indicates that a network is malformed, untypa-
bility with respect to∆ may simply indicate that∆ has insufficient
information to determine whether an agent is malicious or not.

4.2 Examples

Example 5. First we show how filters are updated via communi-
cation with imported agents. Consider the open network (5) dis-
cussed above, where the locationk wishes to transmit tò the name
of a new local resourcea of type A. Suppose the filter at` is ∆ =
{`:loc{b:res〈K[A]〉}}, so that̀ has no information about location

k. Then we have the following reductions (we useΓ to represent the
filter atk, the contents of which are not important for the example):

k〈〈Γ〉〉 | kJ(νa:A)go`.b!〈k[a]〉K | `Jb?(z[x]:K[A])PK | `〈〈∆〉〉
−→
(νka:A) k〈〈Γ′〉〉 | kJgo`.b!〈k[a]〉K | `Jb?(z[x]:K[A])PK | `〈〈∆〉〉
−→
(νka:A) k〈〈Γ′〉〉 | `Jb!〈k[a]〉K | `Jb?(z[x]:K[A])PK | `〈〈∆〉〉
−→
(νka:A) k〈〈Γ′〉〉 | `JstopK | `JP{|k,a/z,x|}K | `〈〈∆′〉〉

whereΓ′ = Γu{k:loc{a:A}} and∆′ = ∆u{k:loc{a:A}}.
The first move, using the rule(rf -newr), extrudes the local re-

sourcea at k, updating the filter atk accordingly. Using the struc-
tural congruence, the scope ofa can be extended to include the en-
tire network. Then(rf -move) may be employed since∆ k

` b!〈k[a]〉.
Here the dynamic typing by the filter∆ at ` of the incoming thread
b!〈k[a]〉 succeeds essentially because of the rule(vf -self2); the
thread only communicates the names of resources atk, its author-
ity. Finally a local communication at̀ is performed, using rule
(rf -comm). Not only is the value communicated toP, but the filter
at ` is also updated; after the communication, the filter for` con-
tains information about the type of resourcea atk. �

Example 6. Let us now revisit open network (1) discussed in
Section3.2, which shows that partial typing is not preserved by
the standard reduction relation. To use the new semantics, we must
add a filter for each location. Here we show only the filter for`,
`〈〈∆〉〉, where∆ satisfies the constraints of(n-filterg). Thus, let us
consider the open network

Γ `mJgo`.b!〈k[a]〉K | `〈〈∆〉〉

whereΓ is given by (*) in Section3.1. Note that the agent atm
attempts to misinform and agent at` about the type of the resource
a at k. In the revised reduction semantics the move fromm to ` is
allowed only if ∆m

` b!〈k[a]〉, that is if we can dynamically type-
checkb!〈k[a]〉 using the filter∆ under the authoritym. But this is
impossible, given the constraint thatΓ ` `〈〈∆〉〉. To see this, first
note that̀ has full self-knowledge,i.e. ∆(`) = Γ(`), and therefore
∆(`) must have the entryb: res〈loc[res〈bool〉]〉; therefore to type
the term we must be able to deduce∆m

k a:res〈bool〉. Next note
that ∆ must be consistent with reality, namelyΓ. This means that
if ∆ has knowledge of the resourcea at k then it must be at the
conflicting typeres〈int〉; therefore the rules ofTable3 cannot be
used to infer∆m

k a:res〈bool〉. Finally, sincek is not the authority
of the thread, neither can the additional rules ofTable5 be used to
justify the claim that∆m

k a:res〈bool〉. It follows that the inference
∆m

` b!〈k[a]〉 is impossible. �

Example 7. Let us now modify the previous example so thatm
attempts to relate information about itsown resources, rather than
those ofk. In such cases, movement always succeeds, whether or
not the source site is bad. As an example suppose the thread at
locationm is changed tomJgo`.b!〈m[a]〉K, i.e. mwishes to inform
` of a resource local tom. Then we have the reduction:

mJgo`.b!〈m[a]〉K | `〈〈∆〉〉 −→ `Jb!〈m[a]〉K | `〈〈∆〉〉

This follows since∆m
` m[a]:loc[res〈bool〉] can be inferred using

(vf -self1) and(vf -self2), regardless of the type assigned tom in ∆.
�

Example 8. An untyped site will also succeed in sending an agent
if the reception site already knows the information being received.
For example supposè’s filter is extended so that̀knows the type
of resourcea atk, that is∆(k) = loc{a:res〈int〉}. Then we have the
reduction

mJgo`.c!〈k[a]〉K | `〈〈∆〉〉 −→ `Jc!〈k[a]〉K | `〈〈∆〉〉

because of the inference∆m
` c!〈k[a]〉. Of course the authority ofm

plays no role in this judgment. �

Example 9. The information in filters determines which migra-
tions are allowed and reductions in turn may increase the infor-
mation in filters. This means that certain migrations can remain
blocked until the appropriate filter has been updated.

Consider the following open network, again typed using the
environmentΓ given in (*), where∆ is the restriction ofΓ onto`,
i.e. ∆ = {`:Γ(`)}:

mJgo`.c!〈k[a]〉K | kJgo`.c!〈k[a]〉K | `J∗c?(z[x])PK | `〈〈∆〉〉

Here the migration fromm to ` is not immediately possible, since
∆6m

` c!〈k[a]〉. However the migration fromk is allowed since

∆k
` c!〈k[a]〉, and the network reduces, after communication onc,

to:
mJgo`.c!〈k[a]〉K | `JP′K | `J∗c?(z[x])PK | `〈〈∆′〉〉

whereP′ = P{|k,a/z,x|} and∆′ = ∆u{k:loc{a:res〈int〉}}. The mi-
gration fromm to ` can now take place, allowing the network to
reduce, after a further communication, to:

`JP′K | `JP′K | `J∗c?(z[x])PK | `〈〈∆′〉〉

since∆′m
` c!〈k[a]〉 . In the absence of other agents, the migrations

can only be executed in one order (k first). �

Example 10. As a filter is updated, contradictory evidence may be
obtained about a site, in which case the site must be untyped and
can safely be assumed to be bad. As an example letΓ and the filter
∆ = {`:Γ(`)} be as before, and consider the open network:

mJgo`.b!〈m[d]〉c!〈m[d]〉K | `Jb?(z[x]:T)c?(w[y])PK | `〈〈∆〉〉

where T is the same type asb at `, res〈loc[res〈bool〉]〉. After the
migration fromm to ` and one communication this reduces to

`Jc!〈m[d]〉K | `Jc?(w[y])P′K | `〈〈∆′〉〉

where∆′ = ∆u{m:loc{d:res〈bool〉}}. After the second communi-
cation, the network reduces to

`JP′′K | `〈〈∆′′〉〉

where∆′′ = ∆′u{m:loc{d:res〈int〉}}= ∆u{m:lbad}. �

4.3 Subject Reduction and Type Safety

As we have seen inSection3.2 partial typing is not preserved by
the standard reduction relation. However this property is regained
by the revised reduction relation ofTable5.

Theorem 11 (Subject Reduction for Open Networks). For the
inference systems ofTable5: If Γ ` N and N−→ N′ thenΓ ` N′.

�

Table 6Runtime Error

`Ja?(X:T)PK | `〈〈∆〉〉 err `−−→ if ∆(`) 6<: loc{a:res〈T〉}
`Ja!〈v〉PK | `〈〈∆〉〉 err `−−→ if ∆(`) 6<: loc{a:res〈T〉}, all T
`Ja!〈v〉PK | `〈〈∆〉〉 err `−−→ if ∆(`) <: loc{a:res〈T〉}

and∆u{`v:T} undef
`Jif u = v then P else QK err `−−→ if {`u:T} undef

or {`v:T} undef, all T

N err `−−→

(νke:T)N err `{|k/e|}−−−−−→

N err `−−→

N |M err `−−→

N≡M M err `−−→

N err `−−→

A typing system is only of interest to the extent that it guaran-
tees freedom from runtime errors. Here we describe the runtime
errors captured by our system, which can be informally described
asmisuse of resources at good sites. Often the formulation of run-
time errors is quite cumbersome as it involves the invention of a
tagged version of the language, see [12, 21]. However in this case
the presence of filters makes it straightforward.

In Table6 we define, for each locatioǹa unary predicateerr `−−→
over networks. The judgmentN err `−−→ should be read: “in the net-
work N there is a runtime error at location`”. There are two kinds
of errors which can occur. The first occurs when an agent attempts
to use a resource that has not been allocated at the agent’s current
location, as formalized in the first two clauses of the definition in
Table6. The second kind of error occurs when there is a local in-
consistency between values being manipulated by an agent. These
may occur in either of two ways. The first, accounted for in the
third clause inTable6, is when a value is about to be transmitted
locally which is inconsistent with the current contents of the filter.
The second, accounted for in the fourth clause, is when the values
in a match cannot be assigned the same type.

Finally, note that in the case that a location namem is restricted,
errors atm are attributed to the site which createdm (given ask in
Table6). This fact explains the need for the side condition T6= lbad
on the rules(t-newg) and(n-newg) in Table4.

Theorem 12 (Type Safety for Open Networks).
For the inference systems ofTables 5 and6: If Γ ` N andΓ(`) 6=
lbad then N err `−X−→. �

5 Trust

In the semantics of the last section all agents moving to a new site
are dynamically typechecked before gaining entrance. In this sec-
tion we consider an optimization which allows for freer and more
efficient movement across the network. The idea is to addtrust
between locations; a trusted site is guaranteed never to misbehave
and therefore agents moving from a trusted site need not be dynam-
ically typechecked.

Formally we introduce a new type constructor fortrusted loca-
tion types, ltrust{ũ:Ã}. The extended syntax oftypes with trustis
obtained by replacing the clause for location types with:

K, L ::= lbad loc{ã:Ã, x̃:B̃} ltrust{ã:Ã, x̃:B̃}

Note that (as with the addition oflbad) this extension increases the
set of possible resource types. For example the type

res〈ltrust{a:res〈int〉}〉

is the type of a resource for communicating trusted locations which
have an integer resource nameda. Thus we may have trusted lo-
cations with certain resources for handling trusted location names

and others for handling untrusted location names. In a similar vein
we may have untrusted locations containing resources that commu-
nicate trusted location names. As we shall see, these resources at
untrusted locations cannot be used to increase the level of trust in a
network.

The extension of the subtyping relation to these new types is
based on two ideas:

• Every trusted location is also a location.
• Every trusted location guarantees good behavior; therefore,

a “bad” or untyped location can never be trusted by a good
site. This means that the typelbad is no longer the minimal
location type in the subtyping preorder.

The subtyping relation is therefore built up using the ordering:

lbad ltrust{ũ:Ã,v:B}

loc{ũ:Ã,v:B} ltrust{ũ:Ã}

loc{ũ:Ã}

??����
__????

??����

??����
__????

The formal definition is given in the full version of the paper.

Proposition 13. The set of types with trust, under the subtyping
preorder, has a partial meet operator. �

With the addition ofltrust, the filters in a network may contain
more detailed information about remote sites. Consider a network
N which contains a filter̀〈〈∆〉〉. As before, ifk is not mentioned in
∆, this means that̀ has no knowledge ofk. But now there are now
three possibilities with respect to a remote locationk mentioned in
`〈〈∆〉〉:

• ∆(k) <: lbad, which means that̀ has accumulated sufficient
contradictory information aboutk to conclude thatk is un-
typed.

• ∆(k) <: ltrust, which means that̀ trusts k. Note that this no-
tion of trust is asymmetric;̀ may trustk without k trusting
`. Also note that in well-typed systems, the rule(n-filter)
in Table5 ensures thatk, trusted bỳ , cannot be an untyped
location unless̀ itself is untyped; this is enforced by the re-
quirement thatΓ(k) <: ∆(k), sincelbad 6<: ltrust.

• ∆(k) <: loc, which means that̀ knows ofk, but cannot deter-
mine whether or notk is well-typed.

As we have seen in the previous section, the information in a
filter may increase as the network evolves,i.e. `〈〈∆〉〉 may evolve to
`〈〈∆′〉〉, where∆′ <: ∆. But the subtyping relation between types en-
sures that once a locationk is deemed “bad” iǹ〈〈∆〉〉 it will remain
so forever, and similarly with sites that are deemed “trusted”. It is
only the third category which may change. InExample10we have
seen that new information may result in∆(k) changing fromloc to
lbad. We shall soon see that new information can also “improve”
the status ofk from loc to ltrust.

With the addition of trust, we can revise the reduction rela-
tion of the previous section to eliminate dynamic typechecking
of agents arriving from trusted sites. We adopt the semantics of
Table5, replacing(rf -move) with:

(rt-move) kJgo`.PK | `〈〈∆〉〉 7−→ `JPK | `〈〈∆〉〉
if ∆(k) <: ltrust or ∆

k
` P

Note that the presence ofltrust changes the importance of the con-
dition lbad <: K in the dynamic typing rule(vf -self1). Whereas

this condition was tautological inSection4, here it is not. The side
condition precludes the use of(vf -self1) to infer ∆k

`k:ltrust. This
is important, as it prevents bad sites from becoming trusted.

Example 14. Let ∆ = {`:loc{d:res〈ltrust〉},k:ltrust} and consider
the open network:

`〈〈∆〉〉 | `Jd?(z)PK | kJgo`.d!〈m〉K | mJgo`.d!〈n〉K

Here the locationsm andn are unknown tò , i.e. ∆(m) and∆(n)
are undefined. In addition,d is a resource at̀ for communicating
trusted locations. The migration fromm to ` is not immediately
allowed since∆m

` d!〈n〉 cannot be inferred;m does not have suffi-
cient authority to convincè that locationn is to be trusted.

The move fromk to `, however,is allowed, without dynamic
typechecking, sincè trustsk. After the movement and communi-
cation ond, the resulting network is

`〈〈∆′〉〉 | `JP{|m/z|}K | mJgo`.d!〈n〉K

where∆′ = ∆u {m:ltrust}. Thus, after communication with the
agent fromk, ` trustsm. At this stage the migration fromm to `
is allowed, free of typechecking, andm can inform` of another
trusted site,n. In this way theweb of trustcontaining` grows
dynamically as the network evolves.

Note it is crucial that̀ trustk initially; if this were not the case
then the original migration fromk to ` would have been prevented
by dynamic typechecking. There is no way for a site to “prove its
trustworthiness”; the web of trust can only grow by communication
between trusted sites. �

Example 15. Consider the network

mJgo`0.go`1.go`2.PK | `i〈〈∆i〉〉

where there is a web of trust among`i ; that is∆i(`j) <: ltrust for
all i, j. Suppose further that∆0(m) is undefined, in particular that
`0 does not trustm.

The migration fromm to `0 is allowed only if the following
judgment can be verified:

∆
m
`0

go`1.go`1.go`2.P

Note that this checks not only the potential behavior of the incom-
ing agent at the initial sitè0 but also at the other sites̀1, `2. So
an agent is allowed into the web of trust between`0, `1 and`2 only
if can be assured not to harm any resources at any of the locations
in the web. Moreover this check is made against the knowledge at
the incoming sitè 0. Even ifP intends to respect all the resources
at `2, if it mentions a resource at`2 of which ∆0 is unaware, entry
will be barred.

If the typecheck against∆0 succeeds then we obtain the network

`0Jgo`1.go`2.PK | `i〈〈∆i〉〉

where the agent fromm has gained entry to the web of trust. The
subsequent movements, from`0 to `1 and from`1 to `2, are allowed
freely because of the relationship of trust between these sites. IfP
moves outside the web of trust, however, say tom, and then wishes
to return to somèi , then it will be typechecked again before reen-
try. In Section4, we gave an example which shows that such type-
checking is necessary for agents which wish to reenter a web of
trust. �

Example 16. As a final example, suppose that the set of locations
is static and all sites are mutually trusted. In this case we recover
the standard semantics (modulo the presence of filters), as given in
Section2. �

The main results of the previous section extend to the new set-
ting.

Theorem 17. For the inference systems ofTables 5 and 6, aug-
mented with trusted location types and using(rt-move) instead of
(rf -move):

• If Γ ` N and N−→ N′ thenΓ ` N′.
• If Γ ` N andΓ(`) 6= lbad then N err `−X−→. �

6 Conclusions

We introduced the notion ofpartial typing, which captures the in-
tuition that “bad” sites in a network may harbor malicious agents
while “good” sites may not. We demonstrated that in the presence
of partial typing, some form of dynamic typechecking is required to
ensure that good sites remain uncorrupted. We presented a seman-
tics for Dπ incorporating such dynamic typechecking, showing that
it prevented type violations at good sites. Finally, we addedwebs of
trust to the language, reducing the need for dynamic typechecking
while retaining type safety at good sites.

The presentation of Dπ given here is very different from that
in [23] but is only a minor variant on that in [12]; for example, we
have added base types and moved some of the semantic rules from
the structural equivalence to the reduction relation. Most of the
changes are stylistic rather than substantive. Two of the changes,
however, are essential for the treatment of partial typing. First, we
have moved the rule(r-new) from the structural equivalence to the
reduction relation; this is necessary to allow filter updating. Sec-
ond, we have split the space of names in two, syntactically distin-
guishing locations from resources; this is necessary to prevent the
filter updating rules from producing nonsense environments such
as{`:loc{`:res〈〉}}.

Several other distributed variants of theπ-calculus have been
defined, and it is informative to see how partial typing might be
added to these languages. Syntactically, Dπ is most similar to the
language of Amadio and Prasad [3, 4], which also uses a “goto”
operator for thread movement, written “spawn(`,P)”. However, in
Amadio and Prasad’s language, the set of resources available to a
thread does not vary as the thread moves about the network. This
means that an agent at` can access resources at a different loca-
tion k without requiring thread movement. To add partial typing
to such a language, one would need to typecheckmessagemove-
ment dynamically, rather than thread movement, violating the third
principle given in the introduction.

The fact that resource names are allowed to occur at multiple
locations is crucial to the success of our strategy for dynamic type-
checking. It would be difficult to formulate our approach under the
assumption that each name has a unique location (as, for example,
in [4]). For example, suppose that the resourcea was “uniquely lo-
cated” atk. Then the agentmJgo`.b!〈m[a]〉K at the bad sitemcould
“hijack” a using(t-self2), convincing` thata was uniquely located
at m, rather than some good locationk. In particular entry tò by
an agent fromk may subsequently be blocked because` mistakenly
believes that the unique location ofa is m.

The join calculus of Fournet, Gonthier, Levy, Marganget and
Remy [10] shares many of these properties. Whereas Amadio’s
language adds thread movement to message movement, however,
the join calculus adds location movement. Unfortunately this does

not help combat the problems outlined above, which result from the
“universal extent” of resource names in both subject and object po-
sition. In Dπ, the type system ensures that the “extent” of resource
names in subject position is local,i.e. resources may bereferenced
at remote sites, but may only beusedlocally.

Cardelli and Gordon’s ambient calculus [5], on the other hand,
appears to be amenable to partial typing since ambient movement
is a local operation; thus the problem of “universal extent” does
not arise. The typing system of Dπ is based on the original sorting
system of theπ-calculus [16], and this sorting system has recently
been extended to the ambient calculus [7]. Whereas locations in
Dπ have a straightforward analog in implementations — they cor-
respond to address spaces — the notion of “ambient” is more gen-
eral, adding expressiveness while blurring the distinction between
agent movement and agent interaction. In the ambient calculus it
is theopen operator, rather than thein or out operators, which en-
ables interaction between two threads (or thread collections). Thus
a first attempt at partial typing for the ambient calculus would dy-
namically typecheck thread collections whenever they areopened.
Since each ambient has only one “resource” (λ), however, this im-
plies that dynamic typechecking must occur before every interac-
tion, again violating our third principle. To get around this, one
might introduce a type system for ambients which distinguished
two types of ambients: those which typecheck incoming ambients
and those which do not. The former would be similar to our lo-
cations, the later, our resources. This discipline would open the
possibility of typing code duringin andout operations, rather than
open.

Several studies have addressed the issue of static typing for lan-
guages with remote resources; some recent papers are [20, 6, 24].
Perhaps the work closest to ours is that of Knabe [14], who has
implemented an extension of Facile which supports mobile agents.
The main extensions are remote signatures and proxy structures,
which are somewhat related to our location types. None of these
works address open systems, however. On the other hand, Necula’s
proof carrying code [19] and related techniques [27, 15, 18] address
the problem of dynamic typechecking in open systems, but do not
consider the subject of remote resources.

Another area of related work has to do with static methods for
analyzing the security of information flow [9, 1, 8, 26, 11]. Al-
though this area of research share our general aims there is very
little technical overlap with our approach to resource protection in
open systems.

Acknowledgments We wish to thank Alan Jeffrey for many in-
teresting conversations and the referees for their close reading of
the text.

A Environment Extension

Both subtyping and the partial meet operator extend pointwise to
environments in the obvious manner: For subtyping we have:

∆ <: Γ iff ∀w∈ dom(Γ) : ∆(w) <: Γ(w)

The partial meet operator∆uΓ is undefined if∆(w)uΓ(w) is un-
defined for somew∈ dom(∆)∩dom(Γ), otherwise:

∆uΓ = {w:K | ∆(w)uΓ(w) = K}
∪ {w:K | ∆(w) = K andw /∈ dom(Γ)}
∪ {w:K | Γ(w) = K andw /∈ dom(∆)}

New environments are created from values using the notation
{wu:T}, wherew∈ Loc∪Var. The definition is given by induction

onu and T:

{w bv:BT}= ∅, if bv ∈ valset(BT)
{wx:BT}= { x:BT}
{wk:K}= { k:K}
{wx:K}= { x:K}
{wa:A}= {w:loc{a:A}}
{wx:A}= {w:loc{x:A}}

{w(u, ṽ):K[B̃]}= {wu:K} u {uṽ:B̃}
{wũ:T̃}= {wu1:T1}u · · ·u{wun:Tn}

For example:
{w(0,a):(int,A)} = {w:loc{a:A}}

{w(k,k[c]):(loc{a:A}, loc[C])} = {k:loc{a:A,c:C}}

References

[1] M. Abadi. Secrecy by typing in security protocols. InProceedings of
TACS97, volume 1218 ofLecture Notes in Computer Science, pages
611–637. Springer-Verlag, 1997.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus.Information and Computation, To appear. Available
as SRC Research Report 149 (1998).

[3] R. Amadio and S. Prasad. Localities and failures. InProc. 14th Foun-
dations of Software Technology and Theoretical Computer Science,
volume 880 ofLecture Notes in Computer Science. Springer-Verlag,
1994.

[4] Roberto Amadio. An asynchronous model of locality, failure, and
process mobility. InCOORDINATION ’97, volume 1282 ofLecture
Notes in Computer Science. Springer-Verlag, 1997.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. In Maurice Nivat,
editor,Proc. FOSSACS’98, International Conference on Foundations
of Software Science and Computation Structures, volume 1378 of
Lecture Notes in Computer Science, pages 140–155. Springer-Verlag,
1998.

[6] Luca Cardelli. A language with distributed scope.Computing Sys-
tems, 8(1):27–59, January 1995. A preliminary version appeared in
Proceedings of the 22nd ACM Symposium on Principles of Program-
ming.

[7] Luca Cardelli and Andrew Gordon. Types for mobile ambients. Draft,
1998. Available fromhttp://www.luca.demon.co.uk/.

[8] Mads Dam. Proving trust in systems of second-order processes. In
Hawaii International Conference on Systems Science. IEEE Com-
puter Society Press, 1998.

[9] D. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20:504–513, 1977.

[10] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A
calculus of mobile agents. In U. Montanari and V. Sassone, editors,
CONCUR: Proceedings of the International Conference on Concur-
rency Theory, volume 1119 ofLecture Notes in Computer Science,
pages 406–421, Pisa, August 1996. Springer-Verlag.

[11] Nevin Heintz and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. InConference Record of the ACM Sympo-
sium on Principles of Programming Languages, San Diego, January
1998. ACM Press.

[12] Matthew Hennessy and James Riely. Resource access control in
systems of mobile agents. Computer Science Technical Report
2/98, University of Sussex, 1998. Extended abstract in HLCL
’98. Available from http://www.elsevier.nl/locate/entcs/
volume16.3.html.

[13] Matthew Hennessy and James Riely. Type-safe execution of mo-
bile agents in anonymous networks. Computer Science Technical
Report 3/98, University of Sussex, 1998. Available fromhttp:
//www.cogs.susx.ac.uk/.

http://www.luca.demon.co.uk/
http://www.elsevier.nl/locate/entcs/volume16.3.html
http://www.elsevier.nl/locate/entcs/volume16.3.html
http://www.cogs.susx.ac.uk/
http://www.cogs.susx.ac.uk/

[14] Frederick Coleville Knabe.Language Support for Mobile Agents.
PhD thesis, Carnegie-Mellon University, 1995.

[15] Dexter Kozen. Efficient code certification. Technical Report 98-1661,
Cornell University, Department of Computer Science, 1988. Avail-
able fromhttp://www.cs.cornell.edu/kozen/secure.

[16] Robin Milner. The polyadicπ-calculus: a tutorial. Technical Re-
port ECS-LFCS-91-180, Laboratory for Foundations of Computer
Science, Department of Computer Science, University of Edinburgh,
UK, October 1991. Also inLogic and Algebra of Specification, ed. F.
L. Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

[17] Robin Milner, Joachim Parrow, and David Walker. A calculus of mo-
bile processes, Parts I and II.Information and Computation, 100:1–
77, September 1992.

[18] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From Sys-
tem F to typed assembly language. InConference Record of the ACM
Symposium on Principles of Programming Languages, pages 85–97,
San Diego, January 1998. ACM Press.

[19] George Necula. Proof-carrying code. InConference Record of the
ACM Symposium on Principles of Programming Languages. ACM
Press, January 1996.

[20] Atsuhi Ohori and Kazuhiko Kato. Semantics for communication
primitives in a polymorphic language. InConference Record of
the ACM Symposium on Principles of Programming Languages,
Charleston, January 1993. ACM Press.

[21] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes.Mathematical Structures in Computer Science,
6(5):409–454, 1996. Extended abstract in LICS ’93.

[22] James Riely and Matthew Hennessy. Trust and partial typing in open
systems of mobile agents. Computer Science Technical Report 4/98,
University of Sussex, 1998. Available fromhttp://www.cogs.
susx.ac.uk/.

[23] James Riely and Matthew Hennessy. A typed language for distributed
mobile processes. InConference Record of the ACM Symposium
on Principles of Programming Languages, San Diego, January 1998.
ACM Press.

[24] Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mo-
bility. In FMOODS ’97, Canterbury, July 1997. Chapman and Hall.

[25] Peter Sewell. Global/local subtyping and capability inference for a
distributedπ-calculus. InProceedings of ICALP ’98: International
Colloquium on Automata, Languages and Programming (Aarhus),
number 1443 in LNCS, pages 695–706. Springer-Verlag, July 1998.

[26] Geoffrey Smith and Dennis Volpano. Secure information flow in a
multi-threaded imperative language. InConference Record of the
ACM Symposium on Principles of Programming Languages, San
Diego, January 1998. ACM Press.

[27] Frank Yellin. Low-level security in Java. InWWW4 Confer-
ence, 1995. Available fromhttp://www.javasoft.com/sfaq/
verifier.html.

http://www.cs.cornell.edu/kozen/secure
http://www.cogs.susx.ac.uk/
http://www.cogs.susx.ac.uk/
http://www.javasoft.com/sfaq/verifier.html
http://www.javasoft.com/sfaq/verifier.html

	Introduction
	The Language and Standard Typing
	Syntax
	Standard Reduction
	Types and Subtyping
	Standard Typing

	Partial Typing
	The Partial Typing Relation
	An Example

	Filters and Authorities
	Syntax and Semantics
	Examples
	Subject Reduction and Type Safety

	Trust
	Conclusions
	Environment Extension

