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Abstract. Flattening is a program transformation that eliminates nested parallel con-
structs, introducing flat parallel (vector) operations in their place. We define a sufficient
syntactic condition for the correctness of flattening, providing a static approximation of
Blelloch’s “containment”. This is acheived using a typing system that tracks the control
flow of programs. Using a weak improvement preorder, we then show that the flattening
transformations are intensionally correct for all well-typed programs.

1 Introduction

The study of program transformations has largely been concerned with functional cor-
rectness,i.e. whether program transformations preserve program meaning. However, if
we include an execution cost-model as part of the programming language semantics,
then we can ask whether program transformations additionally preserve or “improve”
program performance. One programimprovesanother if, for every binding of variables,
it evaluates to the same answer in fewer steps. Sands has initiated a formal study of im-
provement for source-to-source transformation of sequential programs [30,29]. In this
paper we study improvement for source-to-target transformation of parallel programs.
Our source language is equipped with a natural parallel semantics, including a cost
model, but lacks a direct parallel implementation. Our target is (almost) a subset of the
source language that is directly implementable on parallel machines within the bounds
of our cost model. We are interested in showing that a transformed program improves
execution cost,i.e. that its performance is approximately the same as that prescribed for
the source program. This gives our work a different flavor from that of Sands.

We study Blelloch and Sabot’sflatteningtransformations [7], used to implement
a nested data-parallel programming language in terms of a vector-based sublanguage.
Nested parallelism allows the simple expression of parallel algorithms over irregular
structures, such as nested lists. For examples, including many divide-and-conquer algo-
rithms, see [3].

The flattening transformations remove instances of a second order parallel “map”
functional, introducing vector operations in the process. We write parallel maps using
the iterator construct. The syntax is similar to that normally used for list comprehen-
sions [14], although the semantics is quite different. For example, the iterator

[x⇐xs,y⇐ys: plus(x,mult(y,2))] (∗)

specifies the evaluation of ‘plus(x,mult(y,2))’ for each binding of(x,y), drawn from
zip(xs,ys). If xs is 〈1,2〉 andys is 〈5,7〉, then (∗) evaluates to〈11,16〉. The expression
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has a natural parallel interpretation.1 Thestep-countof an iterator is the maximum of
the step-counts of the subevaluations. Thework-countof an iterator is the sum of the
work-counts of the subevaluations. Thus (∗) takes a constant number of steps and takes
work proportional to the length ofxsandys.

Using the flattening transformations, (∗) can be rewritten to:

let twos⇐prom(xs,2) in plus1(xs,mult1(ys, twos)) (†)

Here,prom is a primitive that “promotes” its second argument by copying it to match
the length of its first argument; ifxs is 〈1,2,3〉 thenprom(xs,2) evaluates to〈2,2,2〉.
plus1 andmult1 are respectively vector addition and vector multiplication.prom and
the vector operators each execute in one parallel step.

Note that in translating from (∗) to (†), the nesting of parallel and sequential con-
structs has been inverted. (∗) specifies the parallel execution of a sequential expression
involving scalar addition and multiplication, whereas (†) specifies the sequential exe-
cution of vector addition and vector multiplication. In both expressions the step-count
is constant and the work-count is proportional to the length ofxs andys. In general,
however, nesting inversion creates problems, particularly for conditional expressions.

We say that a transformation iscorrect if, for any program, applying the transfor-
mation results in a weak improvement.Weak improvementallows that programP may
improveQ even ifP is slower by a constant factor. Weak improvement is a permissive
condition; nonetheless, the flattening transformations fail to satisfy it. Although flat-
tening does not change the results computed by an expression, it may serialize certain
parallel computations, increasing the step-count drastically. This lead Blelloch [1] to de-
fine a semantic condition, known ascontainment, that identifies iterator-based programs
that are suitable for implementation using only parallel vector operations. Contrary to
folklore, however, containment is not sufficient to guarantee that flattening results in
weak improvement; we present a counterexample inSection5.

In order to specify a subset of programs for which flatteningdoesimply weak im-
provement, we introduce a typing system that divides expressions into three categories.
Roughly described, these are:cnst, expressions that evaluate in a constant number of
parallel steps;flat, a subset of contained expressions; andexp, all expressions. Using
this typing system, we are able to prove that, forflat expressions, flattening is correct.
We believe that ours is the first proof of the correctness of flattening.

The paper is organized as follows: We first introduce the programming language
and its semantics and the flattening transformations. InSection5, we show that the
transformations do not imply weak improvement, even for contained programs. The

1 The cost of a parallel program is typically described using two metrics,steps, which are com-
puted assuming that all available parallelism is realized, andwork, which is computed assum-
ing that no available parallelism is realized. Terms in our target language can be mapped to
the Vector Random Acccess Machine (VRAM ) [1] in a straightforward way that preserves both
steps and work. TheVRAM , in turn, can be related to other models of computation [8]. An
expression in our target language that has step-countt and work-countw can be executed on
a p-processorPRAM in O(w/p+ t logp) time [1]. Whenw>> plogp, thePRAM running time
is a good estimate of actual running times on uniform-access shared-memory machines with
high-bandwidth memory systems, such as vector machines or the TeraMTA [4,23].
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Table 1Source, Intermediate and Target Expressions

A,B,C,D,E ::= Expressions Sublanguage
a Value S/I/T
x Variable S/I/T
p Primitive S/I/T
B(A1, .., A`) Application S/I/T
if B then A else C Conditional S/I/T
let x⇐B in A Sequencing S/I/T
letrec f ⇐ (x1, .., x`) D,E in A Function definition S/I/T
[x1⇐B1, .., x`⇐B` : A] Iterator S/I
〈x1⇐xs1, .., x`⇐xs̀ : A〉 Evaluated iterator I
B1 (A1, .., A`) Parallel application I/T

typing system is defined inSection6. In the following section we sketch the correctness
proof. The details are omitted for lack of space; interested readers are referred to [27].
We conclude with a discussion of related work.

2 A Nested-Sequence Language

Source Language. The language is strict, functional, and first-order. The datatypes
include sequences and integer and boolean scalars. We use two notations for sequence
values, angle brackets and overlines; thus,〈1,2,3〉 and123 both represent the three-
element sequence whoseith element is the integeri. The empty sequence is written〈〉
or •.

The basic constructors for sequences are a family of primitivesbuild` that build
an `-element list from` arguments; for example,build2(1,2) = 〈1,2〉. The basic de-
structor is theelt primitive, which selects an element from a sequence; for example,
elt
(
2, 〈5,6,7〉

)
= 6. Other important primitives includerstr, which restricts a sequence

based on a sequence of booleans,merge, which merges two sequences based on a se-
quence of booleans,flat, which “flattens” a nested sequence, andpart, which partitions
a sequence according to the structure of a different sequence. Lett andf be the boolean
values true and false respectively, and leta throughebe arbitrary values, then:

rstr
(
t f t, 123

)
= 13 flat 12 345 = 12345

merge
(
123, f t f f t, 89

)
= 18239 part(ab cde, 12345) = 12 345

The primitives satisfy the following equations. Leti be a natural number between 1 and
`. Let as be a sequence and letbs be a boolean sequence of equal length, withb̂s its
elementwise logical complement. Letassbe a sequence of sequences.

elt
(
i,build` (a1, .., a`)

)
= ai

merge
(
rstr(b̂s,as), bs, rstr(bs,as)

)
= as

part
(
ass, flat ass

)
= ass

The syntax is parameterized with respect to setsPrim, of primitive names, ranged
over byp, andVar, of variable names, ranged over byf , x, y, z, xs, xss, etc. Leth through
n range over integers,bvover booleans, anda, b, as, bs, etc. over arbitrary values.
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The syntax ofexpressions, or terms, A, B, etc. is given inTable1. A term issource
term if it contains no evaluated iterators or parallel applications. A term istarget term
if it contains no iterators or evaluated iterators. We sometimes refer to arbitrary terms
asintermediateterms.

Parallelism. Most of the constructs of the language are sequential; thus step-count and
work-count are computed the same way. For example, the step-count of ‘let x⇐B in A’
is the sum of the step-counts for the subexpressionsA andB; the work-count is the sum
of the work-counts forA andB.

Parallelism is expressed in the source language using reduction primitives and the
iterator construct. For example, the key step in the parallelquicksortof a sequencexs
(with no duplicate values) can be written, with some syntactic sugar, as follows [3]:

let les= [x⇐xs| x< elt(1,xs) : x]
gtr = [x⇐xs| x≥ elt(1,xs) : x]

in flat [ys⇐build2(les,gtr) : quicksort(ys)]

If n is the length ofxs, then the expected step-count isO(logn) and the expected work is
O(nlogn). Like all other primitives, reductions are assigned a constant number of steps.
Thus ‘sum 〈1,2,3,4,5〉’ evaluates to 15 with step-count 1. We formalize the notions of
step and work complexity inSection4.

Execution of the nested data-parallelism expressed in this simple algorithm is quite
challenging, as the subproblems created by recursive invocations vary in size, and the
quicksort call tree varies in depth. The correctness of the flattening transformations es-
tablished in this paper guarantee that the flattened quicksort combines all these separate
pieces of work in the form of an expectedO(logn) vector operations of sizeO(n).

Intermediate Constructs. The flattening transformations eliminate iterators. To sim-
plify the expression of the transformation rules, we introduce an intermediate construct,
called theevaluated iteratoror e-iterator. Semantically, e-iterators are similar to itera-
tors.

In the target language, parallelism is expressed using parallel implementations of the
primitives. Thus ‘[x⇐xs: plus(x,x)]’ in the source language becomes ‘plus1(xs,xs)’ in
the target. We require that each primitivep have a parallel implementationp1. The target
language also allows for parallel application of user-defined functions. Thus ‘[x⇐ xs:
f x]’ in the source language becomes ‘f 1xs’ in the target. Here, however, the body of
f 1 must be provided explicitly. In the expression ‘letrec f ⇐ x̃D,E in A’, the expressions
D andE give definitions forf . EssentiallyD gives the sequential implementation of
f , whereasE gives the parallel implementation off 1. In practice, only the sequential
definition need be provided by a programmer, the parallel definition can be derived au-
tomatically, asE

def=
〈
ỹ⇐ x̃: D{|̃y/̃x|}

〉
. In examples, we usually write function declarations

simply as ‘letrec f ⇐ x̃D in A’ or equivalently ‘letrec f x̃⇐ D in A’.

Notation. The notation for iterators is sometimes cumbersome. We often write ‘[x1⇐

B1, .., x` ⇐ B` : A]’ as ‘
[
x̃⇐ B̃: A

]
’. In examples, we also use a notation forfilters,

which can be coded using therstr primitive. For example, ‘[x⇐ 〈1,2,3,4,5,6〉 | oddx:
squarex]’ evaluates to the sequence〈1,9,25〉. Here, ‘oddx’ is an expression that filters
the values over which the iterator is applied.
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Table 2Transformations: Context and Let Rules

(X-CTXTA ) BÃ  B′ Ã if B  B′

(X-CTXTL1) let x⇐B in A  let x⇐B′ in A if B  B′

(X-CTXTL2) let x⇐B in A  let x⇐B in A′ if A  A′

(X-CTXTC1) if B then A else C  if B then A′ else C if A  A′

(X-CTXTC2) if B then A else C  if B then A else C′ if C  C′

(X-CTXTR1) letrec f ⇐ x̃D,E in A  letrec f ⇐ x̃D′,E in A if D  D′

(X-CTXTR2) letrec f ⇐ x̃D,E in A  letrec f ⇐ x̃D,E′ in A if E  E′

(X-CTXTR3) letrec f ⇐ x̃D,E in A  letrec f ⇐ x̃D,E in A′ if A  A′

(X-ELET) let x⇐y in A  A{|y/x|}
(X-ILETA ) B (A1, ..,Ai , ..,A`)  let x⇐Ai in B (A1, ..,x, ..,A`) if Ai /∈ Var
(X-ILETP) B1(A1, ..,Ai , ..,A`)  let x⇐Ai in B1(A1, ..,x, ..,A`) if Ai /∈ Var
(X-ILETC) if B then A else C  let x⇐B in if x then A else C if B /∈ Var
(X-ILET I )

[
x1⇐B1, ..,xi ⇐Bi , ..,x`⇐B` : A

]
if Bi /∈ Var

 let xsi ⇐Bi in
[
x1⇐B1, ..,xi ⇐xsi , ..,x`⇐B` : A

]

The variablex is bound in ‘let x⇐B in A’, the scope isA. The variablef is bound in
the definition ‘letrec f ⇐ x̃D,E in A’, the scope isD, E andA; the variablesxi are also
bound in the definition ‘letrec f ⇐ x̃D,E in A’, the scope isD andE. The variablesxi are
bound in the iterator ‘[̃x⇐ B̃: A]’, the scope isA. The variablesxi are bound in the e-
iterator ‘〈x̃⇐ x̃s: A〉’, the scope isA. Let fv(A) be the set of free variables occuring inA.
We identify expressions up to renaming of bound variables. In every binding construct,
the variablesxi must be unique. In every e-iterator〈x̃⇐ x̃s: A〉, A must be a source term.

3 The Transformations

Flattening was introduced in [7] and is an important implementation strategy forNESL

[6] and Proteus [24,20]. Blelloch and Sabot described flattening as a set of transforma-
tions. A typical rule is the following rule for let-expressions. Given that variablezsdoes
not occur free inA, ‘[x⇐xs: let z⇐B in A]’ rewrites to:

let zs⇐ [x⇐xs: B] in [x⇐xs, z⇐zs: A]

As the example implies, the basic strategy is to “push” the iterator expressions through
the abstract syntax until it can be replaced, either by a variable or a promoted constant.
The elimination rules allow ‘[x⇐xs: x]’ to be rewritten simply as ‘xs’ and ‘[x⇐xs: A]’ to
be rewritten as ‘prom(xs,A)’ as long asx does not appear free inA. The transformation
of conditionals specifies that ifz does not appear free inA or C, then ‘[z⇐ zs, x⇐ xs:
if z then A else C]’ rewrites to:

merge
(
[x⇐ rstr(zs,xs) : A], not1zs, [x⇐ rstr(not1zs,xs) : C]

)
We formalize the flattening transformations as a relationA A′ on expressions.

The relation is defined in two tables. The context rules and the transformations forlet
introduction and elimination are given inTable2. The main rules are inTable3. In all
of the rules, variables introduced on the right-hand-side of the transformation must be
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Table 3Transformations: Iterator Rules

(X-IIT) [̃x⇐ x̃s: A]

fv(A)\ x̃ = {y1, .., y`}
A is a source term

 if empty xsh then 〈〉
else let ys1⇐ prom(xsh,y1)...

let ys̀ ⇐ prom(xsh,y`)
in 〈x̃⇐ x̃s, ỹ⇐ ỹs: A〉

(X-EIT) 〈ỹ⇐ ỹs, x⇐xs, z̃⇐ z̃s: A〉  〈ỹ⇐ ỹs, z̃⇐ z̃s: A〉 x /∈ fv(A)

(X-CONST) 〈x⇐xs: A〉  prom(xs,A) x /∈ fv(A)

(X-VAR) 〈x⇐xs: x〉  xs

(X-APP) 〈x̃⇐ x̃s: B(xi1, .., xi`)〉  B1(xsi1, .., xsi`)
(X-LETREC) 〈x̃⇐ x̃s: letrec f ⇐ ỹD,E in A〉  letrec f ⇐ ỹD,E in 〈x̃⇐ x̃s: A〉
(X-LET) 〈x̃⇐ x̃s: let z⇐B in A〉  let zs⇐ 〈x̃⇐ x̃s: B〉 in 〈x̃⇐ x̃s, z⇐zs: A〉
(X-IF) 〈x̃⇐ x̃s: if xh then A else C〉

fv(A) = {xi1, .., xi`} 6= /0
fv(C) =

{
xj1, .., xjk

}
6= /0

 if all xsh then 〈x̃⇐ x̃s: A〉
else if not some xsh then 〈x̃⇐ x̃s: C〉
else let ysi1⇐ rstr(xsh,xsi1)...

let ysi`⇐ rstr(xsh,ysi`)
let zsj1⇐ rstr(not1xsh,xsj1)...
let zsjk⇐ rstr(not1xsh,xsjk)
in merge(〈ỹ⇐ ỹs: A〉, not1xsh, 〈̃z⇐ z̃s: C〉)

(X-IT) 〈x̃⇐ x̃s: [y1⇐xi1, .., ym′ ⇐xim′ : A]〉
fv(A) =

{
xk1, .., xkp

}
∪
{

yk′1
, .., yk′q

}
6= /0

 if all empty1xsh then prom(xsh,〈〉))
else let xs′k1

⇐ flat(prom1(xsih′ ,xsk1))...
let xs′kp

⇐ flat(prom1(xsih′ ,xskp))
let ys′k′1

⇐ flat(xsik′1
)

...
let ys′k′q

⇐ flat(xsik′q )
in part(xsih′ ,〈x̃⇐ x̃s′, ỹ⇐ ỹs′ : A〉)

fresh, that is, they may not appear free in any subexpression given anywhere in the rule.
We write

?
 for the reflexive and transitive closure of .

The general transformation strategy is as follows. The context andlet introduction
rules are used to isolate an iterator expression. Once an iterator expression is found,
the let introduction rule(X-ILET I) is applied until the iteration space of the iterator is
described entirely by variables. Note that ‘x̃⇐ x̃s’ is shorthand for ‘x1⇐xs1, .., xh⇐xsh,
.., xm⇐ xsm’; thus, on the right-hand side of the rule,h can be bound to any integer
between 1 andm.

At this point (X-IIT) is used to remove the iterator construct, replacing it with an
e-iterator. The remaining rules ofTable3 are then used to “push” the e-iterator through
the syntax until it can be removed using(X-CONST), (X-VAR) or (X-APP). The rules
(X-ELET)and(X-EIT) allow for the elimination of useless let and e-iterator binders.

The rule(X-IIT) enforces two properties of e-iterators. First, it guarantees that e-
iterators are only invoked dynamically on non-empty sequences. Second, it guarantees
that e-iterators have no free variables. All free variables in an iterator are explicitly
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bound before the iterator is replaced with an e-iterator. The rules for conditionals and
iterators are designed to preserve these properties. The transformation rules(X-IF) and
(X-IT) require thatA andC contain at least one free variable. Variants of these rules
must be used in the case thatfv(A) or fv(C) are empty; the variants are straightforward
and have been elided. The soundness of(X-LETREC) is ensured by the typing rules,
presented inSection6.

4 A Reference-Based Semantics

We present the semantics of the intermediate language, and thus also the source and
target languages. The semantics gives a formal defintion of the steps and work used
in the evaluation of an expression. We sketch a reference-based implementation of the
target language that meets the constraints imposed by the semantics and discuss other
alternatives.

The semantics of expressions is defined inTable 4 using judgments of the form
‘σ ` A t−→w a’, which is read, “given environmentσ, expressionA evaluates toa with t
steps andw work.” We occasionally drop the annotationst andw when they are not of
interest. Hereσ is a runtime environment which maps variables to values and function
definitions; formally,

σ :: = /0 f ⇐ x̃D,E x⇐a σ1,σ2

whereσ1 andσ2 have disjoint domains. Intuitively, the evaluation of an expression is
an operation on a computer store. Given a storeσ, the evaluation ‘σ ` A t−→w a’ models
the execution ofA to produce a valuea stored in memory. In particular, I/O costs are
not taken into account. This leads us to the axiom ‘σ ` x 0−→0 σ(x)’, which states that
variablex can be evaluated with no computation whatsoever; the value ofx is already
in σ and therefore need not be computed.

The evaluation of a value takes time proportional to the cost of copying the value
into the store. Copying a valuea takes steps proportional to itsdepth(D a) and work
proportional to itssize(S a). For example, the depth of〈〈1〉,〈2,3,4〉,〈5,6〉〉, is 2; its
size is 10.

Explicit sequencing, via thelet construct, incurs no cost. This ensures the validity
of the let-introduction rules given inTable2. For example, the semantics validates the
equation ‘f A = let x⇐A in f x’. In order to computef A, one must first computeA. In
let x⇐A in f x the sequence of events is simply made explicit, it is not changed.

Function declaration also incurs no cost. This interpretation is justified by the typ-
ing rules given in the next chapter. Roughly, functions must be fully parameterized;
therefore, function declarations can be processed statically, with no runtime cost.

The rules(E-IT) and(E-EIT) formalize the interpretation of iterators outlined in the
Introduction. In

[
x̃⇐ B̃: A

]
, the expressionsBi are evaluated sequentially to produce

sequences〈bji 〉nj=1, thenA is evaluated in parallel for each of then bindings ofbji to xi .
The work of an iterator includes a constant charge for each parallel subevaluation; this
ensures,e.g., that[x⇐xs: y] has work proportional to the length ofxs.

The rule(E-APPP) appeals to an evaluation relation for primitives. The judgment
‘p ã t−→w d’ states that given parametersai , p evaluates tod with t steps andw work. We
elide the definition for lack of space; a few examples are given at the end of this section.
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Table 4The Evaluation Relation

(E-VAR)

σ ` x 0−→0 σ(x)

(E-VAL )

σ ` a Da−−→Sa a

(E-LET)

σ ` B tB−−→wB
b

σ,x⇐b ` A tA−−→wA
a

σ ` let x⇐B in A tB+tA−−−−→wB+wA
a

(E-LETREC)

σ, f ⇐ x̃D,E ` A tA−−→wA
a

σ ` letrec f ⇐ x̃D,E in A tA−−→wA
a

(E-IFT)

σ ` B tB−−→wB
t σ ` A tA−−→wA

a

σ ` if B then A else C 1+tB+tA−−−−−−→1+wB+wA
a

(E-IFF)

σ ` B tB−−→wB
f σ ` C tC−−→wC

c

σ ` if B then A else C 1+tB+tC−−−−−−→1+wB+wC
c

(E-IT)

{ σ ` Bi
ti−→wi
〈bji 〉nj=1 }

`
i=1

{σ, x̃⇐ b̃j ` A tj−→wj
aj }nj=1

σ `
[
x̃⇐ B̃: A

] 1+(∑ti)+(maxtj)−−−−−−−−−−−→1+n+(∑wi)+(∑wj)
〈a〉nj=1

(E-EIT)

{ σ ` xsi
0−→0 〈bji 〉nj=1 }

`
i=1

{σ, x̃⇐ b̃j ` A tj−→wj
aj }nj=1

σ ` 〈x̃⇐ x̃s: A〉 1+maxtj−−−−−→n+∑wj
〈aj〉nj=1

n≥ 1

(E-APPP)

{σ ` Ai
ti−→wi

ai }`i=1

pã tp−→wp
d

σ ` pÃ 1+(∑ti+1)+tp−−−−−−−−−→1+(∑wi+1)+wp
d

(E-PAPPP)

{σ ` Ai
ti−→wi
〈aji 〉nj=1 }

`
i=1

{ pãj
tp−→wj

dj }nj=1

σ ` p1Ã 1+(∑ti+1)+tp−−−−−−−−−−→1+(∑wi+1)+∑wj
〈dj〉nj=1

n≥ 1

(E-APPF)

{ σ ` Ai
ti−→wi

ai }`i=1

σ, x̃⇐ ã ` D tD−−→wD
d

σ ` f Ã 1+(∑ti+1)+tD−−−−−−−−−−→1+(∑wi+1)+wD
d

σ(f ) = x̃D,E

(E-PAPPF)

{ σ ` Ai
ti−→wi

ai }`i=1

σ, x̃⇐ ã ` E tE−−→wE
e

σ ` f 1Ã 1+(∑ti+1)+tE−−−−−−−−−→1+(∑wi+1)+wE
e

σ(f ) = x̃D,E

In both primitive and function application, charges are assessed for storing the return
value, as well as for each parameter passed. Note that(E-APPF) and(E-PAPPF) differ
only in which definition,D or E, is executed.

In Section7 we prove that the typed version of the source language can be imple-
mented in terms of the target language and that the translation respects the step and work
complexities of the source semantics. There remains the question of whether the target
language can be implemented on any actual machine. We treat this issue informally, by
sketching an implementation of the target language on theVRAM [1].

In implementing the target language on theVRAM , one is confronted with two main
difficulties: representing nested sequences in terms of vectors, and implementing the
primitives. Implementations of the other constructs of the target language — function
definition and application, let expressions and conditionals — are simple and direct.

The representation for sequences is crucial, as this sets a lower bound on the steps
and work required to implement the primitives; this, in turn, affects the implementability
of the source language. Blelloch and Sabot introduced thesegment-vectorencoding
of sequences [7]. In this encoding, a depth-d sequence is represented as a tuple ofd
vectors: one to describe the data andd−1 to describe the nesting structure that contains
it. Using segment vectors, theprom(as,b) primitive must createn copies ofb, where
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n is the length ofas; this operation requires a minimum work ofn ·S b. Unfortunately,
this means that our transformation rule for constant expressions is invalid. Consider the
iterator ‘[x⇐xs: y]’, which (X-CONST) translates to ‘prom(xs,y)’. Suppose the length
of xs is n. Looking at the source term, ‘[x⇐xs: y]’ takes work proportionaln. However,
‘prom(xs,y)’ takes work proportional ton times the size ofy. If y refers to a non-scalar
value, its size may easily dominaten. More important, the size ofy depends on the
environment; thus we cannot bound the work of the target expression with respect to
the work of the source expression, not even asymptotically.

A solution adopted by Blelloch [2, appendix], is to change the costing of itera-
tors to include the size of free variables. This change creates an unintuitive cost model
for programmers that discourages the use of iterators. Here, we adopt a different strat-
egy, representing nested sequences as vectors of references. Using this representation,
prom(xs,y) takes work proportionaln, creatingn references toy.

This representation allows us to prove the transformations correct with respect to
the natural high-level metric. However, it also leads to a greater number of concurrent
reads, when compared to the segment vector representation, and hence greater memory
contention at runtime. We believe that a reference-based implementation can perform
well using techniques from [21], but we have no experimental results as of yet.

In [27], we present a semantics which captures the work/step model used in the
implementation ofNESL [6]. By adapting the techniques presented here, [27] provides
the first proof of the correctness of flattening forNESL.

5 Improvement

To demonstrate the extensional correctness of the transformations, one can show:

if D
?
 D′ then σ ` D−→ d iff σ ` D′ −→ d

This states that transformation preserves the extensional meaning of programs.We wish
to show something stronger, however. Our goal is to show that the transformations pre-
serve computational cost, in some sense, not just extensional meaning. We wish to show
thatD

?
 D′ impliesD� D′, for some relation� that captures the intuition that ifD re-

duces to a value, thenD′ reduces to the same value and does so as fast or faster. As a
first attempt, we might say thatD� E if for all σ,

σ ` D t−→w d implies σ ` E 6 t−−→
6w d

where “σ `D 6 t−−→
6w d” abbreviates “there existst ′≤ t andw′≤w such thatσ `D t ′−→w′ d.”

This relation is known asstrong improvement; however, this relation is too strong to be
useful directly. The transformations do not imply strong improvement, as one can easily
see by looking at,e.g., (X-CONST), (X-IF2) or (X-IT2).

While we cannot prove that flattening strictly improves performance with respect to
our operational semantics, we can prove that it does soup to a constant factor(in some
cases). Formally, we will defineD� E if there exist constantsu andv such that for all
σ:

σ ` D t−→w d implies σ ` E 6u·t−−−→
6v·w d

This relation is calledweak improvement.
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Unfortunately, there are programs in our language for which flattening does not
imply even weak improvement. Suppose thatf (x) is defined as follows:

f (x) ⇐ if x≤ 1 then 1 else (if evenx then f (x/2) else f (x/2))

Thenf (2n) evaluates to 1 inO(n) steps. Ifxsis the sequence〈2n,2n +1, ..,2(n+1)〉 of 2n

values, then[x⇐xs: f x] also evaluates inO(n) steps. The transformations sequentialize
the branches of the conditional so that the two recursive calls tof are performed one
after the other. The result is that after the transformations,f 1(xs) takesO

(
n2
)

steps,
destroying any hope that the transformation off might result in even a weak improve-
ment.

As we stated in the introduction, it has long been known that flattening is not correct
for all expressions, leading Blelloch to define containment [1]. Roughly stated, a recur-
sive function such asf is containedif it always evaluates in the same way, calling the
same functions and primitives in the same order, regardless of its actual parameters. Ac-
cording to Blelloch’s definition,f is contained, although it is not correctly flattened by
the standard transformations. This apparent anomaly can be explained by looking more
closely at Blelloch’s results. Hiscontainment theoremdoes not address flattening, but
rather uses an entirely different simulation technique which appeals to the semantics,
rather than the syntax, of expressions.

One of the main contributions of this work is to move containment from a semantic
criterion to a syntactic one, thus allowing us to precisely characterize a set of programs
for which flattening is correct. This is achieved using a typing system, presented next.

6 A Typing System for Containment

We introduce a typing system that captures the essential properties of containment using
threecomplexity annotations:

Φ :: = cnst flat exp

The complexity annotationcnst refers to constant-step (although not necessarily termi-
nating) expressions,flat refers to (a subset of) contained expressions, andexp refers
to all expressions. Every constant-step expression is contained, and every contained
expression is an expression. This gives rise to a natural ordering on complexity annota-
tions and, by extension, to types.

The syntax of types is parameterized with respect to a setTVar of type variable
names, α, β. The type language is stratified between value types U, V and types S, T.
The latter include function types:

V :: = α int bool V1 T :: = V (U1, .., U`)� Φ V

For function types, we require thatfv(V)⊆
⋃

i fv(Ui). Functions are constrained to act
over values. Additionally, the function body is constrained to be an expression with
complexityΦ; thus, a function’s type tells us something of how it evaluates.

The subcomplexityrelation (notationΦ <: Ψ) is defined to be the smallest pre-
order on complexity annotations such thatcnst <: flat and flat <: exp. The subtype
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Table 5Typing Rules: Part I

(VAL -INT)

Γ ` n: cnst int

(VAL -BOOL)

Γ ` bv: cnst bool

(VAL -SEQ)

Γ ` aj : cnst V (∀j)
Γ ` 〈a1, .., an〉 : cnst V1

(EXP-SUB)

Γ ` A: Φ S

Γ ` A: Ψ T
Φ <: Ψ
S <: T

(EXP-VAR)

Γ(x) = T

Γ ` x : cnst T

(EXP-PRIM)

δ(p) = T

Γ ` p: cnst T

(EXP-LETREC)

Γ, f : Ũ� Φ V ` f ⇐ x̃D,E
Γ, f : Ũ� Φ V ` A: Ψ W

Γ ` letrec f ⇐ x̃D,E in A : Ψ W

(EXP-LETE)

Γ ` B: exp U
Γ, x : U ` A: exp V

Γ ` let x⇐B in A: exp V

(EXP-ITE)

Γ ` Bi : exp Ui (∀i)
Γ, x̃ : Ũ ` A: flat V

Γ `
[
x̃⇐ B̃: A

]
: exp V

(EXP-IFE)

Γ ` B: exp bool
Γ ` A: exp V
Γ ` C : exp V

Γ ` if B then A else C : exp V

(EXP-APPE)

Γ ` B: exp (Ũ� exp V)
Γ ` Ai : exp (Ui π) (∀i)
Γ ` BÃ: exp (Vπ)

(EXP-PAPPE)

Γ ` B: exp (Ũ� exp V)
Γ ` Ai : exp (U1

i π) (∀i)
Γ ` B1Ã: exp (V1π)

(ENV- /0)

Γ ` /0

(ENV-VAL )

Γ ` x : cnst V
Γ ` a: cnst V

Γ ` x⇐a

(ENV-UNION)

Γ ` σ
Γ ` ρ
Γ ` σ,ρ

(ENV-FUNE)

Γ ` f : cnst (Ũ� Φ V)
(Γ\F), x̃ : Ũ ` D : Φ V
(Γ\F), x̃ : Ũ1 ` E : Φ V1

Γ ` f ⇐ x̃D,E
C

?
 D〈

ỹ⇐ x̃: C{|̃y/̃x|}
〉 ?
 E

relation (notation S<: T) is defined to be the smallest preorder on types such that
Φ <: Ψ implies Ũ� Φ V <: Ũ� Ψ V.

The typing rules are given inTables 5 and6. We prove that evaluation and trans-
formation preserve typing. We also prove an important property ofcnst expressions,
described below. The significance offlat expressions is made clear in the proofs of
Proposition 6.1c andTheorem7.2 where the typing rules forflat are used in conjunc-
tion with Proposition 6.1a to prove the flattening transformations correct.

The judgments of the type system have the form:

Γ ` a: cnst V Valuea has type V.
Γ ` A: Φ T ExpressionA has type T and complexityΦ .
Γ ` σ Environmentσ is well typed.

Here Γ is a type environment that maps type variables to types. Let us first look at
Table5, which gives the rules for values,exp expressions and environments. The three
rules for values are given on the first line of the table. Ignoring the complexity anno-
tations, these are standard rules for monomorphic sequences. The rule(VAL -SEQ), for
example, states that in order for a sequence value to have type V1, every element of
the sequence must have type V. The complexity annotationcnst indicates that the con-
struction of a literal value takes a constant number of steps (independent of the runtime
environment).



12 James Riely and Jan Prins

Table 6Typing Rules: Part II
(EXP-EITC)

fv(A)⊆ x̃
Γ ` xsi : cnst Ui (∀i)
Γ, x̃ : Ũ ` A: cnst V
Γ `

〈
x̃⇐ x̃s: A

〉
: cnst V

(EXP-EITF1)

fv(A)⊆ x̃
Γ ` xsi : cnst Ui (∀i)
Γ, x̃ : Ũ ` A: flat V
Γ `

〈
x̃⇐ x̃s: A

〉
: flat V

(EXP-LETC)

Γ ` B: cnst U
Γ,x : U ` A: cnst V
Γ ` let x⇐B in A: cnst V

(EXP-LETF1)

Γ ` B: cnst U
Γ,x : U ` A: flat V
Γ ` let x⇐B in A: flat V

(EXP-LETF2)

Γ ` B: flat U
Γ,x : U ` A: cnst V
Γ ` let x⇐B in A: flat V

(EXP-APPC)

Γ ` B: cnst (Ũ� cnst V)
Γ ` Ai : cnst (Ui π) (∀i)
Γ ` BÃ: cnst (Vπ)

(EXP-APPF1)

Γ ` B: cnst (Ũ� flat V)
Γ ` Ai : cnst (Ui π) (∀i)
Γ ` BÃ: flat (Vπ)

(EXP-APPF2)

Γ ` B: cnst (Ũ� cnst V)
Γ ` Ai : cnst (Ui π) (∀i 6= h)
Γ ` Ah : flat (Uh π)
Γ ` BÃ: flat (Vπ)

(EXP-PAPPC)

Γ ` B: cnst (Ũ� cnst V)
Γ ` Ai : cnst (U1

i π) (∀i)
Γ ` B1Ã: cnst (V1π)

(EXP-PAPPF1)

Γ ` B: cnst (Ũ� flat V)
Γ ` Ai : cnst (U1

i π) (∀i)
Γ ` B1Ã: flat (V1π)

(EXP-PAPPF2)

Γ ` B: cnst (Ũ� cnst V)
Γ ` Ai : cnst (U1

i π) (∀i 6= h)
Γ ` Ah : flat (U1

hπ)
Γ ` B1Ã: flat (V1π)

(EXP-ITC)

Γ ` Bi : cnst Ui (∀i)
Γ, x̃ : Ũ ` A: cnst V

Γ `
[
x̃⇐ B̃: A

]
: cnst V

(EXP-ITF1)

Γ ` Bi : cnst Ui (∀i)
Γ, x̃ : Ũ ` A: flat V

Γ `
[
x̃⇐ B̃: A

]
: flat V

(EXP-ITF2)

Γ ` Bi : flat Ui (∀i)
Γ, x̃ : Ũ ` A: cnst V

Γ `
[
x̃⇐ B̃: A

]
: flat V

(EXP-IFF1)

Γ ` B: flat bool
Γ ` A: cnst V
Γ ` C : cnst V
Γ ` if B then A else C : flat V

(EXP-IFF2)

Γ ` B: cnst bool
Γ ` A: flat V
Γ ` C : cnst V
Γ ` if B then A else C : flat V

(EXP-IFF3)

Γ ` B: cnst bool
Γ ` A: cnst V
Γ ` C : flat V
Γ ` if B then A else C : flat V

(EXP-SUB) is a standard rule for subsumption; the side conditions specify con-
straints onΨ and T. The rule for primitives(EXP-PRIM) makes use of the function
δ which maps primitive names to types; the definition is elided. Both primitive and
variable occurrences can be resolved dynamically in a constant number of steps and
therefore are assigned complexitycnst.

The rule(EXP-LETREC) relies on the environment rule(ENV-FUN), described be-
low. In (EXP-LETREC), also note that the complexity and type of the expressionA need
not be the same as the complexity or type of the function being defined. The rules for
let-expressions(EXP-LETE) and conditionals(EXP-CONDE) are standard. Note that us-
ing subsumption, these rules can be applied even if a subexpression is incnst or flat.
The iterator rule(EXP-ITE) is similar to the let-rule in its treatment of binders, as should
be expected. Here, however, the bound expressionA is required to beflat. This is an
essential aspect of the typing system; the main purpose of the type system, after all, is
to ensure that iterator expressions are correctly flattenable.
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The rules for application and parallel application allow for the instantiation of type
variables via a type substitutionπ. Note the difference between these rules. IfB has type
Ũ� exp V, thenBÃ has type V, whereasB1Ã has type V1.

The rules for runtime environments are presented in the bottom row of the table.
These are straightforward, but for(ENV-FUN). Note the difference in the treatment of
two function bodies,D andE. WhereasD must evaluate to a value of type V,E must
evaluate to a value of type V1; the types of the input parameters are adjusted accord-
ingly. The unusual side conditions enforce a syntactic relation between the two function
bodies, formalizing the intuition thatE andD must be derived from a common source
C. The conditions are not onerous; in practiceE is automatically generated fromD.
We write(Γ\F) for the type environment derived by removing all value-typed variables
from Γ. Thus the type rules require that function declarations be fully parameterized;
i.e. DandE cannot refer to free value variables.

We now turn toTable6. Here we find the first rule for e-iterators; the rule has a side
condition requiring that all variables in the iterator expression be bound.

The table is best read in columns. The first column gives rules forcnst expressions.
The exception is the conditional. Expressions that include a conditional may take a
varying number of steps depending on the value of the condition, which may in turn de-
pend on the runtime environment; therefore, no conditional expression is incnst. Note
thatcnst expressions can be recursive, although in this case the typing rules guarantee
that they are nonterminating, since no conditionals are allowed incnst expressions.

The second and third columns give rules forflat expressions. These require that at
most one subexpression isflat, all others arecnst, ensuring that at most one sequential
component is recursive. This is a sufficient condition for containment.

It is important to emphasize that our typing system is not overly conservative. For
example, all but one of the programs on the Scandal websitehttp://www.cs.cmu.
edu/~scandal/ can be typed using our system (although some require trivial rewrit-
ing). Potential improvements are discussed inSection8.

Proposition 6.1. (a) Suppose thatΓ ` σ andΓ ` ρ and thatσ andρ differ only in their
value bindings. IfΓ ` D : cnst V, σ ` D t−→w d andρ ` D t′−→

w′
d′, then t= t′.

(b) If Γ ` σ andΓ ` D : Φ T andσ ` D t−→w d, thenΓ ` d : cnst T.
(c) If Γ ` D : Φ T and D D′, thenΓ ` D′ : Φ T. �

7 Correctness of the Reference Implementation

We can now state the main result.

Definition 7.1. D is weakly improved by E underΓ (notationD≈BΓ E) if Γ `D, Γ ` E,
and there exist constantsu andv such that for allσ such thatΓ ` σ,

σ ` D t−→w d implies σ ` E 6u·t−−−→
6v·w d �

Theorem 7.2. If Γ ` A and A
?
 B then A≈BΓ B. �

This theorem is very hard to prove directly. Weak improvement has some nice proper-
ties; for example it is a preorder. However, it is not substitutive. In light of the context

http://www.cs.cmu.edu/~scandal/
http://www.cs.cmu.edu/~scandal/
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rules given inTable2, this makes it very difficult to prove the transformations correct
directly.

To proveTheorem7.2, we define an alternative,costedsemantics, and, using this, a
strong improvementrelation∼BΓ. Strong improvement is a congruence that allows us to
establish the following results, which together proveTheorem7.2.

A∼BΓ B implies A≈BΓ B

Γ ` A and A
?
 B imply A∼BΓ B

The close relation between standard evaluation and costed evaluation (denoted7 7−→) is
given by a costing functionC, which is determined by the syntax of a term. We have:

σ ` D t7 7−→w d implies σ ` D 6 t−−→
6w d

σ ` D t−→w d implies σ ` D 6C(σ`D)·t7 7−−−−−−−→
6C(σ`D)·w d

Our proof technique is similar to Sands’ use of the tick algebra [29]. We introduce
“ticks” in the costed semantics in order to account for the costs introduced later by the
transformations. There are differences, however; for example, our “ticks” depend on
the nesting depth of iterators and conditionals. Unfortunately, a detailed discussion is
beyond the scope of this extended abstract.

8 Related and Future Work

This paper is derived from [27] which closes many problems left open in [28], where
we first outlined our approach. The techniques and results in this paper are all new;
in particular, [28] does not mention the typing system, the costed semantics, strong
improvement, nor the counterexample for the adequacy of containment.

Several other authors have considered the implementation of nested parallelism via
flattening transformations. Steele and Hillis [32] presented a set of laws for relating ex-
pressions that include an apply-to-each operator. Blelloch and Sabot [7] picked up on
this theme to define a flattening compiler for Paralation-LISP, which became the basis
for NESL. Prins and Palmer [24] presented a different form of flattening using program
transformations; this approach was further refined in [21,20] and here. The thread-based
execution model of nested parallelism has been shown to respect the step and work com-
plexities of the source-level metrics [9,5]. However, overheads and space requirements
in the realization of this model require careful run-time scheduling [4], fast synchro-
nization [25], and granularity control (in the sense of [10]) to make it practical. Blel-
loch [1] and Suciu and Tannen [34,33], have presented nested parallel languages and
have argued that these languages can be implemented on theVRAM with the correct
step/work complexity. However, these results are based on simulation techniques rather
than explicit source-to-target translations.

Skillicorn and Cai [31] presented a cost calculus for parallel programs using the
Bird-Meertens formalism. This approach has been developed further by Jay [16,15],
using shape analysis. Another promising direction is that of Keller, who develops trans-
formations that take distribution into account [17]. In this setting, flattening can prof-
itably be combined with deforestation and related techniques [35,18,11].
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Nested data-parallelism may be seen as a particular form of the more general and-
parallelism found in logic programs [13]. Research on the parallel execution of logic
programs has explored ideas similar to flattening to reduce communication [26] and
scheduling overheads [13,22] for restricted nested and-parallel constructs. These are
presented as optimizations but there are no formal performance guarantees. A source-
level cost semantics is used in [10] to control the compilation and run-time execution
of parallel logic programs.

Our notion of weak improvement is similar that developed in [19,12]. There, how-
ever, the relation is a congruence by construction; it is the least congruence contained
in our (stronger) relation. In our setting, little is gained by forcing weak improvement
to be a congruence; therefore, we use the simpler definition.

There are several possibilities for further work. We believe it is possible to weaken
the typing system to allow for sequential composition offlat expressions. Currently we
require that for ‘let x⇐A in B’ to be inflat, eitherA or B must be incnst. It appears that
bothA andB could be inflat; however, we have not yet been able to establish a correct-
ness proof in this case. We plan to implement our reference-based semantics with the
intention of deriving an experimental measure of its performance. We would also like to
adapt our results to the “construct-results” costing function outlined in [28]; this cost-
ing function allows the use of the segment-vector representation of nested sequences
without the compromising the usability of the semantics.
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