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Within the setting of the �-calculus we wish to investigate the use of types to
enforce security policies. To facilitate the discussion we extend the syntax with
a new construct to represent a process running at a given security clearance,
�JP K. Here � is some security level taken from a complete lattice of security
levels SL and P is the code of the process. Further, we associate with each
channel, the resources in our language, a set of input/output capabilities [22,
24], each decorated with a speci�c security level. Intuitively, if channel n has
a read capability at level �, then only processes running at security level � or
higher may be read from n. This leads to the notion of a security policy �, which
associates a set of capabilities with each channel in the system. The question
then is to design a typing system which ensures that processes do not violate
the given security policy.

Of course this depends on when we consider such a violation to take place.
For example if � assigns the channel or resource n the highest security level top
then it is reasonable to say that a violation will eventually occur in

c!hni j botJc?(x) x?(y)P K
as after the communication on c, a low level process, botJn?(y)P K has gained
access to the high level resource n. Underlying this example is the principle that
processes at a given security level � should have access to resources at security
level at most �. We formalize this principle in terms of a relation P �7�! err,
indicating that P violates the security policy �.

To prevent such errors, we restrict attention to security policies that are
somehow consistent. Let � be such a consistent policy; consistency is de�ned by
restricting types so that they respect a subtyping relation. We then introduce a
typing system, � ` P , which ensures that P can never violate � :

If � ` P then for every context C[ ] such that � ` C[P ] and every Q

which occurs during the execution of C[P ], that is C[P ] 7!� Q, we have
Q �7�X�! err.

Thus our typing system ensures that low level processes will never gain access to
high level resources. The typing system implements a particular view of security,
which we refer to as the R-security policy, as it o�ers protection to resources. Here
communication is allowed between high level and low level principals, provided
of course that the values involved are appropriate.

This policy does not rule out the possibility of information leaking indirectly
from high security to low security principals. Suppose h is a high channel and hl

is a channel with high-level write access and low-level read access in:

top
q
h?(x) if x = 0 then hl!h0i else hl!h1i

y
j bot

q
hl?(z)Q

y
(?)

This system can be well-typed although there is some implicit information ow
from the high security agent to the low security one; the value received on the
high level channel h can be determined by the low level process Q.

It is diÆcult to formalize exactly what is meant by implicit information ow

and in the literature various authors have instead relied on non-interference, [14,
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25, 11, 26], a concept more amenable to formalization, which ensures, at least
informally, the absence of implicit information ow.

To obtain such results for the �-calculus we need, as the above example
shows, a stricter security policy, which we refer to as the I-security policy. This
allows a high level principal to read from low level resources but not to write to
them. Using the terminology of [2, 7]:

{ write up: a process at level � may only write to channels at level � or above
{ read down: a process at level � may only read from channels at level � or

below.

In fact the type inference system remains the same and we only need constrain
the notion of type. In this restricted type system well-typing, �  P , ensures a
form of non-interference.

To formalize this non-interference result we need to develop a notion of pro-
cess behaviour, relative to a given security level. Since the behaviour of processes
also depends on the type environment in which they operate we need to de�ne
a relation

P ��
� Q

which intuitively states that, relative to � , there is no observable distinction
between the behaviour of P and Q at security level �; processes running at
security level � can observe no di�erence in the behaviour of P and Q. Lack of
information ow from high to low security levels now means that this relation
is invariant under changes in high-level values; or indeed under changes in high-
level behaviour.

It turns out that the extent to which this is true depends on the exact for-
mulation of the behavioural equivalence ��

� . We show that it is not true if ��
� is

based on observational equivalence [19] or must testing equivalence [21]. But a
result can be established if we restrict our attention to may testing equivalence
(here written '�

� ). Speci�cally we will show that, for certain H;K:

If � � P; Q and � top H; K then P '�
� Q implies P jH '�

� Q jK (??)

The remainder of the paper is organized as follows. In the next section we
de�ne the security �-calculus, giving a labelled transition semantics and a formal
de�nition of runtime errors. In Section 3 we design a set of types and a typing
system which implements the resource control policy. This section also contains
Subject Reduction and Type Safety theorems. In Section 4 we motivate the
restrictions required on types and terms in order to implement the information
control policy. We also give a precise statement of our non-interference result,
and give counter-examples to related conjectures based on equivalences other
than may testing.

The proof of our main theorem depends on an analysis of may testing in
terms of asynchronous sequences of actions [6] which in turn depends on a more
explicit operational semantics for our language, where actions are paramterised
relative to a typing environment. The details may be found in the full version of
the paper, [16].
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Fig. 1 Syntax

P;Q ::= Terms
u!hvi Output
u?(X : A)P Input
if u = v then P else Q Matching
�JP K Security level
(new a : A) P Name creation
P jQ Composition
�P Replication
0 Termination

X;Y ::= Patterns
x Variable
(X1; : : : ; Xk) Tuple

u; v; w ::= Values
bv Base Value
a Name
x Variable
(u1; : : : ; uk) Tuple

2 The Language

The syntax of the security �-calculus, given in Figure 1, uses a prede�ned set of
names, ranged over by a; b; : : : ; n and a set of variables, ranged over by x; y; z.
Identi�ers are either variables or names. Security annotations, ranged over by
small Greek letters �; �; : : : , are taken from a complete lattice hSL;�;u;t; top; boti
of security levels. We also assume for each � a set of basic values BV� ; we use
bv to range over base values. We require that all syntactic sets be disjoint.

The binding constructs u?(X : A)Q and (new a : A) Q introduce the usual
notions of free names and variables, fn(P ) and fv(P ), respectively, and associ-
ated notions of substitution; details may be found in the full version. Moreover
the typing annotations on the binding constructs, which will be explained in
Section 3, are omitted whenever they do not play a role.

The behaviour of a process is determined by the interactions in which it can
engage. To de�ne these, we give a labelled transition semantics (LTS) for the
language. The set Act of labels, or actions, is de�ned as follows:

� ::= Actions

� Internal action

(~c : ~C)a?v Input of v on a learning private names ~c

(~c : ~C)a!v Output of v on a revealing private names ~c

Visible actions (all except �) are ranged over by �, � and we use E(�) to denote
the bound names in �, together with their types. E((~c : ~C)a!v) = E((~c : ~C)a?v) =
(~c : ~C). Further, let n(�) be the set of names occurring in �, whether free or
bound. We say that the actions `(~c : ~C)a?v' and `(~c : ~C)a!v' are complementary,
with � denoting the complement of �.

The LTS is de�ned in Figure 2 and for the most part the rules are straight-
forward; it is based on the standard operational semantics from [20], to which
the reader is referred for more motivation.

Informally a security policy associates with each input/output capability on
a channel a security level. To this end, Pre-capabilities and pre-types are de�ned
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Fig. 2 Labelled Transition Semantics

(l-out)

a!hvi a!v��! 0

(l-in)

a?(X)P (ec : eC)a?v������! Pfjv=Xjg
~c =2 fn(P ); ~c 2 fn(v)

(l-open)

P (~c : ~C)a!v�����! P 0

(new b : B) P (b : B)(ec : eC)a!v���������! P 0

b 6= a
b 2 fn(v)

(l-com)

P ��! P 0; Q ��! Q0

P jQ ��! (new E(�)) (P 0 jQ0)

(l-eq)

if u = u then P else Q ��! P if u = w then P else Q ��! Q
u 6= w

(l-ctxt)

P ��! P 0

�P ��! �P j P 0

�JP K ��! �JP 0K

P ��! P 0

P jQ ��! P 0 jQ
Q j P ��! Q j P 0

bn(�) 62 fn(Q)

P ��! P 0

(new a : A) P ��! (new a : A) P 0
a 62 n(�)

as follows:

cap ::= Pre-Capability

w�hAi �-level process can write values with type A
r�hAi �-level process can read values with type A

A ::= Pre-Type

B� Base type
fcap1; : : : ; capkg Resource type (k � 0)
(A1; : : : ;Ak) Tuple type (k � 0)

We will tend to abbreviate a singleton set of capabilities, fcapg, to cap.
A security policy, �, is a �nite mapping from names to pre-types. Thus, for

example, if � maps the channel lh to the pre-type fwbothBi; rtophAig, for some
appropriate A; B, then low level processes may write to lh but only high level
ones may read from it; this is an approximation of the security associated with
a mailbox. On the other hand if � maps hl to frbothAi; wtophBig then hl acts
more like an information channel; anybody can read from it but only high level
processes may place information there.

The import of a security policy may be underlined by de�ning what it means
to violate it. Our de�nition is given in Figure 3, in terms of a relation P �7�! err.
For example, relative to the policy � de�ned above, after one reduction step
of the process topJc!hhliK j botJc?(x) x!hviK, there is a security error because
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Fig. 3 Runtime Errors

(e-rd) �Ja?(X)P K �7�! err if � � � implies for all A, r�hAi =2 �(a)

(e-wr1) �Ja!hviK
�7�! err if � � � implies for all A, w�hAi =2 �(a)

(e-wr2) �Ja!hviK
�7�! err if bv 2 v, bv 2 B� and � 6� �

(e-str)
P �7�! err

P jQ �7�! err

P �7�! err

�JP K �7�! err

P � Q; P �7�! err

Q �7�! err
P �;a : A7����! err

(new n : A) P �7�! err

botJhl!hviK �7�! err: A low security process has read access to security chan-
nel hl on which write access is reserved for high-security processes. Assuming
an appropriate typing for c and v the same security error does not occur in
topJc!hlhiK j botJc?(x) x!hviK: The low security process botJlh!hviQK has the right
to write on the channel lh.

3 Resource Control

Our typing system will apply only to certain security policies, those in which the
pre-types are in some sense consistent. Consistency is imposed using a system
of kinds: the kind RType� comprises the value types accessible to processes at
security level �. These kinds are in turn de�ned using a subtyping relation on
pre-capabilities and pre-types.

De�nition 1. Let <: be the least preorder on pre-capabilities and pre-types such

that:

(u-wr) w�hAi <: w�hBi if B <: A
(u-rd) r�hAi <: r�hBi if A <: B and � � �

(u-base) B� <: B� if � � �

(u-res) fcapigi2I <: fcap0jgj2J if (8j)(9i) capi <: cap0j
(u-tup) (A1; : : : ;Ak) <: (B1; : : : ;Bk) if (8i) Ai <: Bi

For each �, let RType� be the least set that satis�es:

(rt-wr)

A 2 RType�

fw�hAig 2 RType�
� � �

(rt-rd)

A 2 RType�

fr�hAig 2 RType�
� � �

(rt-wrrd)

A 2 RType�
A0 2 RType�0

fw�hAi; r�0 hA0ig 2 RType�

� � �
�0 � �
A <: A0

(rt-base)

B� 2 RType�
� � �

(rt-tup)

Ai 2 RType� (8i)

(A1; : : : ;Ak) 2 RType�
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Fig. 4 Typing Rules

(t-id)

� (u) <: A

� ` u : A

(t-base)

bv 2 B�

� ` bv :B�

(t-tup)

� ` vi :Ai (8i)

� ` (v1; : : : ; vk) :(A1; : : : ;Ak)

(t-in)

�;X : A `� P
� ` u : r�hAi

� `� u?(X : A)P

(t-out)

� ` u :w�hAi
� ` v : A

� `� u!hvi

(t-eq)

� ` u : A; v : B
� `� Q
� u fu : B; v : Ag `� P

� `� if u = v then P else Q

(t-sr)

� `�u� P

� `� �JP K

(t-new)

�; a : A `� P

� `� (new a : A) P

(t-str)

� `� P; Q

� `� P jQ; �P; 0

Let RType be the union of the kinds RType� over all �. ut

Note that if � � � then RType� � RType�. Intuitively, low level values are
accessible to high level processes. However the converse is not true. For example
wtophi 2 RTypetop but wtophi is not in RTypebot. The compatibility requirement
between read and write capabilities in a type (rt-wrrd), in addition to the
typing implications discussed in [24], also has security implications. For example
suppose rbothB�i and wtophBi are capabilities in a valid channel type. Then
apriori a high level process can write to the channel while a low level process
may read from it. However the only possibility for � is bot, that is only low level
values may be read. Moreover the requirement B <: B� implies that B must also
be Bbot. So although high level processes may write to the channel they may
only write low level values.

Proposition 1. For every �, RType� is a preorder with respect to <:, with both

a partial meet operation u and a partial join t. ut

A type environment is a �nite mapping from identi�ers (names and variables)
to types. We adopt some standard notation. For example, let `�; u : A' denote the
obvious extension of � ; `�; u : A' is only de�ned if u is not in the domain of � . The
subtyping relation <: together with the partial operators u and t may also be
extended to environments. We will normally abbreviate the simple environment
fu : Ag to u : A and moreover use v : A to denote its obvious generalisation to
values.

The typing system is given in Figure 4 where the judgements are of the form
`� `� P '. If � `� P we say that P is a �-level process. Also, let `� ` P ' abbreviate
`� `top P '.

Intuitively `� `� P ' indicates that the process P will not cause any security
errors if executed with security clearance �. The rules are very similar to those
used in papers such as [24, 22] for the standard IO typing of the �-calculus.
Indeed the only signi�cant use of the security levels is in the (t-in) and (t-out)
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rules, where the channels are required to have a speci�c security level. This is
inferred using auxiliary value judgements, of the form � ` v : A. It is interesting
to note that security levels play no direct role in their derivation.

Theorem 1 (Subject Reduction). Suppose � `� P . Then

{ P ��! Q implies � `� Q

{ P (~c : ~C)a?v������! Q implies there exists a type A such that � ` a : rÆhAi for some

Æ � �, and if � u v : A is well-de�ned then � u v : A `� Q.

{ P (~c : ~C)a!v�����! Q implies there exists a type A such that � ` a :wÆhAi for some

Æ � �, �; ~c : ~C ` v : A and �; ~c : ~C `� Q.

ut

We can now state the �rst main result:

Theorem 2 (Type Safety). If � ` P then for every closed context C[ ] such
that � ` C[P ] and every Q such that C[P ] ��!� Q we have Q �7�X�! err

ut

Having de�ned our typing system we may now view �JP K simply as notation
for the fact that, relative to the current typing environment � , the process P is
well-typed at level �, i.e. � `� P . Technically we can view �JP K to be structurally
equivalent to P , assuming we are working in an environment � such that � `� P .

4 Information Flow

We have shown in the previous sections that, in well-typed systems, processes
running at a given security level can only access resources appropriate to that
level. However, as pointed out in the Introduction this does not rule out (im-
plicit) information ow between levels. One way of formalizing this notion of
ow of information is to consider the behaviour of processes and how it can be
inuenced. If the behaviour of low-level processes is independent of any high-
level values in its environment then we can say that there can be no implicit ow
of information from high-level to low-level. This is not the case in the example
considered in the Introduction, (?). Suppose, for example, that Q is the code
fragment `if z = 0 then l1!hi else l2!hi'. If (?) were placed in an environment with
`topJh!h0iK', then the resource l1 would be called. If, instead, (?) were placed in
an environment with `topJh!h42iK', then l2 would be called. In other words the
behaviour of the low-level process can be inuenced by high-level changes; there
is a possibility of information ow downwards.

This is not surprising in view of the type associated with the channel hl;
in the terminology of [2] it allows a write down from a high-level process to a
low-level process. Thus if we are to eliminate implicit information ow between
levels in well-typed processes we need to restrict further the allowed types; types
such as fwtophi; rbothig clearly contradict the spirit of secrecy. Thus, for the rest
of the paper we work with the more restrictive set IType, the Information types.
In order for fw�hAi; r�0 hA0ig to be in IType, it must be that � � �0; this is not
necessarily true for types in RType.
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De�nition 2. For each �, let IType�, be the least set that satis�es the rules in

De�nition 1, with (rt-wrrd) replaced by:

(it-wrrd)

A 2 IType�
A0 2 IType�0

fw�hAi; r�0hA0ig 2 IType�

� � �0

�0 � �
A <: A0

Let IType be the union of IType� over all �. We write � 
� P if � `� P can be

derived from the rules of Figure 4 using these more restrictive types. ut

All of the results of the previous section carry over to the stronger typing system;
we leave their elaboration to the reader.

Unfortunately, due to the expressiveness of our language, the use of I-types
still does not preclude information ow downwards, between levels. Consider the
system

top
q
h?(x) if x = 0 then botJl!h0iK else botJl!h1iKy j botql?(z)Qy

executing in an environment in which h is a top-level read/write channel and l

is a bot-level read/write channel. This system can be well-typed using I-types,
but there still appears to be some some implicit ow of information from top

to bot. The problem here is that our syntax allows a high-level process, which
can not write to low-level channels, to evolve into a low-level process which does
have this capability; we need to place a boundary between low- and high-level
processes which ensures a high-level process never gains write access to low-level
channels. This is the aim of the following de�nition:

De�nition 3. De�ne the security levels of a term below �, sl�(P ), as follows:

sl�(�P ) = sl�(P ) sl�(0) = f�g sl�(�JP K) = f� u �g [ sl�u�(P )

sl�((new a : A) P ) = sl�(P ) sl�(u!hvi) = ; sl�(P jQ) = sl�(P ) [ sl�(Q)

sl�(u?(X : B)P ) = sl�(P ) sl�(if u = v then P else Q) = sl�(P ) [ sl�(Q)

A process P is �-free if for every � in sltop(P ), � 6� �. ut

Non-interference, as discussed in the Introduction, (??), depends on a formu-
lation of a behavioural equivalence, as the following example illustrates. Let A
denote the type fwbothi; rbothig and B denote frbothig. Further, let � map a and
b to A and B, respectively, and n to the type fwbothAi; rbothAig. Now consider
the terms P and H de�ned by

P ( botJn!hai j n?(x : A) x!hiK H ( topJn?(x : B) b?(y) 0K
It is very easy to check that �  P;H and that H is bot-free. Note that in the
term P jH there is contention between the low and high-level processes for who
will receive a value on the channel n. This means that if we were to base the
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semantic relation � on any of strong bisimulation equivalence, weak bisimulation

equivalence, [19], or must testing, [21], we would have

P j 0 6�� P jH

The essential reason is that the consumption of writes can be detected; the
reduction

P jH ��! botJn?(x : A) x!hiK j topJb?(y) : 0K
cannot be matched by P j 0. Using the terminology of [21], P j 0 guarantees the
test botJa?(x)!!hiK whereas P jH does not.

May equivalence is de�ned in terms of tests. A test is a process with an
occurrence of a new reserved resource name !. We use T to range over tests,
with the typing rule � � !!hi for all � . When placed in parallel with a process P ,
a test may interact with P , producing an output on ! if some desired behaviour
of P has been observed. We write T+ if T ��!� T 0, where T 0 has the form
(new ~c) (!!hi j T 00) for some T 00 and ~c; that is T can eventually report success.

We wish to capture the behaviour of processes at a given level of security.
Consequently we only compare their ability to pass tests that are well-typed
at that level. The de�nition must also take into account the environment in
which the processes are used, as this determines the security level associated
with resources.

De�nition 4. We write P '�
� Q if for every test T such that � � T :

(P j T )+ if and only if (Q j T )+

ut

We can now state the main result of the paper.

Theorem 3 (Non-Interference). If � � P; Q and � top H; K where H and

K are �-free processes, then P '�
� Q implies P jH '�

� Q jK: ut

The proof of the theorem relies on a constructing suÆcient condition to guarantee
that two processes are may equivalent. This condition involves the asynchronous
sequences of actions which processes can perform in the type environment � . The
details may be found in the full version of the paper, [16], which also contains
the subsequent proof of the non-interference result.

Finally let us remark that if we allowed synchronous tests then this result
would no longer hold. For an appropriate � would have:

P j 0 '�
� P jH

Let T be the test botJb!hi!!hiK. Then P jH jT may eventually produce an output
on ! whereas P j0 jT cannot. However, since our language is asynchronous, such
tests are not allowed.
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5 Conclusions and Related Work

Methods for controling information ow are a central research issue in computer
security [7, 14, 27] and in the Introduction we have indicated a number of dif-
ferent approaches to its formalisation. Non-interference has emerged as a useful
concept and is widely used to infer (indirectly) the absence of information ow.
In publications such as [25, 9] it has been pointed out that process algebras may
be fruitfully used to formalise and investigate this concept; for example in [8]
process algebra based methods are suggested for investigating security protocols,
essentially using a formalisation of non-interference for CCS.

However in these publications the non-interference is always de�ned be-
haviourally, as a condition on the possible traces of CCS or CSP processes; useful
surveys of trace based non-interference may be found in [9, 26]. Here, we work
with the more expressive �-calculus, which allows dynamic process creation and
network recon�guration. Our approach to non-interference is also more exten-
sional in that it is expressed in terms of how processes e�ect their environments,
relative to a particular behavioural equivalence. However the proof of our main
result, Theorem 3, describes may equivalence in terms of (typed) traces; pre-
sumably a trace based de�nition of non-interference, similar in style to those in
[9, 26] could be extracted from this proof.

More importantly our approach di�ers from much of the recent process calcu-
lus based security research in that we develop purely static methods for ensuring
security. Processes are shown to be secure not by demonstrating some property
of trace sets, using a tool as such as that in [10], but by type-checking. Types
have also been used in this manner in [1] for an extension of the �-calculus called
the spi-calculus. But there the structure of the types are very straightforward;
the type Secret representing a secret channel, the type Public representing a
public one, and Any which could be either. However the main interest is in
the type rules for the encryption/decryption primitives of the spi-calculus. The
non-interference result also has a di�erent formulation to ours; it states that
the behaviour of well-typed processes is invariant, relative to may testing, under
certain value-substitutions. Intuitively, it means that the encryption/decryption
primitives preserve values of type Secret from certain kinds of attackers. It would
be interesting to add these primitives to the our security �-calculus and to try
to adapt the associated type rules to the set of I-Types.

An extension of the �-calculus is also considered in [18], where a sophisticated
type system is used to control information ow. The judgements in their system
take the form

� `s P . A

where s is a security level, P is a process term, A is a poset of so-called action

nodes and � is a type environment. Their environments are quite similar to ours,
essentially associating with channels a version of input/output types annotated
with, among other things, security levels. However their intuition, and much of
the technical development, is quite di�erent from ours. In summary it appears
that our type system addresses information ow within the core �-calculus while
the more sophisticated one of [18] controls the ow allowed via the extra syntactic
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constructs of their language. However a more thorough comparison between the
two systems deserves to be made.

Acknowledgements: The research was partially funded by EPSRC grant
GR/L93056, and ESPRT Working Group Confer2. The authors would like to
thank I. Castellani for a careful reading of a draft version of the paper.

References

1. Mart��n Abadi. Secrecy by typing in security protocols. In Proceedings of TACS'97,
volume 1281 of Lecture Notes in Computer Science, pages 611{637. Springer Verlag,
1997.

2. D. E. Bell and L. J. LaPadula. Secure computer system: Uni�ed exposition and
multics interpretation. Technical report MTR-2997, MITRE Corporation, 1975.

3. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control ow analysis for the
�-calculus. In Proc. CONCUR'98, number 1466 in Lecture Notes in Computer
Science, pages 84{98. Springer-Verlag, 1998.

4. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis of processes
for no read-up and no write-down. In Proc. FOSSACS'99, number 1578 in Lecture
Notes in Computer Science, pages 120{134. Springer-Verlag, 1999.

5. G. Boudol. Asynchrony and the �-calculus. Technical Report 1702, INRIA-Sophia
Antipolis, 1992.

6. Ilaria Castellani and Matthew Hennessy. Testing theories for asynchronous lan-
guages. In V Arvind and R Ramanujam, editors, 18th Conference on Foundations
of Software Technology and Theoretical Computer Science (Chennai, India, De-
cember 17{19, 1998), LNCS 1530. Springer-Verlag, December 1998.

7. D. Denning. Certi�cation of programs for secure information ow. Communications
of the ACM, 20:504{513, 1977.

8. Riccardo Focardi, Anna Ghelli, and Roberto Gorrieri. Using non interference for
the analysis of security protocols. In Proceedings of DIMACS Workshop on Design
and Formal Veri�cation of Security Protocols, 1997.

9. Riccardo Focardi and Roberto Gorrieri. A classi�cation of security properties for
process algebras. Journal of Computer Security, 3(1), 1995.

10. Riccardo Focardi and Roberto Gorrieri. The compositional security checker: A tool
for the veri�cation of information ow security properties. IEEE Transactions on
Software Engineering, 23, 1997.

11. Riccardo Focardi and Roberto Gorrieri. Non interference: Past, present and future.
In Proceedings of DARPA Workshop on Foundations for Secure Mobile Code, 1997.

12. C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of
mobile agents. In U. Montanari and V. Sassone, editors, CONCUR: Proceedings
of the International Conference on Concurrency Theory, volume 1119 of Lecture
Notes in Computer Science, pages 406{421, Pisa, August 1996. Springer-Verlag.

13. R. Reitmas G. Andrews. An axiomatic approach to information ow in programs.
ACM Transactions on Programming Languages and Systems, 2(1):56{76, 1980.

14. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and privacy, 1992.

15. Nevin Heintz and Jon G. Riecke. The SLam calculus: Programming with secrecy
and integrity. In Conference Record of the ACM Symposium on Principles of
Programming Languages, San Diego, January 1998.

426 M. Hennessy and J. Riely



16. Matthew Hennessy and James Riely. Information ow vs. resource access in the
asynchronous pi-calculus. Technical report 2000:03, University of Sussex, 2000.
Available from http://www.cogs.susx.ac.uk/.

17. Kohei Honda and Mario Tokoro. On asynchronous communication semantics. In
P. Wegner M. Tokoro, O. Nierstrasz, editor, Proceedings of the ECOOP '91 Work-
shop on Object-Based Concurrent Computing, volume 612 of LNCS 612. Springer-
Verlag, 1992.

18. Kohei Honda, Vasco Vasconcelos, and Nobuko Yoshida Honda. Secure informa-
tion ow as typed process behaviour. In Proceedings of European Symposium on
Programming (ESOP) 2000. Springer-Verlag, 2000.

19. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
20. R. Milner, J. Parrow, and D. Walker. Mobile logics for mobile processes. Theoretical

Computer Science, 114:149{171, 1993.
21. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 24:83{113, 1984.
22. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.

Mathematical Structures in Computer Science, 6(5):409{454, 1996. Extended ab-
stract in LICS '93.

23. Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. Technical Report CSCI 476, Computer Science Department,
Indiana University, 1997. To appear in Proof, Language and Interaction: Essays in
Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,
MIT Press.

24. James Riely and Matthew Hennessy. Resource access control in systems of mobile
agents (extended abstract). In Proceedings of 3rd International Workshop on High-
Level Concurrent Languages, Nice, France, September 1998. Full version available
as Computer Science Technical Report 2/98, University of Sussex, 1997. Available
from http://www.cogs.susx.ac.uk/.

25. A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-interference through determin-
ism. In European Symposium on Research in Computer Security, volume 875 of
LNCS, 1994.

26. P.Y.A. Ryan and S.A. Schneider. Process algebra and non-interference. In CSFW
12. IEEE, 1997.

27. Geo�rey Smith and Dennis Volpano. Secure information ow in a multi-threaded
imperative language. In Conference Record of the ACM Symposium on Principles
of Programming Languages, San Diego, January 1998.

427Information Flow vs. Resource Access in the Asynchronous Pi-Calculus


	1 Introduction
	2 The Language
	3 Resource Control
	4 Information Flow
	5 Conclusions and Related Work
	References

