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Abstract. We address the problem of validity in eventually consistent
(EC) systems: In what sense does an EC data structure satisfy the se-
quential specification of that data structure? Because EC is a very weak
criterion, our definition does not describe every EC system; however it
is expressive enough to describe any Convergent or Commutative Repli-
cated Data Type (CRDT).

1 Introduction

In a replicated implementation of a data structure, there are two impediments
to requiring that all replicas achieve consensus on a global total order of the
operations performed on the data structure [Lamport 1978]: (a) the associated
serialization bottleneck negatively affects performance and scalability (e.g. see
[Ellis and Gibbs 1989]), and (b) the cap theorem imposes a tradeoff between
consistency and partition-tolerance [Gilbert and Lynch 2002].

In systems based on optimistic replication [Vogels 2009; Saito and Shapiro
2005], a replica may execute an operation without synchronizing with other repli-
cas. If the operation is a mutator, the other replicas are updated asynchronously.
Due to the vagaries of the network, the replicas could receive and apply the up-
dates in possibly different orders.

For sequential systems, the correctness problem is typically divided into two
tasks: proving termination and proving partial correctness. Termination requires
that the program eventually halt on all inputs, whereas partial correctness re-
quires that the program only returns results that are allowed by the specification.

For replicated systems, the analogous goals are convergence and validity.
Convergence requires that all replicas eventually agree. Validity requires that
they agree on something sensible. In a replicated list, for example, if the only
value put into the list is 1, then convergence ensures that all replicas eventually
see the same value for the head of the list; validity requires that the value be 1.

Convergence has been well-understood since the earliest work on replicated
systems. Convergence is typically defined as eventual consistency, which requires
that once all messages are delivered, all replicas have the same state. Strong
eventual consistency (sec) additionally requires convergence for all subsets of
messages: replicas that have seen the same messages must have the same state.

Perhaps surprisingly, finding an appropriate definition of validity for repli-
cated systems remains an open problem. There are solutions which use concur-
rent specifications, discussed below. But, as Shavit [2011] noted:
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“It is infinitely easier and more intuitive for us humans to specify how ab-
stract data structures behave in a sequential setting, where there are no
interleavings. Thus, the standard approach to arguing the safety proper-
ties of a concurrent data structure is to specify the structure’s properties
sequentially, and find a way to map its concurrent executions to these
‘correct’ sequential ones.”

In this paper we give the first definition of validity that is both (1) derived from
standard sequential specifications and (2) validates the examples of interest.

We take the “examples of interest” to be Convergent/Commutative Replicated
Data Types (crdts). These are replicated structures that obey certain mono-
tonicity or commutativity properties. As an example of a crdt, consider the
add-wins set, also called an “observed remove” set in [Shapiro et al. 2011a]. The
add-wins set behaves like a sequential set if add and remove operations on the
same element are ordered. The concurrent execution of an add and remove result
in the element being added to the set; thus the remove is ignored and the “add
wins.” This concurrent specification is very simple, but as we will see in the next
section, it is quite difficult to pin down the relationship between the crdt and
the sequential specification used in the crdt’s definition. This paper is the first
to successfully capture this relationship.

Many replicated data types are crdts, but not all [Shapiro et al. 2011a]. No-
tably, Amazon’s Dynamo [DeCandia et al. 2007] is not a crdt. Indeed, interest
in crdts is motivated by a desire to avoid the well-know concurrency anomalies
suffered by Dynamo and other ad hoc systems [Bieniusa et al. 2012].

Shapiro et al. [2011b] introduced the notion of crdt and proved that every
crdt has an sec implementation. Their definition of sec includes convergence,
but not validity.

The validity requirement can be broken into two components. We describe
these below using the example of a list data type that supports only two op-
erations: the mutator put, which adds an element to the end of the list, and
the query q, which returns the state of the list. This structure can be specified
as a set of strings such as “put(1); put(3); q=[1,3]” and “put(1); put(2);
put(3); q=[1,2,3]”.

– Linearization requires that a response be consistent with some specification
string. A state that received put(1) and put(3), may report q=[1,3] or
q=[3,1], but not q=[2,1,3], since 2 has not been put into the list.

– Monotonicity requires that states evolve in a sensible way. We might permit
the state q=[1,3] to evolve into q=[1,2,3], due to the arrival of action
put(2). But we would not expect that q=[1,3] could evolve into q=[3,1],
since the data type does not support deletion or reordering.

Burckhardt et al. [2012] provide a formal definition of validity using partial
orders over events: linearizations respect the partial order on events; monotonic-
ity is ensured by requiring that evolution extends the partial order. Similar
definitions can be found in [Jagadeesan and Riely 2015] and [Perrin et al. 2015].
Replicated data structures that are sound with respect to this definition enjoy
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many good properties, which we discuss throughout this paper. However, this
notion of correctness is not general enough to capture common crdts, such as
the add-wins set.

This lack of expressivity lead Burckhardt et al. [2014] to abandon notions of
validity that appeal directly to a sequential specification. Instead they work di-
rectly with concurrent specifications, formalizing the style of specification found
informally in [Shapiro et al. 2011b]. This has been a fruitful line of work, lead-
ing to proof rules [Gotsman et al. 2016] and extensions [Bouajjani et al. 2014].
See [Burckhardt 2014; Viotti and Vukolic 2016] for a detailed treatment.

Positively, concurrent specifications can be used to validate any replicated
structure, including crdts as well as anomalous structures such as Dynamo.
Negatively, concurrent specifications have no the clear connection to their se-
quential counterparts. In this paper, we restore this connection. We arrive at a
definition of sec that admits crdts, but rejects Dynamo.

The following “corner cases” are a useful sanity-check for any proposed notion
of validity.

– The principle of single threaded semantics (psts) [Haas et al. 2015] states
that if an execution uses only a single replica, it should behave according to
the sequential semantics.

– The principle of single master (psm) [Budhiraja et al. 1993] states that if all
mutators in an execution are initiated at a single replica, then the execution
should be linearizable [Herlihy and Wing 1990].

– The principle of permutation equivalence (ppe) [Bieniusa et al. 2012] states
that “if all sequential permutations of updates lead to equivalent states, then
it should also hold that concurrent executions of the updates lead to equiv-
alent states.”

psts and psm say that a replicated structure should behave sequentially when
replication is not used. ppe says that the order of independent operations should
not matter. Our definition implies all three conditions. Dynamo fails ppe [Bie-
niusa et al. 2012], and thus fails to pass our definition of sec.

In the next section, we describe the validity problem and our solution in de-
tail, using the example of a binary set. The formal definitions follow in Section 3.
We state some consequences of the definition and prove that the add-wins set
satisfies our definition. In Section 4, we describe a collaborative text editor and
prove that it is sec. In Section 5 we characterize the programmer’s view of a
crdt by defining the most general crdt that satisfies a given sequential speci-
fication. We show that any program that is correct using the most general crdt
will be correct using a more restricted crdt. We also show that our validity
criterion for sec is local in the sense of Herlihy and Wing [1990]: independent
structures can be verified independently. In Section 6, we apply these results to
prove the correctness of a graph that is implemented using two sec sets.

Our work is inspired by the study of relaxed memory, such as [Alglave 2012].
In particular, we have drawn insight from the rmo model of Higham and Kawash
[2000].
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2 Understanding Replicated Sets

In this section, we motivate the definition of sec using replicated sets as an
example. The final definition is quite simple, but requires a fresh view of both
executions and specifications. We develop the definition in stages, each of which
requires a subtle shift in perspective. Each subsection begins with an example
and ends with a summary.

2.1 Mutators and Non-Mutators

An implementation is a set of executions. We model executions abstractly as
labelled partial orders (lpos). The ordering of the lpo captures the history that
precedes an event, which we refer to as visibility.

+0
a

30
b

71
c

30
d

31
e

+1
f

70
g

31
h

30
i

31
j

(1)

Here the events are a through j, with labels +0, +1, etc, and order represented by
arrows. The lpo describes an execution with two replicas, shown horizontally,
with time passing from left to right. Initially, the top replica receives a request
to add 0 to the set (+0a). Concurrently, the bottom replica receives a request to
add 1 (+1b). Then each replica is twice asked to report on the items contained
in the set. At first, the top replica replies that 0 is present and 1 is absent
(30b71c), whereas the bottom replica answers with the reverse (70g31h). Once
the add operations are visible at all replicas, however, the replicas give the same
responses (30d31e and 30i31j).

lpos with non-interacting replicas can be denoted compactly using sequential
and parallel composition. For example, the prefix of (1) that only includes the
first three events at each replica can be written (+0a;30b;71c) ‖ (+1f ;70g;31h).

A specification is a set of strings. Let set be the specification of a sequential
set with elements 0 and 1. Then we expect that set includes the string “+03071”,
but not “+07031”. Indeed, each specification string can uniquely be extended
with either 30 or 70 and either 31 or 71.

There is an isomorphism between strings and labelled total orders. Thus,
specification strings correspond to the restricted class of lpos where the visibility
relation provides a total order.

Linearizability [Herlihy and Wing 1990] is the gold standard for concurrent
correctness in tightly coupled systems. Under linearizability, an execution is valid
if there exists a linearization τ of the events in the execution such that for every
event e, the prefix of e in τ is a valid specification string.

Execution (1) is not linearizable. The failure can already be seen in the sub-
lpo (+0a;71c) ‖ (+1f ;70g). Any linearization must have either +1f before 71c

or +0a before 70g. In either case, the linearization is invalid for set.
Although it is not linearizable, execution (1) is admitted by every crdt set

in [Shapiro et al. 2011a]. To validate such examples, Burckhardt et al. [2012]
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develop a weaker notion of validity by dividing labels intomutators and accessors
(also known as non-mutators). Similar definitions appear in [Jagadeesan and
Riely 2015] and [Perrin et al. 2015]. Mutators change the state of a replica, and
accessors report on the state without changing it. For set, the mutators M and
non-mutators M are as follows.

M = {+0, -0, +1, -1}, representing addition and removal of bits 0 and 1.
M = {70, 30, 71, 31}, representing membership tests returning false or true.

Define the mutator prefix of an event e to include e and the mutators visible to
e. An execution is valid if there exists a linearization of the execution, τ , such
that for every event e, the mutator prefix of e in τ is a valid specification string.

It is straightforward to see that execution (1) satisfies this weaker criterion.
For both 30b and 71c, the mutator prefix is +0a. This includes +0a but not +1f ,
and thus their answers are validated. Symmetrically, the mutator prefixes of 70g

and 31h only include +1f . The mutator prefixes for the final four events include
both +0a and +1f , but none of the prior accessors.

Summary: Convergent states must agree on the final order of mutators, but
intermediate states may see incompatible subsequences of this order. By re-
stricting attention to mutator prefixes, the later states need not linearize these
incompatible views of the partial past.

This relaxation is analogous to the treatment of non-mutators in update
serializability [Hansdah and Patnaik 1986; Garcia-Molina and Wiederhold 1982],
which requires a global serialization order for mutators, ignoring non-mutators.

2.2 Dependency

The following lpo is admitted by the add-wins set discussed in the introduction.

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

30
g

31
h

(2)

In any crdt implementation, the effect of +1b is negated by the subsequent -1c
The same reasoning holds for +0e and -0f . In an add-wins set, however, the
concurrent adds, +0a and +1d, win over the deletions. Thus, in the final state
both 0 and 1 are present.

This lpo is not valid under the definition of the previous subsection: Since
30g and 31h see the same mutators, they must agree on a linearization of (+0a;
+1b; -1c) ‖ (+1d; +0e; -0f ). Any linearization must end in either -1c or -0f ; thus
it is not possible for both 30g and 31h to be valid.

Similar issues arise in relaxed memory models, where program order is often
relaxed between uses of independent variables [Alglave et al. 2014]. Generalizing,
we write m # n to indicate that labels m and n are dependent. Dependency is
a property of a specification, not an implementation. Our results only apply
to specifications that support a suitable notion of dependency, as detailed in
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Section 3. For set, # is an equivalence relation with two equivalence classes,
corresponding to actions on the independent values 0 and 1.

# = {+0, -0, 70, 30}2 ∪ {+1, -1, 71, 31}2, where D2 = D ×D.

While the dependency relation for set is an equivalence, this is not required: In
Section 4 we establish the correctness of collaborative text editing protocol with
an intransitive dependency relation.

The dependent restriction of (2) is as follows.
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h

(3)

In the previous subsection, we defined validity using the mutator prefix of an
event. We arrive at a weaker definition by restricting attention to the mutator
prefix of the dependent restriction.

Under this definition, execution (2) is validated: Any interleaving of the
strings +0e-0f+0a30g and +1b-1c+1d31h linearizes the dependent restriction of
(2) given in (3).

Summary: crdts allow independent mutators to commute. We formalize this
intuition by restricting attention to mutator prefixes of the dependent restriction.
The crdt must respect program order between dependent operations, but is free
to reorder independent operations.

This relaxation is analogous to the distinction between program order and
preserved program order (ppo) in relaxed memory models [Higham and Kawash
2000; Alglave 2012]. Informally, ppo is the suborder of program order that re-
moves order between independent memory actions, such as successive reads on
different locations without an intervening memory barrier.

2.3 Puns

The following lpo is admitted by the add-wins set.

+0
a

-0
b

30
c

70
d

+0
e

-0
f

30
g

70
h

(4)

As in execution (2), the add +0a is undone by the following remove -0b, but the
concurrent add +0e wins over -0b, allowing 30c. In effect, 30c sees the order of
the mutators as +0a -0b +0e. Symmetrically, 30g sees the order as +0e -0f +0a.
While this is very natural from the viewpoint of a crdt, there is no linearization
of the events that includes both +0a -0b +0e and +0e -0f +0a, since +0a and +0e

must appear in different orders.
Indeed, this lpo is not valid under the definition of the previous subsection.

First note that all events are mutually dependent. To prove validity we must find
a linearization that satisfies the given requirements. Any linearization of the mu-
tators must end in either -0b or -0f . Suppose we choose +0a -0b +0e -0f and look
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for a mutator prefix to satisfy 30g. (All other choices lead to similar problems.)
Since -0f precedes 30g and is the last mutator in our chosen linearization, every
possible witness for 30g must end with mutator -0f . Indeed the only possible
witness is +0a +0e -0f 30g. However, this is not a valid specification string.

The problem is that we are linearizing events, rather than labels. If we shift
to linearizing labels, then execution (4) is allowed. Fix the final order for the
mutators to be +0 -0 +0 -0. The execution is allowed if we can find a subsequence
that linearizes the labels visible at each event. It suffices to choose the witnesses
as follows. In the table, we group events with a common linearization together.

+0a, +0e: +0
-0b, -0f : +0-0

30c, 30g : +0-0+030
70d, 70h: +0-0+0-070

Each of these is a valid specification string. In addition, looking only at mutators,
each is a subsequence of +0 -0 +0 -0.

In execution (4), each of the witnesses is actually a prefix of the final mutator
order, but, in general, it is necessary to allow subsequences.

+0
a

30
b

-0
c

30
d

(5)

Execution (5) is admitted by the add-wins set. It is validated by the final
mutator sequence -0 +0. The mutator prefix +0 of b is a subsequence of -0
+0, but not a prefix.

Summary: While dependent events at a single replica must be linearized in
order, concurrent events may slip anywhere into the linearization. A crdt may
pun on concurrent events with same label, using them in different positions at
different replicas. Thus a crdt may establish a final total over the labels of an
execution even when there is no linearization of the events.

2.4 Frontiers

In the introduction, we mentioned that the validity problem can be decomposed
into the separate concerns of linearizability and monotonicity. The discussion
thus far has centered on the appropriate meaning of linearizability for crdts. In
this subsection and the next, we look at the constraints imposed by monotonicity.

Consider the prefix {+0a, -0b, +0e, 30c, -0f} of execution (4), extended with
action 70x, with visibility order as follows.

+0
a

-0
b

+0
e

-0
f

30
c

70
x

(6)

This execution is not strong ec, since 30c and 70x see exactly the same mutators,
yet provide incompatible answers.

Unfortunately, execution (6) is valid by the definition given in the previous
section: The witnesses for a–f are as before. In particular, the witness for 30c is
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“+0-0+030”. The witness for 70x is “+0+0-070”. In each case, the mutator prefix
is a subsequence of the global mutator order “+0-0+0-0”.

It is well known that punning can lead to bad jokes. In this case, the problem
is that 70x is punning on a concurrent -0 that cannot be matched by a visible
-0 in its history: the execution -0 that is visible to 70x must appear between the
two +0 operations; the specification -0 that is used by 70x must appear after.
The final states of execution (4) have seen both remove operations, therefore the
pun is harmless there. But 30c and 70x have seen only one remove. They must
agree on how it is used.

Up to now, we have discussed the linearization of each event in isolation. We
must also consider the relationship between these linearizations. When working
with linearizations of events, it is sufficient to require that the linearization cho-
sen for each event be a subsequence for the linearization chosen for each visible
predecessor; since events are unique, there can be no confusion in the lineariza-
tion about which event is which. Execution (6) shows that when working with
linearizations of labels, it is insufficient to consider the relationship between indi-
vidual events. The linearization “+0+0-070” chosen for 70x is a supersequence of
those chosen for its predecessors: “+0” for +0e and “+0-0” for -0b. The lineariza-
tion “+0-0+030” chosen for 30c is also a supersequence for the same predecessors.
And yet, 30c and 70x are incompatible states.

Sequential systems have a single state, which evolves over time. In distributed
systems, each replica has its own state, and it is this set of states that evolves.
Such a set of states is called a (consistent) cut [Chandy and Lamport 1985].

A cut of an lpo is a sub-lpo that is down-closed with respect to visibility. The
frontier of cut is the set of maximal elements. For example, there are 14 frontiers
of execution (6): the singletons {+0a}, {-0b}, {30c}, {+0e}, {-0f}, {70x}, the
pairs {+0a, +0e}, {+0a, -0f}, {-0b, +0e}, {-0b, -0f}, {30c, -0f}, {30c, 70x},
{70x, -0f}, and the triple {30c, 70x, -0f}. As we explain below, we consider
non-mutators in isolation. Thus we do not consider the last four cuts, which
include a non-mutator with other events. That leaves 10 frontiers. The definition
of the previous section only considered the 6 singletons. Singleton frontiers are
generated by pointed cuts, with a single maximal element.

When applied to frontiers, the monotonicity requirement invalidates execu-
tion (6). Monotonicity requires that the linearization chosen for a frontier be a
subsequence of the linearization chosen for any extension of that frontier. If we
are to satisfy state 30c in execution (6), the frontier {-0b, +0e} must linearize to
“+0-0+0”. If we are to satisfy state 70x, the frontier {-0b, +0e} must linearize to
“+0+0-0”. Since we require a unique linearization for each frontier, the execution
is disallowed.

Since crdts execute non-mutators locally, it is important that we ignore
frontiers with multiple non-mutators. Recall execution (4):

+0
a

-0
b

30
c

70
d

+0
e

-0
f

30
g

70
h
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There is no specification string that linearizes the cut with frontier {30c,30g},
since we cannot have 30 immediately after -0. If we consider only pointed cuts
for non-mutators, then the execution is sec, with witnesses as follows.

{+0a}, {+0e} : +0
{+0a, +0e} : +0+0
{-0b}, {-0f} : +0-0
{-0b, +0e}, {+0a, -0f}: +0-0+0

{30c}, {30g}: +0-0+030
{-0b, -0f} : +0-0+0-0
{70d}, {70h}: +0-0+0-070

In order to validate non-mutators, we must consider singleton non-mutator
frontiers. The example shows that we must not consider frontiers with multi-
ple non-mutators. There is some freedom in the choices otherwise. For set, we
can “saturate” an execution with accessors by augmenting the execution with
accessors that witness each cut of the mutators. In a saturated execution, it is
sufficient to consider only the pointed accessor cuts, which end in a maximal
accessor. For non-saturated executions, we are forced to examine each mutator
cut: it is possible that a future accessor extension may witness that cut. The
status of “mixed” frontiers, which include mutators with a single maximal non-
mutator, is open for debate. We choose to ignore them, but the definition does
not change if they are included.

Summary: A crdt must have a strategy for linearizing all mutator labels,
even in the face of partitions. In order to ensure strong ec, the definition must
consider sets of events across multiple replicas. Because non-mutators are re-
solved locally, sec must ignore frontiers with multiple non-mutators.

Cuts and frontiers are well-known concepts in the literature of distributed
systems [Chandy and Lamport 1985]. It is natural to consider frontiers when
discussing the evolving correctness of a crdt.

2.5 Stuttering

Consider the following execution.

+0
a

-0
b

+0
c

-0
d

-0
e

+0
x

-0
y

-0
z

(7)

This lpo represents a partitioned system with events a–e in one partition and
x–z in the other. As the partition heals, we must be able to account for the
intermediate states. Because of the large number of events in this example, we
have elided all accessors. We will present the example using the semantics of the
add-wins set. Recall that the add-wins set validates 30 if and only if there is
a maximal +0 beforehand. Thus, a replica that has seen the cut with frontier
{+0a, -0y, -0z} must answer 30, whereas a replica that has seen {-0b, -0y, -0z}
must answer 70.

Any linearization of {+0a, -0y, -0z} must end in +0, since the add-win set
must reply 30: the only possibility is “+0-0-0+0”. The linearization of {-0b,
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-0y, -0z} must end in -0. If it must be a supersequence, the only possibility is
“+0-0-0+0-0”. Taking one more step on the left, {+0c, -0y, -0z} must linearize to
“+0-0-0+0-0+0”. Thus the final state {-0d, -0e, -0y, -0z} must linearize to “+0
-0-0+0-0+0-0-0”. Reasoning symmetrically, the linearization of {-0d, -0e, +0x}
must be “+0-0+0-0-0+0”, and thus the final {-0d, -0e, -0y, -0z}must linearize to
“+0-0+0-0-0+0-0-0”. The constraints on the final state are incompatible. Each
of these states can be verified in isolation; it is the relation between them that
is not satisfiable.

Recall that monotonicity requires that the linearization chosen for a frontier
be a subsequence of the linearization chosen for any extension of that frontier.
The difficulty here is that subsequence relation ignores the similarity between “+0
-0-0+0-0+0-0-0” and “+0-0+0-0-0+0-0-0”. Neither of these is a subsequence
of the other, yet they capture exactly the same sequence of states, each with six
alternations between 70 and 30. The canonical state-based representative for
these sequences is “+0-0+0-0+0-0”.

crdts are defined in terms of states. In order to relate crdts to sequential
specifications, it is necessary to extract information about states from the speci-
fication itself. Adapting Brookes [1996], we define strings as stuttering equivalent
(notation σ ∼ τ) if they pass through the same states. So +0+1+0 ∼ +0+1 but
+0-0+0 6∼ +0. If we consider subsequences up to stuttering, then execution (7)
is sec, with witnesses as follow:

{a}, {x}, {a, x} : +0
{b}, {y}, {y, z}, {z} : +0-0
{a, y}, {a, y, z}, {a, z}, {b, x} : +0-0+0
{b, y}, {b, y, z}, {b, z}, {d}, {d, e}, {e} : +0-0+0-0
{c, y}, {c, y, z}, {c, z}, {d, x}, {d, e, x}, {e, x} : +0-0+0-0+0
{d, y}, {d, y, z}, {d, z},
{e, y}, {e, y, z}, {e, z}, {d, e, y}, {d, e, y, z}, {d, e, z}: +0-0+0-0+0-0

Recall that without stuttering, we deduced that {+0c, -0y, -0z} must linearize to
“+0-0-0+0-0+0” and {-0d, -0e, +0x} must linearize to “+0-0+0-0-0+0”. Under
stuttering equivalence, these are the same, with canonical representative “+0
-0+0-0+0”. Thus, monotonicity under stuttering allows both linearizations to
be extended to satisfy the final state {-0d, -0e, -0y, -0z}, which has canonical
representative “+0-0+0-0+0-0”.

Summary: crdts are described in terms of convergent states, whereas spec-
ifications are described as strings of actions. Actions correspond to labels in the
lpo of an execution. Many strings of actions may lead to equivalent states. For
example, idempotent actions can be applied repeatedly without modifying the
state.

The stuttering equivalence of Brookes [1996] addresses this mismatch. In or-
der to capture the validity of crdts, the definition of subsequence must change
from a definition over individual specification strings to a definition over equiv-
alence classes of strings up to stuttering.
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3 Eventual Consistency for CRDTs

This section formalizes the intuitions developed in Section 2. We define execu-
tions, specifications and strong eventual consistency (sec). We discuss properties
of eventual consistency and prove that the add-wins set is sec.

3.1 Executions

An execution realizes causal delivery if, whenever an event is received at a replica,
all predecessors of the event are also received. Most of the crdts in [Shapiro et al.
2011a] assume causal delivery, and we assumed it throughout the introductory
section. There are costs to maintaining causality, however, and not all crdts
assume that executions incur these costs. In the formal development, we allow
non-causal executions.

Shapiro et al. [2011a] draw executions as timelines, explicitly showing the
delivery of remote mutators. Below left, we give an example of such a timeline.

+0 +1

31 70 30

+0 +1

31 70 30

This is a non-causal execution: at the bottom replica, +1 is received before +0,
even though +0 precedes +1 at the top replica.

Causal executions are naturally described as Labelled Partial Orders (lpos),
which are transitive and antisymmetric. Section 2 presented several examples
of lpos. To capture non-causal systems, we move to Labelled Visibility Orders
(lvos), which are merely acyclic. Acyclicity ensures that the transitive closure
of an lvo is an lpo. The right picture above shows the lvo corresponding to the
timeline on the left. The zigzag arrow represents an intransitive communication.
When drawing executions, we use straight lines for “transitive” edges, with the
intuitive reading that “this and all preceding actions are delivered”.

lvos arise directly due to non-causal implementations. As we will see in
Section 4, they also arise via projection from an lpo.

lvos are unusual in the literature. To make this paper self-contained, we
define the obvious generalizations of concepts familiar from lpos, including iso-
morphism, suborder, restriction, maximality, downclosure and cut.

Fix a set L of labels. A Labelled Visibility Order (lvo, also known as an
execution) is a triple u = 〈Eu, λu,  u〉 where Eu is a finite set of events, λu ∈
(Eu 7→ L) and  u ⊆ (Eu × Eu) is reflexive and acyclic.

Let u, v range over lvos. Many concepts extend smoothly from lpos to lvos.

– Isomorphism: Write u =iso v when u and v differ only in the carrier set. We
are often interested in the isomorphism class of an lvo.

– Pomset: We refer to the isomorphism class of an lvo as a pomset. Pomset
abbreviates Partially Ordered Multiset [Plotkin and Pratt 1997]. We stick
with the name “pomset” here, since “vomset” is not particularly catchy.
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– Suborder: Write u ⊆ v when Eu ⊆ Ev, λu ⊆ λv, ρu ⊆ ρv, and ( v) ⊆ ( u).
– Restriction:1 When D ⊆ Ev, define v �D = 〈D, λv �D,  v �D〉.

Restriction lifts subsets to suborders: v �D denotes the sub-lvo derived from
a subset D of events. See Section 2.2 for an example of restriction.

– Maximal elements: max(v) = {d ∈ Ev | 6 ∃e ∈ (Ev \ {d}). d v e}.
We say that d is maximal for v when if d ∈ max(v).

– Non-maximal suborder: max(v) = v � (Ev \max(v)).
max(v) is the suborder with the maximal elements removed.

– Downclosure: D is downclosed for v if D ⊆ {e ∈ Ev | ∃d ∈ D. d v e}.
– Cut: u is a cut of v if u ⊆ v and Eu is downclosed for v.

Let cuts(v) be the set of all cuts of v. A cut is the sub-lvo corresponding
to a downclosed set. Cuts are also known as prefixes. See Section 2.4 for an
example. A cut is determined by its maximal elements: if u ∈ cuts(v) then
u = v � {d ∈ Ev | ∃e ∈ max(v). d v e}.

– Linearization: For ai ∈ L, we say that a1 . . . an is a linearization of E ⊆ Ev
if there exists a bijection α : E → [1, n] such that ∀e ∈ E. λv(e) = aα(e) and
∀d, e ∈ E. d v e implies α(d) ≤ α(e).

Replica-Specific Properties. In the literature on replicated data types, some prop-
erties of interest (such as “read your writes” [Tanenbaum and Steen 2007]) require
the concept of “session” or a distinction between local and remote events. These
can be accommodated by augmenting lvos with a replica labelling ρu ∈ (Eu 7→
R), which maps events to a set R of replica identifiers.

Executions can be generated operationally as follows: Replicas receive mu-
tator and accessor events from the local client; they also receive mutator events
that are forwarded from other replicas. Each replica maintains a set of seen
events: an event that is received is added to this set. When an event is received
from the local client, the event is additionally added to the execution, with the
predecessors in the visibility relation corresponding to the current seen set. If
we wish to restrict attention to causal executions, then we require that replicas
forward all the mutators in their seen sets, rather than individual events, and,
thus, the visibility relation is transitive over mutators.

All executions that are operationally generated satisfy the additional prop-
erty that  u is per-replica total: if ρ(d) = ρ(e) then either d  u e or e  u d.
We do not demand per-replica totality because our results do not rely on replica-
specific information.

3.2 Specifications and Stuttering Equivalence

Specifications are sets of strings, equipped with a distinguished set of mutators
and a dependency relation between labels. Specifications are subject to some
constraints to ensure that the mutator set and dependency relations are sensible;
1 We use the standard definitions for restriction on functions and relations. Given a
function f : E → X,R: E × E and D ⊆ E, define f �D = {〈d, f(d)〉 | d ∈ D}. and
R �D = {〈d1, d2〉 | d1, d2 ∈ D and d1 R d2}.
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these are inspired by the conditions on Mazurkiewicz executions [Diekert and
Rozenberg 1995]. Every specification set yields a derived notion of stuttering
equivalence. This leads to the definition of observational subsequence (≤obs ).

We use standard notation for strings: Let σ and τ range over strings. Then
στ denotes concatenation, σ∗ denotes Kleene star, σ 9 τ denotes the set of
interleavings, ε denotes the empty string and σi denotes the ith element of σ.
These notations lift to sets of strings via set union.

A specification is a quadruple 〈L, M, #, Σ〉 where

– L is a set of actions (also known as labels),
– M ⊆ L is a distinguished set of mutator actions,
– # ⊆ (L× L) is a symmetric and reflexive dependency relation, and
– Σ ⊆ L∗ is a set of valid strings.

Let M = L \M be the sets of non-mutators.
A specification must satisfy the following properties:

(a) prefix closed: στ ∈ Σ implies σ ∈ Σ
(b) non-mutators are closed under stuttering, and commutation:
∀a ∈M . σaτ ∈ Σ implies σa∗τ ⊆ Σ
∀a, b ∈M . {σa, σb} ⊆ Σ implies {σab, σba} ⊆ Σ

(c) independent actions commute:
∀a, b ∈ L. ¬(a # b) implies (σabτ ∈ Σ iff σbaτ ∈ Σ)

Property (b) ensures that non-mutators do not affect the state of the data struc-
ture. Property (c) ensures that commuting of independent actions does not affect
the state of the data structure.

Recall that the set specification takes M = {+0, -0, +1, -1}, representing
addition and removal of bits 0 and 1, and M = {70, 30, 71, 31}, representing
membership tests returning false or true. The dependency relation is # = {+0,
-0, 70, 30}2 ∪ {+1, -1, 71, 31}2, where D2 = D ×D.

The dependency relation for set is an equivalence, but this need not hold
generally. We will see an example in Section 4.

The definitions in the rest of the paper assume that we have fixed a specifi-
cation 〈L, M, #, Σ〉. In the examples of this section, we use set.

State and Stuttering Equivalence. Specification strings σ and τ are state equiva-
lence (notation σ ≈ τ) if every valid extension of σ is also a valid extension of τ ,
and vice versa. For example, +0+1+0 ≈ +0+1 and +0-0+0 ≈ +0, but +0-0 6≈ +0.
In particular, state equivalent strings agree on the valid accessors that can im-
mediately follow them: either 30 or 70 and either 31 or 71. Formally, we define
state equivalence, ≈ ⊆ L∗ × L∗, as follows2.

(σ ≈ σ′) M
= (σ = σ′) or ({σ, σ′} ⊆ Σ and ∀τ ∈ L∗. στ ∈ Σ iff σ′τ ∈ Σ).

From specification property (b), we know that non-mutators do not affect the
state. Thus we have that ua ≈ u whenever a ∈M and ua ∈ Σ. From specification
2 To extend the definition to non-specification strings, we allow σ ≈ σ′ when σ = σ′.
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property (c), we know that independent actions commute. Thus we have that
σab ≈ σba whenever ¬(a # b) and {σab, σba} ⊆ Σ

Two strings are stuttering equivalent3 if they only differ in operations that
have no effect on the state of the data structure, as given by Σ. Adapting Brookes
[1996] to our notion of state equivalence, we define stuttering equivalence, ∼ ⊆
L∗ × L∗, to be the least equivalence relation generated by the following rules,
where a ranges over L.

ε ∼ ε
σ ∼ σ′

σa ∼ σ′a
σ ≈ σa
σ ∼ σa

σb ∼ σ ¬(a # b)

σab ∼ σa

The first rule above handles the empty string. The second rule allows stuttering
in any context. The third rule motivates the name stuttering equivalence, for
example, allowing +0+0 ∼ +0. The last case captures the equivalence generated
by independent labels, for example, allowing +0+1+0 ∼ +0+1 but not +0-0+0 ∼
+0-0. Using the properties of ≈ discussed above, we can conclude, for example,
that +03030+0-070 ∼ +0-0.

Consider specification strings for a unary set over value 0. Since stuttering
equivalence allows us to remove both accessors and adjacent mutators with the
same label we deduce that the canonical representatives of the equivalence classes
induced by ∼ are generated by the regular expression (+0)?(-0+0)∗(-0)?.

Observational Subsequence. Recall that ac is a subsequence of abc, although it
is not a prefix. We write ≤seq for subsequence and ≤obs for observational subse-
quence, defined as follows.

σ1 ··· σn ≤seq τ0σ1τ1 ··· σnτn σ ≤obs τ if ∃σ′ ∼ σ. ∃τ ′ ∼ τ. σ′ ≤seq τ
′

Note that observational subsequence includes both subsequence and stuttering
equivalence (≤obs ) ⊆ (≤seq ) ∪ (∼).
≤seq can be understood in isolation, whereas ≤obs can only be understood

with respect to a given specification. In the remainder of the paper, the implied
specification will be clear from context. ≤seq is a partial order, whereas ≤obs is
only a preorder, since it is not antisymmetric.

Let σ and τ be strings over the unary set with canonical representatives aσ′
and bτ ′. Then we have that σ ≤obs τ exactly when either a = b and

∣∣σ′∣∣ ≤ ∣∣τ ′∣∣
or a 6= b and

∣∣σ′∣∣ < ∣∣τ ′∣∣. Thus, observational subsequence order is determined
by the number of alternations between the mutators.

Specification strings for the binary set, then, are stuttering equivalent ex-
actly when they yield the same canonical representatives when restricted to 0
and to 1. Thus, observational subsequence order is determined by the number
of alternations between the mutators, when restricted to each dependent sub-
sequence. (The final rule in the definition of stuttering, which allows stuttering
across independent labels, is crucial to establishing this canonical form.)

3 Readers of Brookes [1996] should note that mumbling is not relevant here, since all
mutators are visible.



Eventual Consistency for CRDTs 15

3.3 Eventual Consistency

Eventual consistency is defined using the cuts of an execution and the observa-
tional subsequence order of the specification. As noted in Sections 2.2 and 2.4, it
is important that we not consider all cuts. Thus, before we define sec, we must
define dependent cuts.

The dependent restriction of an execution is defined: v �# = 〈Ev, λv,
#
 v〉,

where d #
 v e when λv(d) # λv(e) and d  v e. See Section 2.2 for an example

of dependent restriction.
The dependent cuts of v are cuts of the dependent restriction. As discussed

in Section 2.4, we only consider pointed cuts (with a single maximal element)
for non-mutators. See Section 2.4 for an example.

cuts#(v) =
{
u ∈ cuts(v �#)

∣∣ ∀e ∈ Eu. if λu(e) ∈M then max(u) = {e}
}

An execution v is Eventually Consistent (sec) for specification 〈L, M, #,
Σ〉 iff there exists a function τ : cuts#(v)→ Σ that satisfies the following.

Linearization: ∀p ∈ cuts#(v). p linearizes to τ(p), and
Monotonicity: ∀p, q ∈ cuts#(v). p ⊆ q implies τ(p) ≤obs τ(q).

A data structure implementation is sec if all of its executions are sec.
In Section 2, we gave several examples that are sec. See Sections 2.4 and 2.5

for examples where τ is given explicitly. Section 2.4 also includes an example
that is not sec.

The concerns raised in Section 2 are reflected in the definition.

– Non-mutators are ignored by the dependent restriction of other non-mutators.
As discussed in Section 2.1, this relaxation is similar that of update-serializ-
ability [Hansdah and Patnaik 1986; Garcia-Molina and Wiederhold 1982].

– Independent events are ignored by the dependent restriction of an event. As
discussed in Section 2.2, this relaxation is similar to preserved program order
in relaxed memory models [Higham and Kawash 2000; Alglave 2012].

– As discussed in Section 2.3, punning is allowed: each cut p is linearized sep-
arately to a specification string τ(p).

– As discussed in Section 2.4, we constrain the power puns by considering cuts
of the distributed system [Chandy and Lamport 1985].

– Monotonicity ensures that the system evolves in a sensible way: new order
may be introduced, but old order cannot be forgotten. As discussed in Sec-
tion 2.5, the preserved order is captured in the observational subsequence
relation, which allows stuttering [Brookes 1996].

3.4 Properties of Eventual Consistency

We discuss some basic properties of sec. For further analysis, see Section 5.
An important property of crdts is prefix closure: If an execution is valid,

then every prefix of the execution should also be valid. Prefix closure follows



16 Radha Jagadeesan and James Riely

immediately from the definition, since whenever u is a prefix of v we have that
cuts#(u) ⊆ cuts#(v).

Prefix closure looks back in time. It is also possible to look forward: A system
satisfies eventual delivery if every valid execution can be extended to a valid
execution with a maximal element that sees every mutator. If one assumes that
every specification string can be extended to a longer specification string by
adding non-mutators, then eventual delivery is immediate.

The properties psts, psm and ppe are discussed in the introduction. An
sec implementation must satisfies ppe since every dependent set of mutators is
linearized: sec enforces the stronger property that there are no new intermediate
states, even when executing all mutators in parallel. For causal systems, where
 u is transitive, psts and psm follow by observing that if there is a total order
on the mutators of u then any linearization of u is a specification string.

Burckhardt [2014, §5] provides a taxonomy of correctness criteria for repli-
cated data types. Our definition implies NoCircularCausality and Causal-
Arbitration, but does not imply either ConsistentPrefix or CausalVisi-
bility. For lpos, which model causal systems, our definition implies CausalVis-
ibility. ReadMyWrites and MonotonicReads require a distinction be-
tween local and remote events. If one assumes the replica-specific constraints
given in Section 3.1, then our definition satisfies these properties; without them,
our definition is too abstract.

3.5 Correctness of the Add-Wins Set

The add-wins set is defined to answer 3k for a cut u exactly when

∃d ∈ u. λu(d) = +k ∧ (6 ∃e ∈ u. λu(e) = -k ∧ d u e).

It answers 7k otherwise. The add-wins set is called the “observed-remove” set.
We show that any lpo that meets this specification is sec with respect to

set. We restrict attention to lpos since causal delivery is assumed for the add-
wins set in [Shapiro et al. 2011a].

For set, the dependency relation is an equivalence. For an equivalence re-
lation R, let L/R ⊆ 2L denote the set of (disjoint) equivalence classes for R.
For set, L/# = {{+0, -0, 70, 30}, {+1, -1, 71, 31}}. When dependency is an
equivalence, then every interleaving of independent actions is valid if any inter-
leaving is valid. Formally, we have the following, where 9 denotes interleaving.

∀D ∈ (L/#). ∀σ ∈ D∗. ∀τ ∈ (L \D)∗. (σ 9 τ) ∩Σ 6= ∅ implies (σ 9 τ) ⊆ Σ

Using the forthcoming composition result (Theorem 2), it suffices for us to ad-
dress the case when u only involves operations on a single element, say 0. For
any such lvo u, we choose a linearization τ(u) ∈ (-0|+0)∗ that has a maximum
number of alternations between -0 and +0. If there is a linearization that begins
with -0, then we choose one of these. Below, we summarize some of the key
properties of such a linearization.



Eventual Consistency for CRDTs 17

– τ(u) ends with +0 iff there is an +0 that is not followed by any -0 in u.
– For any lpo v ⊆ u, τ(v) has at most as many alternations as τ(u).

The first property above ensures that the accessors are validated correctly, i.e.,
0 is deemed to be present iff there is an +0 that is not followed by any -0.

We are left with proving monotonicity, i.e., if u ⊆ v, then τ(u) ≤obs τ(v).
Consider τ(u) = aσ and τ(v) = bρ.

– If b = a, the second property above ensures that τ(u) ≤obs τ(v).
– In the case that b 6= a, we deduce by construction that b = -0 and a = +0. In

this case, ρ starts with +0 and has at least as many alternations as τ(u). So,
we deduce that τ(u) ≤obs ρ. The required result follows since ρ ≤obs τ(v).

4 A Collaborative Text Editing Protocol

In this section we consider a variant of the collaborative text editing protocol
defined by Attiya et al. [2016]. After stating the sequential specification, text,
we sketch a correctness proof with respect to our definition of eventual consis-
tency. This example is interesting formally: the dependency relation is not an
equivalence, and therefore the dependent projection does not preserve transitiv-
ity. The generality of intransitive lvos is necessary to understand text, even
assuming a causal implementation.

Specification. Let a, b range over nodes, which contain some text, a unique iden-
tifier, and perhaps other information. Labels have the following forms:

– Mutator !a initializes the text to node a.
– Mutator +a<b adds node a immediately before node b.
– Mutator +a>b adds node a immediately after node b.
– Mutator -b removes node b.
– Non-mutator query ?b1 ··· bn returns the current state of the document.

We demonstrate the correct answers to queries by example. Initially, the docu-
ment is empty, whereas after initialization, the document contains a single node;
thus the specification contains strings such as “?ε !c ?c”, where ε represents the
empty document. Nodes can be added either before or after other nodes; thus
“!c +b<c +d>c” results in the document ?bcd. Nodes are always added adjacent
to the target; thus, order matters in “!c +e>c +d>c” which results in ?cde rather
than ?ced. Removal does what one expects; thus “!c +e>c +d>c -c” results in
?de.

Attiya et al. define the interface for text using integer indices as targets,
rather than nodes. Using the unique correspondence between the nodes and it
indices (since node are unique), one can easily adapt an implementation that
satisfies our specification to their interface.

We say that node a is a added in the actions !a, +a<b and +a>b. Node b is a
target in +a<b and +a>b. In addition to correctly answering queries, specifications
must satisfy the following constraints:
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– Initialization may occur at most once,
– each node may be added at most once,
– a node may be removed only after it is added, and
– a node may be used as a target only if it has been added and not removed.

These constraints forbid adding to a target that has been removed; thus “!c
+d>c -c” is a valid string, but “!c -c +d>c” is not. It also follows that initializa-
tion must precede any other mutators.

Because add operations use unique identifiers, punning and stuttering play
little role in this example. In order to show the implementation correct, we need
only choose an appropriate notion of dependency. As we will see, it is necessary
that removes be independent of adds with disjoint label sets, but otherwise all
actions may be dependent. Let L!+? be the set of add and query labels, and let
nodes return the set of nodes that appear in a label. Then we define dependency
as follows.

` # k iff {`, k} ⊆ L!+? or nodes(`) ∩ nodes(k) 6= ∅

Implementation. We consider executions that satisfy the same four conditions
above imposed on specifications. We refer the reader to the algorithm of Attiya
et al. that provides timestamps for insertions that are monotone with respect to
causality.

As an example, Attiya et al. allow the execution given on the left below.
In this case, the dependent restriction is an intransitive lvo, even though the
underlying execution is an lpo: in particular, !b does not precede -d in the
dependent restriction. We give the order considered by dependent cuts on the
right—this is a restriction of the dependent restriction: since we only consider
pointed accessor cuts, we can safely ignore order out of non-mutators.

!b

+c>b

+d>b

?bcd

-d

-b

?bc

?cd

+a<b

+e>d

?ace !b

+c>b

+d>b

?bcd

-d

-b

?bc

?cd

+a<b

+e>d

?ace

This execution is not linearizable, but it is sec, choosing witnesses to be
subsequences of the mutator string “!b +d>b +c>b +a<b +e>d -b -d”. Here, the
document is initialized to b, then c and d are added after b, resulting in ?bcd. The
order of c and d is determined by their timestamps. Afterwards, the top replica
removes d and adds a; the bottom replica removes b and adds e, resulting in
the final state ?ace. In the right execution, the removal of order out of the non-
mutators shows the “update serializability” effect; the removal of order between
-b and +e>d (and between -d and +a<b) shows the “preserved program order”
effect.
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Correctness. Given an execution, we can find a specification string s1s2 that
linearizes the mutators in the dependent restriction of the execution such that
s1 contains only adds and s2 contains only removes. Such a specification string
exists because by the conditions on executions, deletes do not have any outgoing
edges to other mutators in the dependent restriction; so, they can be moved to
the end in the matching specification string. In order to find s1 that linearizes the
add events, any linearization that respects causality and timestamps (yielded by
the algorithm of Attiya et al.) suffices for our purposes. The conditions required
by sec follow immediately.

5 Compositional Reasoning

The aim of this section is to establish compositional methods to reason about
replicated data structures. We do so using Labelled Transition Systems (ltss),
where the transitions are labelled by dependent cuts. We show how to derive
an lts from an execution, lts(u). We also define an lts for the most general
crdt that validates a specification, lts(Σ). We show that u is sec for Σ exactly
when lts(u) is a refinement of lts(Σ). We use this alternative characterization to
establish composition and abstraction results.

LTSs. An lts is a triple consisting of a set a states, an initial state and a labelled
transition function between states. We first define the ltss for executions and
specifications, then provide examples and discussion.

For both executions and specifications, the labels of the lts are dependent
cuts: for executions, these are dependent cuts of the execution itself; for specifica-
tions, they are drawn from the set L# =

⋃
v∈L cuts#(v) of all possible dependent

cuts. We compare lts labels up to isomorphism, rather than identity. Thus it
is safe to think of lts labels as (potentially intransitive) pomsets [Plotkin and
Pratt 1997].

The states of the lts are different for the execution and specification. For
executions, the states are cuts of the execution u itself, cuts(u); these are general
cuts, not just dependent cuts. For specifications, the states are the stuttering
equivalence classes of strings allowed by the specification, Σ/∼.

There is an isomorphism between strings and total orders. We make use of
this in the definition, treating strings as totally-ordered lvos.

Define lts(u) = 〈cuts(u), ∅, 7−→i〉, where p
v7−→i q if v ∈ cuts#(q) and

p ⊆ q Emax(v) ∪ Ep = Eq max(v) ⊆ p
v ⊆ q Emax(v) ∩ Ep = ∅ Emax(v) ⊆ Emax(q)

Define lts(Σ) = 〈Σ/∼, ε, 7−→s〉, where [σ]
v7−→s [ρ] if v ∈ L# and

σ ⊆ ρ Emax(v) ∪ Eσ = Eρ max(v) ⊆ σ
v ⊆ ρ Emax(v) ∩ Eσ = ∅
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We explain the definitions using examples from set, first for executions, then
for specifications. Consider the execution on the left below. The derived lts is
given on the right.

+0

-0

30

+1

30

ε

+0

-0

-0‖+0

(-0‖+0); 30

(-0‖+0); +1

(-0‖+0); (30‖+1)

(-0‖+0); (30‖+1); 30

+0

-0

-0

+0

-0‖+0
(-0‖+0)

;30

+1

+1

(-0‖+0);
30

(-0‖+0);30

The states of the lts are cuts of the execution. The labels on transitions are
dependent cuts. The requirements for execution transitions relate the source
p, target q and label v. The leftmost requirements state that the target state
must extend both the source and the label; thus the target state must be a
combination of events and order from source and label. The middle requirements
state that the maximal elements of the label must be new in the target; only the
maximal elements of the label are added when moving from source to target. The
upper right requirement states that the non-maximal order of the label must be
respected by the source; thus the causal history reported by the label cannot
contradict the causal history of the source. The lower right requirement ensures
that maximal elements of the label are also maximal in the target. The restriction
to dependent cuts explains the labels on transitions (-0‖+0) +17−→i (-0‖+0); +1 and
(-0‖+0); (30‖+1);30 (-0‖+0);307−−−−−−→i (-0‖+0); (30‖+1). By definition, there is a self-
transition labelled with the empty lvo at every state; we elide these transitions
in drawings.

The specification lts for set is infinite, of course. To illustrate, below we give
two sub-ltss with limitations on mutators. On the left, we only allow +0 and
+1. On the right, we only allow +0 and -0 and only consider the case in which
there is at most one alternation between them. The states are shown using their
canonical representatives. Because of the number of transitions, we show all
dependent accessors as a single transition, with labels separated by commas.

+0+1

+0

+1

ε

+0
+1

+1
+0

+0‖+1

70
, +
03
0

71

71, +131

70, +0
30

70
71, +131

71 70

+1+0

+1

+0

+0‖+171,
+13

1

70, +030

ε

+0

-0

+0-0-0+0

+0

-0

-0‖+0-0‖+0

+0-0

-0

-0

-0+0+0

+0

70

70, +030

70, -070

70
, -
07
0,
-0
+0

30
, (
-0
‖+
0)

30

70, +030, +0-070, (-0‖+0)70

The requirements for specification transitions are similar to those for implemen-
tations, but the states are equivalence classes over specification strings: with
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source [σ] and target [τ ]. There is a transition between the states if there are
members of the equivalence classes, σ and τ , that satisfy the requirements. Since
these are total orders, the leftmost requirements state that there must be lin-
earizations of the source and label that are subsequences of the target. Similarly,
the upper right requirement states that the non-maximal order of the label must
be respected by the source; thus we have +0 +0-07−−→s +0-0 but not +0 -0+07−−→s σ, for
any σ. The use of sub-order rather than subsequence allows +0-0 +0-07−−→s +0-0-0
but prevents nonsense transitions such as +0-0 +0-07−−→s -0+0-0. Because the states
are total orders, we drop the implementation lts requirement that maximal
events of the label must be maximal in the target. If we were to impose this
restriction, we would disallow -0

+07−→s +0-0.
It is worth noting that the specification of the add-wins set removes exactly

three edges from the right lts: ε -0|+07−−−→s +0-0, +0
-07−→s +0-0, and -0

+07−→s +0-0.

Refinement. Refinement is a functional form of simulation [Hoare 1972; Lamport
1983; Lynch and Vaandrager 1995]. Let P = 〈SP , p0, 7−→P 〉 and Q = 〈SQ, q0,
7−→Q〉 be ltss. A function f : SP → SQ is a (strong) refinement if p v7−→P p′

and f(p) = q imply that there exist w =iso v and q′ ∈ SQ such that q w7−→Q q′

and f(p′) = q′. Then P refines Q (notation P ∼< Q) if there exists a refinement
f : SP → SQ such that the initial states are related, i.e., f(p0) = q0.

We now prove that sec can be characterized as a refinement. We write p0 7−→∗P
pn when pn is reachable from p0 via a finite sequence of steps pi

ui7−→P pi+1.

Theorem 1. u is EC for the specification Σ iff lts(u) ∼< lts(Σ).

Proof. For the forward direction, assume u is EC and therefore there exists a
function τ : cuts#(u)→ Σ such that ∀E ∈ cuts#(u). τ(E) is a linearization of E.
For each cut p ∈ cuts(u), we start with the dependent restriction, p � #. We
further restriction attention to mutators, p � # �M. The required refinement
maps p to the equivalence class of the linearization of p � # �M chosen by τ :
f(p)

M
= [τ(p �# �M)]. We abuse notation below by identifying each equivalence

class with a canonical element of the class.
We show that p v7−→i q implies f(p) ≤obs f(q). Since p ⊆ q, we deduce

that p �# �M ⊆ q �# �M and by monotonicity, f(p) = τ(p �# �M) ≤obs
τ(q �# �M) = f(q).

We show that p v7−→i q implies τ(v) ≤obs f(q). Suppose v only contains
mutators. Since v ⊆ q, we deduce that v ⊆ q � # �M and by monotonicity,
τ(v) ≤obs τ(q �# �M) = f(v). On the other hand, suppose v contains the non-
mutator a. Let A = M ∪ {a}. Since v ⊆ q, we deduce that v �M ⊆ q �# �A.
By monotonicity, τ(v �M) ≤obs τ(q �A). Since τ(q �A) = τ(q �M), we have
τ(v �M) ≤obs τ(q �M) = f(q), as required.

Thus f(p) v7−→s f(q), completing this direction of the proof.
For the reverse direction, we are given a refinement f : cuts(u)→ Σ/∼. For

any p ∈ cuts#(u), define τ(p) to be a string in the equivalence class f(p) that
includes any non-mutator found in p.

We first prove that τ(p) is a linearization of p. A simple inductive proof
demonstrates that for any p ∈ cuts#(u), there is a transition sequence of the
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form ∅ 7−→∗i
p7−→i p. Thus, we deduce from the label on the final transition into p

that the τ(p) related to p is a linearization of p.
We now establish monotonicity. A simple inductive proof shows that for any

p, q ∈ cuts(u), p ⊆ q implies p 7−→∗i q. Thus τ(p) ≤obs τ(q), by the properties of
f and the definition of τ .

Composition. Given two non-interacting data structures whose replicated im-
plementations satisfy their sequential specifications, the implementation that
combines them satisfies the interleaving of their specifications. We formalize this
as a composition theorem in the style of Herlihy and Wing [1990].

Given an execution u and L ⊆ L, write u � L for the execution that results
by restricting u to events with labels in L: u �L = u � {e ∈ Eu | λu(e) ∈ L}. This
notation lifts to sets in the standard way: U � L =

⋃
u∈U{u � L}. Write u �sec Σ

to indicate that u is sec for Σ.

Theorem 2 (Composition). Let L1 and L2 be mutually independent subsets
of L. For i ∈ {1, 2}, let Σi be a specification with labels chosen from Li, such
that Σ1 9Σ2 is also a specification. If (U �L1) �sec Σ1 and (U �L2) �sec Σ2 then
U �sec (Σ1 9Σ2) (equivalently lts(Σ1 9Σ2) h lts(Σ1) 9 lts(Σ2)).

The proof is immediate. Since L1 and L2 are mutually independent, any inter-
leaving of the labels will satisfy the definition.

Abstraction. We describe a process algebra with parallel composition and re-
striction and establish congruence results. We ignore syntactic details and work
directly with ltss. Replica identities do not play a role in the definition; thus,
we permit implicit mobility of the client amongst replicas with the only con-
straint being that the replica has at least as much history on the current item
of interaction as the client. This constraint is enforced by the synchronization of
the labels, defined below. While the definition includes the case where the client
itself is replicated, it does not provide for out-of-band interaction between the
clients at different replicas: All interaction is assumed to happen through the
data structure.

The relation |d is defined between ltss so that P |d Q describes the system
that results when client P interacts with data structure Q. For ltss P and Q,
define 7−→× inductively, as follows, where ∅ represents the empty lvo.

q
v7−→Q q′

〈p, q〉 v7−→× 〈p, q′〉
p

v7−→P p
′ q

w7−→Q q′

〈p, q〉 ∅7−→× 〈p′, q′〉
∃v′ =iso v. v

′ ⊆ w and max(v′) = max(w)

Let S× = {〈p, q〉 | ∃〈p′, q′〉. 〈p, q〉 7−→∗× 〈p′, q′〉 and 6 ∃v, p′′. p′
v7−→P p

′′}

P |d Q =

{
{〈S×, 〈p0, q0〉, 7−→×〉} if S× is non-empty
∅ otherwise

The |d operator is asymmetric between the client and data structure in two ways.
First, note that every action of the client must be matched by the data structure.
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The condition of client quiescence in the definition of S×, that all of the actions
of the client P must be matched by Q; otherwise P |d Q = ∅. However, the
first rule for 7−→× explicitly permits actions of the data structure that may not
be matched by the client. This asymmetry permits the composition of the data
structure with multiple clients to be described incrementally, one client at a
time. Thus, we expect that (P1 | P2) |d Q h P1 |d (P2 |d Q).

Second, note that right rule for 7−→× interaction permits the data structure Q
to introduce order not found in the clients. This is clearly necessary to ensure that
that the composition of client 30|+0 with the set data structure is nonempty. In
this case, the client has no order between +0 and 30 whereas the data structure
orders 30 after +0. In this paper, we do not permit the client to introduce
order that is not seen in the data structure. For a discussion of this issue, see
[Jagadeesan and Riely 2015].

We can also define restriction for some set A ⊆ L of labels, a lá CCS. P\A =
〈SP , p0, {〈p, v, q〉 | 〈p, v, q〉 ∈ ( 7−→P ) and labels(v) ∩ A = ∅}〉. The definitions
lift to sets: P |d Q =

⋃
P∈P, Q∈Q P |d Q and P\A = {(P\A) | P ∈ P}.

Lemma 3. If P ∼< P
′ and Q ∼< Q

′ then P |d Q ∼< P
′ |d Q′ and P\A ∼< P

′\A. ut

It suffices to show that: P ∼< lts(u) implies P |d lts(u) ∼< P |d lts(Σ). The proof
proceeds in the traditional style of such proofs in process algebra. We illustrate
by sketching the case for client parallel composition. Let f be the witness for
P ∼< lts(u). The proof proceeds by constructing a “product” refinement S relation
of the identity on the states of P with f , i.e.: f(q) = q′ implies 〈p, q〉 S 〈p, q′〉.

Thus, an sec implementation can be replaced by the specification.

Theorem 4 (Abstraction). If u is sec for Σ, then P |d lts(u) ∼< P |d lts(Σ).

6 A Replicated Graph Algorithm

We describe a graph implemented with sets for vertices and edges, as specified
by Shapiro et al. [2011a]. The graph maintains the invariant that the vertices
of an edge are also part of the graph. Thus, an edge may be added only if
the corresponding vertices exist; conversely, a vertex may be removed only if
it supports no edge. In the case of a concurrent addition of an edge with the
deletion of either of its vertices, the deletion takes precedence.

The vertices v, w, . . . are drawn from some universe U . An edge e, e′, . . . is
a pair of vertices. Let vert(e) = {v, w} be the vertices of edge e = (v, w). The
vocabulary of the set specification includes mutators for the addition and removal
of vertices and edges and non-mutators for membership tests.

M = {+v, -v, +(v,w), -(v,w) | v, w ∈ U}
M = {3v,7v,3(v,w),7(v,w) | v, w ∈ U}
# = {(e, v), (v, e) | v ∈ vert(e)} ∪ {(e, e′) | vert(e) ∩ vert(e′) 6= ∅}

Valid graph specification strings answer queries like sets. In addition, we require
the following.
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– Vertices and edges added at most once: Each add label is unique.
– Removal of a vertex or edge is preceded by a corresponding add.
– Vertices are added before they are mentioned in any edges: If σj = +(v,w),

or σj = -(v,w) there exists i, i′ < j such that: σi = +v, σi
′
= +w.

– Vertices are removed only after they are mentioned in edges: If σj = +(v,w),
or σj = -(v,w), then for all i < j: σi 6= -v and σi 6= -w.

Graph Implementation. We rewrite the graph program of Shapiro et al. [2011a]
in a more abstract form. Our distributed graph implementation is written as a
client of two replicate set: for vertices (V) and for edges (E). The implementation
uses usets, which require that an element be added at most once and that
each remove causally follow the corresponding add. Here we show the graph
implementation for various methods as client code that runs at each replica. At
each replica, the code accesses its local copy of the usets. All the message passing
needed to propagate the updates is handled by the uset implementations of the
sets V, E. For several methods, we list preconditions, which prescribe the natural
assumptions that need to satisfied when these client methods are invoked. For
example, an edge operation requires the presence of the vertices at the current
replica.

addVertex(v) removeVertex(v) bool ?(v)
Pre: fresh(v) Pre: V.?(v) return V.?(v)
V.add(v) V.remove(v)

addEdge(v,w) removeEdge(v,w) bool ?(v,w)
Pre: V.?(v),V?(w) Pre: V.?(v),V?(w) if V.?(v)
Pre: fresh((v,w)) Pre: E.?((v,w)) then return E.?((v,w))
E.add((v,w)) E.remove((v,w)) else return false

We assume a causal transition system (as needed in Shapiro et al. [2011a]).

Correctness Using the Set Specification. We first show the correctness of the
graph algorithm, using the set specification for the vertex and edge sets. We
then apply the abstraction and composition theorems to show the correctness of
the algorithm using a set implementation.

Let u be a lvo generated in an execution of the graph implementation. The
preconditions ensure that u has the following properties:

(a) For any v, +v is never ordered after -v, and likewise for e.
(b) -(v,w) or +(v,w) is never ordered after -v or -w.
(c) -(v,w) or +(v,w) is always ordered after some +v and +w.

Define σ1, σ2 and σ3 as follows.

– All elements of σ1 are of the form +v. σ1 exists by (c) above.
– All elements of σ3 are of the form -v. σ3 exists by (b) above.
– For each edge (v, w) that is accessed in u, let σ(v,w) be any interleaving of the

events involving (v, w) in u such that no +(v,w) occurs after any -(v,w) in
σ(v,w). σ(v,w) exists by (a) above. σ2 is any interleaving of all the s(v,w) .
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Then u is sec with witness σu = σ1σ2σ3.

Full Correctness of the Implementation. We now turn to proving the correctness
of the algorithm when the two sets are replaced by their implementations.

Consider two (distributed implementations of) separate and independent sets
for vertices and edges, i.e. LΣ1∩LΣ2 = ∅. Suppose we have two implementations,
each of which is correct individually: lts(Ui) ∼< lts(Σi). By composition, we have
that they are correct when composed together: U1 9 U2 ∼< Σ1 9 Σ2. Let P be
the graph implementation, which is a client of the two sets. By abstraction, we
know that P |d (Σ1 9 Σ2) ∼< T implies P |d (U1 9 U2) ∼< T. By congruence, we
deduce:

(P |d (Σ1 9 Σ2))\(LΣ1
∪ LΣ2

) ∼< T implies (P |d (U1 9 U2))\(LΣ1
∪ LΣ2

) ∼< T.

Thus, in order to validate the full graph implementation, it is sufficient to estab-
lish the correctness of the graph client when interacting with the specification of
the two independent sets for edges and vertices, which we have already done in
the previous treatment of abstract correctness.

7 Conclusions

We have provided a definition of strong eventual consistency that captures valid-
ity with respect to a sequential specification. Our definition reflects an attempt
to resolve the tension between expressivity (cover the extant examples in the
literature) and facilitating reasoning (by retaining a direct relationship with the
sequential specification). The notion of concurrent specification developed by
Burckhardt et al. [2014] has been used to prove the validity of several replicated
data structure implementations. In future work, we would like to discover suffi-
cient conditions relating concurrent and sequential specifications such that any
implementation that is correct under the concurrent specification (as defined
by Burckhardt et al.) will also be correct under the sequential counterpart (as
defined here).
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