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Abstract
We define local transactional race freedom (LTRF), which pro-

vides a programmer model for software transactional memory.
LTRF programs satisfy the SC-LTRF property, thus allowing

the programmer to focus on sequential executions in which

transactions execute atomically. Unlike previous results, SC-
LTRF does not require global race freedom.We also provide a

lower-level implementation model to reason about quiescence
fences and validate numerous compiler optimizations.

CCS Concepts • Theory of computation → Parallel
computing models; Abstraction;

1 Introduction
For concurrent programs communicating via a shared-mem-

ory subsystem that includes locks, the SC-DRF property

states that a Data Race Free program can be fully under-

stood by considering only executions that are Sequentially
Consistent, meaning that the shared-memory subsystem can

be modeled as a standard sequential store [3].

For programs that use transactions to augment or replace

locking, the analogous SC-TRF property states that for Trans-
actionally Race-Free programs, it suffices to consider execu-

tions that are SC and where transactions are executed atom-

ically. For TRF programs, SC-TRF implies opacity [15, 16],

which generalizes SC-DRF to include aborted and live trans-

actions. SC-TRF is a conditional form of operational refine-
ment: for TRF programs, “every behavior a user can observe

of a program using a TM implementation can also be ob-

served when the program uses an abstract TM that executes

each block atomically” [22].
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Reasoningwith SC-TRF is powerful, particularly formixed-
mode access, where a single location is accessed both trans-

actionally and nontransactionally. A common idiom is pri-
vatization, shown in the following program.

atomica { if !y then x:=1 } || atomicb {y:=1 };x:=2
Here, there are two threads, separated by parallel composi-

tion. Transactions are denoted by atomic blocks, with trans-

action names as subscripts to facilitate discussion. The first

thread atomically reads y and updates x if y is 0 (the initial

value). The second thread atomically writes y, then executes

a plain (nontransactional) write to x .
Reasoning sequentially and assuming all transactions com-

mit, it is impossible for the program to terminate with x = 1

since the atomic blocks must appear to occur in some serial

order. Suppose a serializes first—then the write of 1 to x ,
denoted ⟨Wx 1⟩, must precede ⟨Wx 2⟩, and the final result

is 2. Suppose b serializes first—then there will be no ⟨Wx 1⟩,
since the only available value for y is 1.

Thus, the atomic blocks are used to synchronize threads.

In the case that x:=2 is replaced with some costly computa-

tion, the privatization idiom can be used to reduce computa-

tional costs inside atomic blocks.
The reverse idiom is publication, exemplified by:

x:=1; atomica {y:=1 } || atomicb { z:=2; if y then z:=x }

Reasoning as before, it is impossible for the program to termi-

nate with z = 0. Suppose transaction a serializes first—then

b must see both ⟨Wx 1⟩ and ⟨Wy1⟩ and therefore end by

writing ⟨Wz1⟩. Suppose b serializes first—then there will be

no second write to z, since the only available value for y is

the initial value 0, and thus the last write to z is ⟨Wz2⟩.
It is a direct consequence of sequential reasoning that

these outcomes must be forbidden. In the implementation of

Software Transactional Memory (STM), many performance

enhancements, such as optimistic execution, can result in a

failure of SC-TRF, allowing behaviors such as those above.

This has led to a tension between the programmer model and

the implementation of STMs, resulting in a great literature

on the subject, with many competing notions of transactional
race that abstract away implementation details to a greater

or lesser degree [1, 17, 24, 28].

In this paper, we emphasize the programmer model, de-
veloping a high-level definition of a transactional race that

makes mixed-mode idioms safe by definition (§2 and §4). We

attempt to make the programmer model as broadly appli-

cable as possible by adapting the notion of local data race
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developed by Dolan et al. [9]. At the same time, we show that

our model is efficiently implementable, in that it avoids com-

mon pitfalls that overly constrain the STM implementation,

such as publication by antidependency or global lock atomic-
ity (§3). Our programmer model disables common compiler

optimizations; so, we develop a slightly more concrete imple-
mentation model that supports compiler optimizations (§5).

We describe how to compile our model to x86 and ARMv8

(§6). We are inspired by Khyzha et al. [22], who followed the

same agenda for global races using a model similar to our

implementation model; we discuss related work in §7.

In addition to providing a novel programmer model, this

paper extends existing work in several ways.

Local Race Freedom. The SC-TRF property is a global prop-
erty: a race anywhere in the program is sufficient to nullify

the TRF property, typically resulting in undefined semantics.

Recently, Dolan et al. [9] proposed local DRF as an alternative
to global DRF for programs that synchronize via Java-like

volatiles. We propose the first local TRF property.

Local TRF is strictly more expressive than the global TRF

models considered in prior work. As a result, we are able

to provide an SC-LTRF guarantee, which applies to many

additional programs. Consider the variant of the well-known

independent reads of independent writes example below.

atomic { x:=1 } || atomic {y:=1 }
|| atomic { r1:=x }; z:=1; atomic { r2:=y }

|| atomic {q1:=y }; z:=2; atomic {q2:=x }

(IRIW)

The following outcome cannot occur sequentially.

Wx 1

Wy1

Rx 1 Wz1 Ry0

Ry1 Wz2 Rx 0

If the writes to z are removed, then SC-TRF reasoning allows

a programmer to conclude that this sequence of reads can-

not occur. However, with the writes to z included, SC-TRF
reasoning says nothing about this program, since, by any

definition, there is a race on z. SC-LTRF allows us to ignore

this race. Since no transactional variable is involved in a

race, we are guaranteed that every execution of this program

behaves as though the transactional portionwere executed se-
quentially with no interleaving of transactions. This example

illustrates spatial locality.
To understand the temporal flavor of locality, consider the

following program that uses IRIW as a parallel component.

x:=−1; atomic { F++ } || x:=−2; atomic { F++ }
|| atomic { r:=F }; if r = 2 then IRIW

Again, standard SC-TRF reasoning says nothing about this

program, since there are races on x . But there is no race on x
or y after the guard r = 2 becomes true; SC-LTRF allows us
to reason sequentially from that point, ensuring that IRIW
behaves as expected.

Thus, by adapting the notion of locality from [9], we en-

able modular reasoning with transactions by isolating trans-

actional races from other data races, in both space and time.

Defined Behavior for Racy Programs. Most prior models

based on SC-TRF either give undefined semantics for pro-

grams with races or assume that the underlying memory

model is sequentially consistent. We define the semantics of

programs using the relaxed memory model of [9], and thus

give a defined semantics for racy programs using a realistic

memory model.

Implementation-Level Reasoning. Most prior work relies

on programmers to place quiescence fences to guarantee

safety [22, 27, 34–36]. We connect our high-level model to

this previous work by developing a lower-level implemen-

tation model that includes explicit fences. Our lower-level

assumes only that the underlying transactional machinery

provides order between transactions that have a direct de-

pendency, e.g., as in the publication idiom. We note that

hardware transactions [5, 6, 10] support the ordering as-

sumptions of our lower-level model. Fences are necessary

only to provide order when there is no direct dependency, as

in the privatization idiom. We provide a correctness criterion

to realize our abstract programming model, and compare the

fences required to realize our high-level model to previous

approaches.

In addition to building on these aspects of prior work on

SC-TRF, we prove that common compiler optimizations are

sound under LTRF. In addition to all of the optimizations

validated by LDRF [9], we also validate some optimizations

specific to transactions, inspired by optimizations that are

sound with respect to locks [27]. For example, we show that

empty transactions can be elided, that the scope of transac-

tions can be increased, and that adjacent transactions can be

combined.

2 Programmer Model
Dolan et al. [9] give a semantics for a language using Java-like

volatiles for synchronization. We adapt their semantics to

isolated transactions [13, 26] (where plain actions may not be

causally interleavedwith transactional actions). Transactions

are more general than volatiles in several ways:

• A transaction may abort.

• A transaction may both read and write.

• A transaction may access more than one location.

• The same location may be used in both transactional

and plain accesses.

We give the semantics of a program as a set of traces, each of

which is a sequence of actions (e.g., read, write, transaction
begin). Dolan et al. [9] give both an operational semantics

generating traces and an axiomatic semantics defined over

event graphs. We concentrate on the axiomatic treatment,

treating actions as events in an event graph and deriving or-

ders over these actions. We use the words trace and execution
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interchangeably, preferring “trace” when the exact sequence

of actions is relevant and “execution” when it suffices to

consider the derived relations.

We have designed the semantics so that transactions be-

have exactly like the volatiles of [9] for degenerate traces in
which each transaction contains a single read or write action,

transactional and nontransactional locations are disjoint, and

each transaction is committed and contiguous.

In this section, we present a programmer model that vali-

dates mixed-mode idioms such as privatization, but fails to

validate common compiler optimizations. In §5, we give a

low-level model that validates compiler optimizations, but

only conditionally validates mixed-mode idioms.

Actions The syntax of actions is as follows.

a, b, c ∈ Act (Action Id)

s, t ∈ Thrd (Thread Id)

x, y ∈ Loc (Location)

v, w ∈ Z (Value)

q, p ∈ Q (Timestamp)

α ::= ⟨a:sWxvq⟩ (Write)

| ⟨a:sRxvq⟩ (Read)

| ⟨a:sB⟩ (Begin)

| ⟨a:sCb⟩ (Commit)

| ⟨a:sAb⟩ (Abort)

Action ids are unique identifiers for actions. Thread ids

include the reserved thread id init, used for initialization. To

simplify the definition of initialization, we assume that the

set of locations is finite. We take values to be integers and

timestamps to be rationals, as in [9].

The write action ⟨a:sWxvq⟩ denotes a write of v to x by

thread s , with action name a. Likewise, ⟨a:sRxvq⟩ denotes a
read. The timestamp q is used to encode relations between

these actions, as detailed below.

The begin action ⟨b:sB⟩ denotes the begin of transaction

by thread s , with action name b. We also use b as the transac-

tion name. The commit action ⟨a:sCb⟩ denotes the commit

of the transaction named b. Likewise ⟨a:sAb⟩ denotes the
abort of b. We refer to commits and aborts collectively as

resolution actions.

We often drop components of the action syntax that are

not interesting for the discussion at hand, e.g., we may write

⟨a:sWxvq⟩ as either ⟨a⟩, ⟨a:s ⟩, ⟨Wx⟩, ⟨Wxv⟩, or ⟨Wxq⟩.

Traces and Transactions. A trace is a finite sequence of

actions α1α2 · · ·αn . We use σ, ρ to range over traces. We

only consider well-formed traces (defined below), which be-

gin with an initializing transaction of the form ⟨b:initB⟩
⟨initWx1v10⟩ · · · ⟨initWxnvn 0⟩⟨initCb⟩,which contains ex-
actly one write for each location, at timestamp 0. Here init
is a reserved thread name. In examples, we usually omit

this initializing transaction, assuming that all locations are

initialized to 0.

Each trace σ = α1α2 · · ·αn generates a total order
index
−−−−→σ ,

where αi
index
−−−−→σ α j iff i < j. Usually, the trace is clear

from context and we drop the subscript, preferring
index
−−−−→ to

index
−−−−→σ . We adopt this convention throughout, dropping the

subscript in definitions as well as examples.

We derive several other relations from a trace, including

initialization order, program order, write-to-write order (aka
coherence) and write-to-read order (aka reads-from).

• ⟨a:s ⟩ init
−−−→ ⟨b:t ⟩ iff s = init , t .

• ⟨a:s ⟩ po
−−→ ⟨b:t ⟩ iff a index

−−−−→ b and s = t .
• ⟨a:Wxq⟩ ww ⟨b:Wyp⟩ iff x = y and q < p.
• ⟨a:Wxvq⟩ wr ⟨b:Rywp⟩ iff x = y, v = w and q = p.

All of these relations are irreflexive.
po
−−→ and

ww
are transi-

tive. The domain and range are disjoint for
init
−−−→ and

wr
.

In the context of a trace, we often refer to actions by name.

For example, we prefer “a po
−−→ b” to “⟨a⟩ po

−−→ ⟨b⟩”. We also

write “a = ⟨sWxvq⟩” rather than “∃i . αi = ⟨a:sWxvq⟩”.
We take the name of the begin action to be the unique id for

each transaction. We say that action a belongs to transaction
b if ⟨b:B⟩ po

−−→ a and there is no commit or abort action c
such that b po

−−→ c po
−−→ a. We say that a is transactional if it

belongs to some transaction, and plain otherwise.

Each trace induces an equivalence over action names, re-

lating actions that belong to the same transaction:

a
tx
∼ b iff a = b or a and b belong to the same transaction.

Note that plain actions are included in
tx
∼, although they only

relate to themselves.

There are three possible states for transactions: committed,
aborted and live. Committed and aborted transactions are

resolved. Committed and live transactions are nonaborted.
We use the same terminology to refer all of the actions in a

transaction; thus, we may use “aborted write action” to refer

to a write action that belongs to an aborted transaction.

We visualize traces as graphs. For example, the trace

⟨a:initB⟩ ⟨initWx 00⟩ ⟨initWy00⟩ ⟨initCa⟩ ⟨b:sB⟩ ⟨sWy11⟩
⟨sWx 11⟩ ⟨sCb⟩ ⟨c:tB⟩ ⟨tRy11⟩ ⟨tAc⟩ ⟨d :tWx 22⟩ is visual-

ized as:

b:Wy1 Wx 1

c:Ry1 d :Wx 2

wr ww or

b

c d

wr ww

To avoid clutter, we drop the label on
po
−−→ and elide the initial-

izing transaction. Instead of including explicit begin and res-

olution actions, we visualize transactions using boxes. Com-

mitted and live transactions are drawn in solid boxes, colored

blue. Aborted transactions are drawn in dashed boxes, col-

ored red.

Well-Formedness. A trace is a well-formed if each of the

following hold:

WF1. The trace starts with an initializing transaction.

WF2. Action names are unique: if a index
−−−−→ b, then a , b.

WF3. Write timestamps are per-location unique:

If a = ⟨Wxq⟩ and b = ⟨Wxq⟩, then a = b.
WF4. Each begin action has at most one resolution, and each

resolution has exactly one begin action.

WF5. Each resolution follows its begin in
po
−−→, without an

intervening begin or resolution.
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WF6. If b is a read, then there is some a such that a wr b.
WF7. If a

wr b and a is aborted or live, then a
tx
∼ b.

WF8. If a
wr b, then a index

−−−−→ b.
WF9. If b is transactional, then there is no committed or live

c index
−−−−→ b such that b ww c .

WF10. If b is transactional and there is some transactional

a wr b, then there is no committed or live c index
−−−−→ b

such that a ww c .
WF11. If b is transactional and there is some a wr b, then

there is no c
tx
∼ b such that c index

−−−−→ b and a ww c .

WF1 ensures that locations are initialized. WF2–WF3 en-

sure that action names and timestamps are unique.WF4–WF5

ensure proper bracketing for transactions. These conditions

also preclude nesting of transactions — we leave the treat-

ment of nested transactions to future work. WF6 ensures

that all reads are fulfilled. WF7 ensures that aborted and live

writes are not visible outside the transaction.

WF8–WF11 constrain the interleavings allowed in a trace.

For the most part, we view traces as abstract execution

graphs, where transactions are expressed as multiple
po
−−→-

contiguous actions. In execution graphs, time is relative: it
is expressed as the happens-before relation, which captures

causal relations between actions. At the concrete level of a

trace, time is absolute: it is expressed by order in the sequence.
Viewed as execution graphs, WF8–WF11 are redundant with

respect to consistency criteria given below. These condi-

tions, instead, constrain the concrete representation of the

execution graph as a trace, enabling inductive reasoning that

mirrors the operational reasoning of [9].

WF8 ensures that reads only see the absolute past: reads are

not allowed to “see the future”. This condition is guaranteed

by the operational semantics of [9], but here must be stated

explicitly. There is no similar requirement that writes respect

absolute time. They may appear out of order. For example,

we allow the trace ⟨Wx 22⟩⟨Wx 11⟩.
WF9–WF11 constrain the interleaving of the actions from

different transactions. There is no analogue of these rules

in [9] since volatiles are expressed as a single action. WF9

forbids ⟨cWx 22⟩⟨bWx 11⟩ when both are transactional —

we ignore aborted writes because they are not visible to

other transactions.WF10 forbids ⟨aWx 11⟩⟨cWx 22⟩⟨bRx 11⟩
when all three are transactional. WF11 forbids ⟨aWx 11⟩
⟨cWx 22⟩⟨bRx 11⟩ when c tx

∼ b.

Antidependencies. An antidependency relates a read to any

write that cannot precede it. We use
rw

to represent antide-

pendency as read-to-write order (aka from-read). Ignoring
transactions, b rw c whenever a wr b and a ww c , for
some a.

As we shall see, antidependencies are not allowed to con-

tradict the happens-before order, which defines causality.

The end result is that stale reads are precluded. For example,

consider the trace ⟨a:sWx 1⟩⟨c:sWx 2⟩⟨b:sRx 1⟩. This trace
should not be allowed, since it reads 1 after writing 1 and

then 2 in the same thread. Because c po
−−→ b rw c , this trace,

shown on the left below, will not be considered consistent:

a:Wx 1

b:Rx 1

c:Wx 2
ww

wr rw

a:Wx 1

b:Rx 1

c:Wx 2
ww

wr

Aborted transactions complicate the definition of antidepen-

dency. For example, if c is part of an aborted transaction, as

shown on the right, then the outcome should be allowed.

Note that if b and c belonged to the same aborted transaction,

then the execution would be disallowed by condition WF11

in the definition of well-formed trace.

Thus we arrive at the following definition:

b rw c iff a wr b and a ww c , for some a, and
c is either plain or nonaborted.

Lifted Relations. A common technique to enforce transac-

tional atomicity is to lift orders from individual actions to

the level of transactions [6, 10, 32]. Notationally, we indicate

a lifted relation by prefixing “l.” For example, the lifting of

wr
is written

lwr
. We also use two variants.

•
lR
−−→ is the lifting of relation

R
−→.

•
xR
−−→ restricts

lR
−−→ to transactions.

•
cR
−−→ restricts

xR
−−→ to nonaborted transactions.

For any relation
R
−→, the definitions are as follows.

• a lR
−−→ b iff a R

−→ b or a′ R
−→ b ′ for some a′

tx
∼ a ̸

tx
∼ b

tx
∼ b ′.

• a xR
−−→ b iff a lR

−−→ b and a, b are transactional.

• a cR
−−→ b iff a xR

−−→ b and a, b are committed or live.

Consider the following execution, where we label the in-

dividual actions of b.

b1:Wy1 b2:Wx 1

c:Ry1 d :Wx 2

wr ww

We have b1
wr c but not b2

wr c . In the lifted relation both

of these hold; in particular, we have b2
lwr c . Similarly, we

have b1
lww d but not b1

ww d . The “x” variants exclude
d . The “c” variants exclude both c and d .

Summarizing the relations defined thus far, we have:

•
index
−−−−→ is the absolute order of events in a trace.

•
init
−−−→ relates initialization events to other events.

•
po
−−→ restricts

index
−−−−→ to events of same thread.

• ww
is write-to-write order, derived from timestamps.

• wr
is write-to-read order, derived from timestamps.

• rw
is read-to-write order, derived from

ww
and

wr
.

Lifting is only applied to the last three relations.

Happens-Before. The happens-before order, hb
−−→, is a partial

order that captures dependency, or causality, between ac-

tions. It serves a crucial role in understanding distributed

systems. In the next subsection, happens-before is used to

define consistent executions that obey the intended notion

of causality. In §4, happens-before is also used to define
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data races. By varying the definition of happens-before, we

change the definition of both consistency and raciness.

We define
hb
−−→ to be the least relation that is closed with

respect to the following.

a hb
−−→ c if a (

init
−−−→∪

po
−−→∪ cwr ∪ cww ) c (HBbase)

a hb
−−→ c if a hb

−−→ b hb
−−→ c (HBtrans)

a hb
−−→ c if c is plain, a lww c and a crw b hb

−−→ c (HBww)

We discuss variations of HBww at the end of this section.

We discuss an alternative model without HBww in §5.

By HBbase, happens-before includes initialization order,

program order, lifted write-to-write order and lifted write-

to-read order. HBtrans says that happens-before is transitive.

These rules are adapted from the analogous rules in [9]. The

only subtlety of these rules lies in the choice of lifted relation

in HBbase; note that we restrict HBbase to include order only

from committed and live transactions. We discuss the reason

for this in the next subsection.

HBww is designed to ensure that privatization is consid-

ered race-free. Roughly, two actions are racing if they touch

a common location, neither is aborted, one is a write, and

they are not ordered by
hb
−−→. HBww only applies when a and

b are live or committed. If c is also live or committed, then

this rule adds nothing: HBbase already gives us a hb
−−→ c since

a cww c .

Example 2.1. Recall the privatization example from §1.

atomica { if !y then x:=1 }
|| atomicb {y:=1 };x:=2

a:Ry0 Wx 1

b:Wy1 c:Wx 2

crw lww

Without HBww, there would be a race between ⟨Wx 1⟩ and
⟨Wx 2⟩. By including a lww c in happens-before, we ensure

that this execution is considered race free.

Order from HBww can cascade, as in the following.

atomica { if !y then x:=1 }
|| atomicb {y:=1 }; atomica′ { if !y ′ then x ′:=1 }
|| atomicb′ {y ′:=1 };x ′:=2;x:=2

a:Ry0 Wx 1

b:Wy1 a′:Ry ′
0 Wx ′

1

b ′:Wy ′
1 c ′:Wx ′

2

crw lww

c:Wx 2

crw
lww

Consistency. We say that an execution is consistent iff it is

well-formed and the following hold.

(
hb
−−→∪ lwr ∪ xrw ) is acyclic. (Causality)

(
hb
−−→;

lww ) is irreflexive. (Coherence)

(
hb
−−→;

lrw ) is irreflexive. (Observation)

( crw
;

hb
−−→;

lww ) is irreflexive. (Antiww)

Causality, Coherence andObservation all appear in [9].

We discuss Antiww below and in Example 3.5.

Example 2.2. Consider the variant of Example 2.1, in which

the writes on x are given the reverse order in
lww

.

atomica { if !y then x:=2 }
|| atomicb {y:=1 };x:=1

a:Ry0 Wx 2

b:Wy1 c:Wx 1

crw lww

Intuitively, this execution should be disallowed since
lww

seems to order the writes incorrectly. Antiww forbids it.

Technically, this execution must be disallowed in order

to establish the SC-LTRF theorem, which states that any

race can be discovered in a sequential execution. To see the

issue, note that the two writes on x are not ordered by
hb
−−→

(HBww does not apply here); thus they are in a race. SC-LTRF

requires, therefore, that we find a sequential execution of

this program that also exhibits a race. But this is impossible:

any sequential execution must have a before b, and therefore
before c , and thus a lww c . But in this case, HBww adds

order between a and c , eliminating the race.

As noted in [9], since
po
−−→ ⊆

hb
−−→ and

wr ⊆ lwr
, the in-

clusion of
lwr

in Causality forbids “load buffering,” shown

on the left below, which is allowed by many other models.

Forbidden Allowed Allowed

Rx 1 Wy1

Ry1 Wx 1
wr
wr

Wx 1 Ry0

Wy1 Rx 0
rw
rw

Wx 1 Wy1

Ry1 Rx 0
rw
xwr

On the other hand, the model does allow “store buffering,”

shown in the middle above, since plain antidependencies

only have an irreflexivity requirement in Observation, not

an acyclicity requirement.

We do not include aborted transactions in HBbase; in con-

junction, with Observation, this would cause publication

through aborted reads. To see this, consider the execution on

the right above, which is allowed by our model, but would

be disallowed if
hb
−−→ included

xwr
rather than

cwr
.

Were we to use
crw

in Causality, the execution on the

left belowwould be allowed. But this execution violates opac-

ity, which requires a total order among all transactions (in-

cluding aborted transactions) that is consistent with happens-

before order [15, 16]. Therefore the execution must be forbid-

den. If the writes are plain, however, this execution is similar

to the store buffering example, and should be allowed. Thus,

it would be too strong to use
lrw

in Causality, or to re-

quire acyclicity of (
hb
−−→ ∪ lrw ) in Observation. Similarly,

we cannot use
lww

in Causality or require acyclicity of

(
hb
−−→ ∪ lww ) in Coherence. In either case, we would rule

out the execution on the right.

Forbidden Allowed

Wx 1

Wy1

Rx 1 Ry0

Ry1 Rx 0

xwr

xwr

xrw
xrw

Wx 2 Wy1

Wy2 Wx 1
ww
ww
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As noted in [9], the notion of coherence in LTRF is stronger

than Java, which allows the execution on the left below. On

the other hand, LTRF coherence is not as strong as coher-

ence in hardware models and C++ atomics, which forbid the

execution on the right—allowing such executions is neces-

sary to support compiler optimizations, such as common

subexpression elimination [9, 31].

Forbidden Allowed

Wx 1 Wy1

Wx 2 Ry1 Rx 2 Rx 1
ww cwr

wr

rw

Wx 1 Wx 2
ww

Rx 2 Rx 1 Rx 2

wrwr wrrw

Anti-Dependence vs Happens-Before. HBww adds to
hb
−−→

the minimal order needed to validate privatization. There is

a design space of choices for additional constraints that can

be imposed on the compositions of
crw

and
hb
−−→.

Example 2.3. There are six variants, each of which we

illustrate with an example. For completeness, we include

HBww with a variant of Example 2.1. Following Example 2.2,

many of these require an additional antidependency axiom.

The exceptions involve
lwr

, for which Causality suffices.

a hb
−−→ c if c is plain, a lww c and a crw b hb

−−→ c (HBww)

( crw
;

hb
−−→;

lww ) is irreflexive. (Antiww)

atomica { r:=y;x:=1 }
|| atomicb {y:=1 };x:=2

a:Ry0 Wx 1

b:Wy1 c:Wx 2

crw lww

a hb
−−→ c if c is plain, a lrw c and a crw b hb

−−→ c (HBrw)

( crw
;

hb
−−→;

lrw ) is irreflexive (Antirw)

atomica { r:=y;q:=x }

|| atomicb {y:=1 };x:=1

a:Ry0 Rx 0

b:Wy1 c:Wx 1

crw lrw

a hb
−−→ c if c is plain, a lwr c and a crw b hb

−−→ c (HBwr)

atomica { r:=y;x:=1 }
|| atomicb {y:=1 };q:=x

a:Ry0 Wx 1

b:Wy1 c:Rx 1
crw lwr

a hb
−−→ c if a is plain, a lww c and a hb

−−→ b crw c (HB
′
ww

)

(
hb
−−→;

crw
;

lww ) is irreflexive. (Anti
′
ww

)

x:=1; atomicb { r:=y }

|| atomicc { x:=2;y:=1 }

a:Wx 1 b:Ry0

c:Wx 2 Wy1

crwlww

a hb
−−→ c if a is plain, a lrw c and a hb

−−→ b crw c (HB
′
rw

)

(
hb
−−→;

crw
;

lrw ) is irreflexive. (Anti
′
rw

)

q:=x; atomicb { r:=y }

|| atomicc { x:=1;y:=1 }

a:Rx 0 b:Ry0

c:Wx 1 Wy1

crwlrw

a hb
−−→ c if a is plain, a lwr c and a hb

−−→ b crw c (HB
′
wr

)

x:=1; atomicb { r:=y }

|| atomicc {q:=x;y:=1 }

a:Wx 1 b:Ry0

c:Rx 1 Wy1

crwlwr

3 STM Design
We consider several examples from the literature to argue

that the ordering required by our model does not impair effi-

cient implementations of Software Transactional Memory.

Example 3.1. In accordance with [27, Figure 12], our model

does not enforce publication by antidependence: The final

outcome r = q = 0 is permitted in the program (left), as

shown by the allowable execution (right).

x:=1; atomica { r:=y }

|| atomicb {q:=x;y:=1 }

Wx 1 a:Ry0

b:Rx 0 Wy1

crwlrw

Note that if
hb
−−→ were to include

crw
, then this execution

would be forbidden by Observation. Note also that this

execution is forbidden by any model that enforces Anti
′
rw
,

from Example 2.3.

Example 3.2. In accordance with [27, Figure 11], our model

does not enforce global lock atomicity: The final outcome

r = q = 0 is possible in the program below.

x:=1; atomica {y:=1 }; r:=z
|| atomicb {q:=x; z:=1 }

Wx 1 Wy1 Rz0

Rx 0 Wz1

lrw lrw

This execution is allowed by all variants discussed in Exam-

ple 2.3, including Anti
′
rw

.

Example 3.3. We now consider the limitations of our ap-

proach. Menon et al. [27] describes an idiom for benign racy
publication. This outcome is considered desirable, yet our

model forbids it: The final outcome q = 0 is not possible for
the following program.

x:=1; atomica {y:=1 }
|| q:=2; atomicb {r:=x;

if y then q:=r }

Wx 1 a:Wy1

b:Rx 0 Ry1
cwrlrw

The outcome is only allowed if b reads 0 for x and 1 for y,
but this execution is disallowed by Observation.

Note that, in accordance with the name, the program is

not race-free: the execution in which b reads 0 for y has a

race on x . Thus, there is no canonical answer as to whether

this execution is indeed benign and should be allowed.

Example 3.4. The literature describes a class of STMs that

implement eager versioning, which create an undo log for

each write, perform writes as they are encountered (as op-

posed to during commits). If the transaction aborts, the up-

dates are rolled back to their original logged values. Shpeis-

man et al. [34] describe potential issueswith eager versioning

in a mixed mode SC setting. In our relaxed memory setting,

we show that these have natural explanations.
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Consider the following program.

atomica { if !y then x:=1; abort };
atomicb { if !y then x:=1 }; r:=x

|| x:=2;y:=1;q:=x

Under SC, the final value r=0 is considered to be problematic

[34, Figure 3a] since it follows from a scenario in which the

non-transactional write ⟨Wx 2⟩ is lost, known as a speculative
lost update. Assuming SC, suppose transaction a executes its

write to x , then second thread executes its first two writes.

Since transaction a aborts, the write to x would be rolled

back to 0. Transaction b would then skip over the update to

x (because it now observes y = 1). This allows r = q = 0.

In our setting, the final value q = 0 is immediately disal-

lowed by HBbase and Causality. Moreover, the first thread

may read either 0 or 2 for x , whereas the second thread must

read 2 for x , i.e., non-transactional write ⟨Wx 2⟩ is not lost.

a:Ry0 Wx 1 b:Ry1 Rx 0

Wx 2 Wy1 Rx 2
lww lwr

The scenario above may also result in executions such as:

a:Ry0 Wx 1 b:Ry0 Wx 1 Rx 2

Wx 2 Wy1 Rx 1
lww lwr lwr

where transaction a successfully writes ⟨Wx 1⟩. Again, the
non-transactional write ⟨Wx 2⟩ is available for the final reads
in both threads.

Example 3.5. Analogous to eager versioning is a class of

STMs that implement lazy versioning that cache writes lo-

cally within a transaction and update shared memory dur-

ing a transaction’s commit operation. Shpeisman et al. [34]

discuss potential problems with lazy versioning in a mixed-

mode setting. We consider the most interesting of these

below.

Suppose z is an array in the program below.

atomica { r:=x;x:=42 }; r1:=z[r ]; r2:=z[r ]; z[r ]:=0
|| atomicb {q:=x; if q , 42 then z[q]:=z[q] + 1 }

The first thread atomically caches x and privatizes it by

setting it to a special value (denoted here by 42). From a

programmer’s perspective z[r ] should not be read by other

threads. However, in a lazy-versioning STM, transaction b
may have been serialized before transaction a, yet contain
a buffered write to z[q]. Thus, the reads of z[r ] may race

with the buffered write to z[q]. A consequence of this is the

execution below, where the two reads of z[0] return different

values.

a:Rx 0 Wx 42 Rz[0]0 Rz[0]1 Wz[0]0

b:Rx 0 Rz[0]0 Wz[0]1

crw lwwlrw lwr

The final outcome r1 , r2 is considered problematic in [34].

This outcome is disallowed by any variant of our model that

includes Antirw (Example 2.3).

By Antiww, the execution becomes inconsistent if we

reverse the
lww

order above. Thus, the outcome z[0] , 0

is forbidden by our model. This outcome is also considered

problematic in [34].

4 Local Transactional Race Freedom
We introduce the concepts behind localising data race free-

dom (LDRF [9]) by example. Consider the program:

x:=1;y:=1; atomica { F:=1 }; z:=1
|| y:=2; atomicb { r:=F }; z:=2; if r then w:=x + y − y

Consider the case where b reads F from a, as depicted below.
We leave the write-to-write orders and the values of the last

four actions of the second thread unspecified.

Wx 1 Wy1 a:WF 1 Wz1

Wy2 b:RF 1 Wz2 Rx Ry Ry Ww
cwr

There are write-write races between ⟨Wy1⟩ and ⟨Wy2⟩, and
between ⟨Wz1⟩ and ⟨Wz2⟩. By some definitions of race, the

write ⟨Wy1⟩ is also racing with the two reads of y. Thus, a
global notion of race-freedom does not allow one to conclude

anything about this program. A localised notion, however,

would allow one to deduce that ⟨Wx 1⟩ is correctly published
to the second thread. Moreover, the two reads of y must see

the same value and hence, the value written tow must be 1.

LDRF is defined relative to (1) a set Σ of traces, generated

by the semantics of a program, (2) a set L of locations, and (3)

a trace σ ∈ Σ, denoting a partial execution. For the example,

Σ is fixed by the program. Let L = {x,y, F }. A race is an

L-race if it involves a location in L; thus the race between
⟨Wz1⟩ and ⟨Wz2⟩ is not considered an L-race.
Now consider the trace σ = ⟨Wx 1⟩⟨Wy1⟩⟨a:B⟩⟨WF 1⟩

⟨Ca⟩⟨Wy2⟩⟨b:B⟩⟨RF 1⟩⟨Cb⟩ that linearizes the execution

above. This σ contains an L-race between ⟨Wy1⟩ and ⟨Wy2⟩.
Nonetheless, σ is L-stable for Σ because there is no σρ ∈ Σ
that includes an L-race between any action of σ and an action

of ρ. It is important to note the definition of stability is

relative to the set Σ. Trace σ is stable for this program, but

would not be stable if, for example, the program is modified

so that the first thread reads y after writing z:=1.
Having fixed σ, we now consider the L-sequential exten-

sions of this prefix. These extensions are constrained to obey

the sequential semantics for locations in L. Extensions that
do not touch L, such as the writes to z, are unconstrained.
The SC-LDRF theorem says that either every extension

of σ is L-sequential, or there is some L-sequential extension
with an L-race. Since no L-sequential extension has a race,

the program must behave sequentially from σ, guaranteeing
that the read of x sees 1, that the two reads of y see the same

value, and thus that the value written forw is 1.

The use of L in the definitions serves as an obvious spatial

bound on races. The temporal bounds are less direct: By

semantic fiat, future races can be ignored, since reads cannot

see the future. By L-stability, past races are also excluded.
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FromD to T. Locations used to store data are often disjoint

from locations used to perform synchronization. In TRF, a
single location may serve both purposes. This is the chief

difficulty in extending LDRF to LTRF. Consider the program
x:=1; atomic { x:=2 } || atomic { r:=x } with executions:

(1)

a:Wx 1 b:Wx 2

c:Rx 1
wr crw (2)

a′:Wx 1 b ′:Wx 2

c ′:Rx 2
cwr

Since
wr

only creates happens-before order between com-

mitted transactions, there is a race in execution (1) but not (2).

Consider the linearizations in which the read occurs last in

the trace. We analyze by setting L = {x}. In trace abc , c is
not L-sequential, whereas in a′b ′c ′, c ′ is L-sequential. In the

SC-DRF theorem of [9], it is required that whenever there is

a nonsequential racy read at the end of trace, such as c , we
must be able to find a trace with a sequential read, such as

c ′, that preserves the race. But here, this is impossible.

Note, however, that ac is L-sequential and has an L-race.
In generalizing the SC-DRF theorem of [9] to mixed accesses,

we must consider such prefixes. When transactional and

plain accesses are disjoint this is not necessary, since well-

formedness already guarantees sequential order between

transactions. But well-formedness does not constrain inter-

actions between transactional and plain access.

Intuitively, [9] proves that data races can be discovered

by sequential reasoning. In the case of transactions, this is

not enough. We must also have that all data races can be

discovered by executing transactions one-at-time. To achieve

this, we generalize the theorem to allow permutations that
preserve order while ensuring that all actions of a transaction
are contiguous in the trace.

L-Races. Two actions are in L-conflict if they both access

the same x ∈ L, at least one is plain, at least one is a write,
and neither is aborted.

We say that (b, c) is an L-race if b and c are in L-conflict
and b index

−−−−→ c , but not b hb
−−→ c . Two transactional actions

cannot be in a race.

In global DRF, conflicting actions must be ordered by
hb
−−→;

local DRF additionally constrains the direction of the order.

This captures one form of temporal locality: future actions

cannot causally affect the past.

L-Sequentiality and L-Stability. For L ⊆ Loc, we say that

c is L-sequential if c does not touch any location in L, or if c
is a B, C, or A action, or if we have both of the following:

1. there is no b index
−−−−→ c such that c ww b, and

2. if a wr c then there is no b index
−−−−→ c such that a ww b.

Condition (1) applies when c is a write; it ensures that the
timestamp chosen for c is larger than all preceding times-

tamps. Condition (2) applies when c is a read; it ensures that
c reads from the preceding write with the largest timestamp.

An action that is not L-sequential is L-weak. Any L-weak
action participates in an L-race: for writes, this follows from
Coherence; for reads, from Observation.

Let Σ be a set of traces. A trace σ is L-stable for Σ if for

every L-sequential ρ such that σρ ∈ Σ, there is no a ∈ σ and

b ∈ ρ such that (a,b) is an L-race.

Transactional L-Sequentiality and L-Stability. Transac-
tion b is contiguous if ⟨b:sB⟩ index

−−−−→ ⟨c:t ⟩ and s , t imply that

either ⟨Cb⟩ index
−−−−→ c , ⟨Ab⟩ index

−−−−→ c , or there are no actions of
s after c , i.e., c index

−−−−→ ⟨d :s ′⟩ implies s , s ′.
Note that contiguity allows multiple live transactions.

A trace is transactionally L-sequential if every action is

L-sequential and every transaction is contiguous.

A trace σ is transactionally L-stable for Σ if it is L-stable
for Σ, every transaction is both contiguous and resolved, and

there is no β ∈ σ, σρ ∈ Σ, and α ∈ ρ such that α touches a

variable in L and α xrw β .
The last condition ensures that a stable state is “future

proof” by making all new conflicting transactions serialize

afterwards.

Closure Conditions on Programs. The SC-LTRF theorem
requires that we relate an arbitrary execution to one that

is transactionally L-sequential. To ensure that such an exe-

cution exists, we assume that the semantics of programs is

closed under certain operations.

We first give some preliminary definitions.

Let
act
∼ relate actions with the same thread and location:

⟨a:sWxvq⟩
act
∼ ⟨a′:s ′Wx ′v ′q′⟩ if a = a′, s = s ′ and x = x ′

⟨a:sRxvq⟩ act
∼ ⟨a′:s ′Rx ′v ′q′⟩ if a = a′, s = s ′ and x = x ′

A set Σ of traces is sequentially-closed if whenever a trace

σα ∈ Σ includes a Loc-weak action α , there exists a Loc-
sequential action α ′ act

∼ α such that σα ′ ∈ Σ.
For a ∈ σ, let σ ↓ a be the subsequence of σ obtained by

removing all the events that causally follow a:

b < (σ ↓ a) iff a (
hb
−−→∪ lwr ∪ xrw )+ b

We say that a set of traces Σ is causally closed iff for any

σ ∈ Σ, for any a ∈ σ, σ ↓ a ∈ Σ.
Intuitively, σ ↓ a removes “causal upclosure” of a from σ.

Significantly, if (b,α) is an L-race in σα , then b ∈ σα ↓ α .
This property does not hold for the “causal downclosure.”

For any consistent trace σ, we say that ρ is an order-
preserving permutation of σ if ρ is a well-formed permutation

of σ and
po
−−→ρ =

po
−−→σ .

If a trace is consistent, then any order-preserving permu-

tation is also consistent, since the derived orders coincide.

In addition, any consistent trace has an order-preserving

permutation with contiguous transactions. We say that Σ is

valid as the semantics of a program if (1) every σ ∈ Σ is con-

sistent, (2) Σ is sequentially closed, (3) Σ is causally closed,

and (4) Σ is closed under order preserving permutation.
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SC-LTRF. With these definitions, our theorem is as follows.

The theorem establishes that any L-race can be discovered

by a sequential trace with contiguous transactions.

Theorem 4.1 (SC-LTRF). Fix Σ to be the semantics of a pro-
gram. Fix σρα ∈ Σ such that

• σ is transactionally L-stable,
• ρ is transactionally L-sequential in σρ,
• ρ has no L-races in σρ, and
• α is L-weak in σρα .

Then, there are b ∈ ρ, α ′ act
∼ α and σρ ′α ′ ∈ Σ such that:

• ρ ′α ′ is transactionally L-sequential in σρ ′α ′, and
• (b,α ′) is an L-race in σρ ′α ′.

With respect to the SC-LDRF theorem in [9], the SC-LTRF

result differs in that we allow ρ ′ , ρ and use the transactional
variants of L-stability and L-sequentiality, which require

that we only consider traces with contiguous transactions.

In an L-stable trace, all transactions must also be resolved.

In the degenerate case, with only contiguous committed

singleton transactions, the definitions of SC-LDRF and SC-

LTRF coincide.

For example, consider the (IRIW) program from the intro-

duction. Reasoning sequentially, we know that we cannot

read 1 followed by 0 in both threads. SC-LDRF validates this

reasoning for concurrent executions. Likewise, the publica-

tion and privatization examples from the introduction have

the expected behavior. As a further example in this vein,

consider the following program.

atomica { if !y then while x do skip }
|| atomicb {y:=1 };x:=1

If it is possible for a to read 0 for y and then 1 for x , then
a becomes a doomed transaction, which can never commit.

By sequential reasoning, this is impossible, and therefore, by

SC-LTRF, it is impossible in our model.

It is worth emphasizing that the SC-LTRF theorem in-

cludes aborted and live transactions, and thus guarantees

opacity. In addition, the following result shows that aborted

transactions can be ignored.

Theorem 4.2. If σ is consistent then so is σ with aborted
transactions removed.

5 Implementation Model
An optimization is valid as long as it creates no new be-

haviors. As noted in §2, LDRF disables reads from being

reordered with later writes. Thus we cannot transform r:=z;
x:=1 to x:=1; r:=z. Unfortunately, the reverse transformation

also fails in our programmer model, due to the order created

by HBww. Consider the following variant of privatization:

z:=1; atomica { if !y then x:=1 }
|| atomicb {y:=1 };x:=2; r:=z

The second thread must read ⟨Rz1⟩. If not, we would obtain

the following execution, which is disallowed by Observa-

tion.

Wz1 a:Ry0 Wx 1

b:Wy1 Wx 2 Rz0
crw

lww
(‡)

Note that ⟨Wx 2⟩ ww ⟨Wx 1⟩ is ruled out by Antiww,

and so we must have ⟨Wx 1⟩ ww ⟨Wx 2⟩, as shown. By
HBww, we have ⟨Wx 1⟩ hb

−−→ ⟨Wx 2⟩, and thus by transitivity,

⟨Wz1⟩ hb
−−→ ⟨Rz0⟩. Observation rules out the execution,

since ⟨Rz0⟩ rw ⟨Wz1⟩.
However if we replace “x:= 2; r :=z” by “r :=z;x:= 2” in

the program above, then the second thread may read ⟨Rz0⟩,
since we no longer have ⟨Wz1⟩ hb

−−→ ⟨Rz0⟩. The resulting
allowed execution shows that the optimization is not valid:

Wz1 a:Ry0 Wx 1

b:Wy1 Rz0 Wx 2
crw

lww

In this section, we consider an “implementation” model

that removes HBww. Since HBww is designed to allow non-

racy privatization, it should not be surprising that privati-

zation is racy in the implementation model. To enable the

removal of such races, we add the new action ⟨sQx⟩ to model

a quiescence fence [36] for thread s on location x .
Note that our implementation model is still fairly abstract.

We assume that the underlying transactional machinery pro-

vides order between transactions that have a direct depen-

dency, as in the publication idiom. Quiescence fences are

necessary only to provide order when there is no direct de-

pendency, as in the privatization idiom.

α ::= · · · | ⟨a:sQx⟩ (Quiesence fence)

A quiescence fence ⟨Qx⟩ may not be interleaved with a

transaction that touches x . We therefore add the following

requirement to well-formedness:
WF12. If ⟨b:B⟩ index

−−−−→ ⟨Qx⟩ then either ⟨Cb⟩ index
−−−−→ ⟨Qx⟩,

⟨Ab⟩ index
−−−−→ ⟨Qx⟩ or b neither reads not writes x .

In addition, quiescence fences create order. In the definition

of happens-before, we replace HBww by the following.

⟨a:Cb⟩ hb
−−→ ⟨c:Qx⟩ if a index

−−−−→ c and b touches x (HBCQ)

⟨c:Qx⟩ hb
−−→ ⟨b:B⟩ if c index

−−−−→ b and b touches x (HBQB)

Because we have removed HBww, we also drop Antiww from

the definition of a consistent execution. The remaining defi-

nitions are unchanged in the implementation model.

Relating implementation and programmermodels. The
implementation model allows executions that are not al-

lowed by the programmer model. Since Antiww is removed,

Example 2.2 is allowed in the implementation model; how-

ever, there is no matching execution in the programmer

model: If a precedes b, then the read of a is invalidated by
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Observation. If b precedes a, the write-to-write order is

invalidated by Coherence. Since HBww is removed, (‡) is

allowed in the implementation model; however, there is no

matching execution in the programmer model: If a precedes

b, then the read of z is invalidated by Observation. If b
precedes a, then the read of y is invalidated by WF10.

We say that σ has a mixed race if there is some L ⊆ Loc
such that σ includes an action in an L-race between a trans-

actional write and a plain write.

The following lemma establishes that the implementa-

tion and programmer models coincide for programs without

mixed races. Therefore, for mixed-race free programs in the

implementation model, SC-LTRF holds. Khyzha et al. [22]

establish a similar result for global TRF.

Lemma 5.1. Let σ be an execution in the implementation
model without mixed races. Let ρ be the induced execution in
the programmer model obtained by dropping all the quiescence
fences in σ. If σ is consistent, then so is ρ.

Suborders. The quiescent fence ⟨Qx⟩ has the same order-

ing properties as a committed transaction that writes x :
⟨a:B⟩⟨Qx⟩⟨Ca⟩. For the purpose of studying compiler op-

timizations, we encode quiescent fences thusly as writing

transactions. With this convention, we do not mention ⟨Qx⟩
explicitly in the following development. The treatment fol-

lows [9] closely, including much of the notation and proofs.

We need only adapt their definitions to work up to
tx
∼.

Let TAct = {⟨B⟩, ⟨C⟩, ⟨A⟩}. Define the following subsets

of
po
−−→ \ (Act × TAct ∪ TAct × Act), i.e., the portion of

po
−−→

that does not involve the transactional boundaries. In the

following definitions, we quantify universally over a,b ∈

Act \ TAct; all other actions are quantified existentially.

We say action a conflicts with b iff they access the same

location at least one of a or b is a write.

a po-T
−−−→ b iff a po

−−→ b,a ̸
tx
∼ b,b

tx
∼ ⟨B⟩, and b tx

∼ ⟨W⟩

a poT-
−−−→ b iff a po

−−→ b,a ̸
tx
∼ b, and a

tx
∼ ⟨B⟩

a poTT
−−−−→ b iff a poT-

−−−→ b and a po-T
−−−→ b

a poRW
−−−−−→ b iff a po

−−→ b,a = ⟨R⟩, and b = ⟨W⟩

a poCon
−−−−−→ b iff a po

−−→ b and a conflicts with b

The relations
po-T
−−−→, poT-

−−−→, poTT
−−−−→ do not relate actions from

the same transaction.
po-T
−−−→ is that subset of

po
−−→ that ends in

a transactional action of a writing transaction;
poT-
−−−→ is the

subset of
po
−−→ that begins in a resolved transactional action;

whereas
poTT
−−−−→ is the subset of

po
−−→ that begins and ends in

transactional actions with target being a writing transac-

tion. The targets of relations
poTT
−−−−→ and

po-T
−−−→ are restricted

to transactions that contain a write action; this restriction

mirrors the treatment of read actions of volatiles in [9] and

ensures that read-only transactions have greater flexibility

in commuting earlier in program order.
poRW
−−−−−→ is that subset

of
po
−−→ between reads and writes, not necessarily of the same

location.
poCon
−−−−−→ restricts

po
−−→ to conflicting actions.

In the supplementary material for this paper, we describe

an equivalent definition of consistency that uses only these

suborders instead of the full
po
−−→. This characterization of

consistency is useful for proving the correctness of the opti-

mizations enumerated in the next subsection.

Compiler optimizations. Consider a program transforma-

tion P � Q , where Q is a program obtained from P by re-

ordering its statements. To validate the transformation, for

any execution ρ of Q , we must associate a corresponding

execution σ of P . We consider three flavors.

In the first method, the transformation is correct if there

is no change in transactional actions, and

(
po-T
−−−→σ,

poT-
−−−→σ,

poTT
−−−−→σ,

poRW
−−−−−→σ,

poCon
−−−−−→σ )

= (
po-T
−−−→ρ ,

poT-
−−−→ρ ,

poTT
−−−−→ρ ,

poRW
−−−−−→ρ ,

poCon
−−−−−→ρ )

This allows, for example, the reordering of independent

writes and of independent reads. Dolan et al. [9] show how

to prove the validity of some peephole optimizations using

this flexibility: redundant load, store forwarding, dead store

elimination, common subexpression elimination, constant

propagation and loop invariant code motion. We show that:

P; atomic {Q } � atomic {Q }; P

if Q is read-only, P is write-only and there are no conflicts

between P,Q . For correctness, note that
poTT
−−−−→ and

po-T
−−−→

relations do not target read-only transactions. The absence

of conflict between P,Q ensures the preservation of
poCon
−−−−−→.

Moreover,
poRW
−−−−−→ is preserved because P is write only.

Secondly, we validate transformations, such as the roach

motel optimization, where the only change is increase in the

scope of transactions; i.e, when P andQ are nontransactional:

P; atomic { R };Q � atomic { P;R;Q }.

Given ρ from atomic { P;R;Q }, we establish the consistency

of the corresponding σ from P; atomic { R };Q by showing

that all relevant orders of σ are contained in those of ρ.
Thirdly, we validate the fusion of adjacent transactions:

atomic { P }; atomic {Q } � atomic { P;Q }.

Given ρ from atomic { P;Q }, we build σ for atomic { P };
atomic {Q } by adding two adjacent transactional events. On

the other hand, the converse transformation is not validated.

This is because we need to remove the two extra events to

build a witness execution of atomic { P;Q } from a given

execution of atomic { P }; atomic {Q }. These events are not

necessarily adjacent; so, the validity of the constructed exe-

cution cannot be established in general.

We can similarly establish that empty transactions can be

elided, i.e.,

P; atomic{};Q � P;Q .
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6 Compilation
Dolan et al. [9] show that the LDRF memory model can be

compiled efficiently to both x86-TSO and AArch64/ARMv8.

Compilation of LDRF to x86-TSO requires no additional

fencing. Therefore non-volatile reads/writes execute with

native performance.

Because ARMv8 allows load buffering (which is disallowed

by LDRF), compilation to ARMv8 requires some fencing,

even for non-volatile reads/writes. [9] discusses two com-

pilation schemes and studies their performance on several

benchmarks with differing patterns of access. The perfor-

mance penalty is 2.5% for one compilation strategy and 0.6%

for the other. These results demonstrate that non-volatile

access is not appreciably slowed by the insertion of fences

to prevent load buffering.

The compilation results for plain variables carry over to

our model, which differs from [9] primarily in the style of

synchronization: [9] uses volatile variables, whereas we use

transactions. In both x86-TSO and ARMv8 models, there are

fences before and after successful transactions (see [6]), mak-

ing the fencing behavior similar to that of volatile variables.

Both x86-TSO and ARMv8 validate our implementation
model, assuming we include fences to prevent load-buffering

in ARMv8, as described above.

In x86-TSO,
crw

order is included in
hb
−−→. Thus, it is

straightforward to establish that x86-TSO validates even the

strongest variant of our programmer model, which includes

HBww, HBrw, HBwr and their prime variants. Like our pro-

grammer model, x86-TSO validates privatization (Example

2.1). Like models that include Anti
′
rw

, x86-TSO imposes pub-

lication by antidependence (Example 3.1). Neither of these

examples require quiescent fences on x86-TSO.

It is not immediately obvious whether ARMv8 realizes our

programmer model. In ARMv8,
ob
−−→ plays the role of

hb
−−→. The

crw
relation is included in

ob
−−→ when the source and target

come from different threads, known as external from-read.
As a result, ARMv8 gives the same strong result as x86-TSO

for Examples 2.1 and 3.1.

We expect that software transactional memories will re-

alize the implementation model of §5, rather than the pro-
grammer model. As a result, it will be necessary for either

the programmer or compiler to insert quiescent fences in

order to realize our programmer model. Our results provide

a correctness criterion: when are there sufficient fences to

guarantee the absence of data races in the implementation
model. As we discuss in §7, our work on placing quiescent

fences is compatible with, and builds on, the extensive liter-

ature exploring this topic.

7 Related Work and Conclusions
Transactions [12, 18, 33] are motivated by the issues that

arise with lock-based programming. See [14, 16, 17, 23] for

textbook-style presentations. Hardware transactional models

that integrate with relaxedmemory are available for Pentium,

Power and armV8 (in design) [5, 6, 10]. Software transac-

tional memory achieves transactional guarantees limitations

of the “bounded” and “best-effort” hardware transactional

model, e.g., the C++ design of transactions [29] in C11 [4],

Haskell transactions in GHC 6.4, experimental designs for

Java [20] and C# [2].

Inspired by Dalessandro et al. [7] and Grossman et al. [13],

we use memory orders to integrate transactions into the

relaxed memory model of Dolan et al. [9].

In order to permit compiler optimizations, the LDRFmodel

of [9] is more liberal than sequential consistency. Yet it es-

chews the speculative reads found in many models [19, 21,

25]. There is a rich design space for such “intermediate” mod-

els. Ou and Demsky [30] includes a survey of this work.

Transactional sequential consistency is similar to the the

strong semantics [1], StrongBasic semantics [28], strong iso-

lation [17], and transactional memory with store atomicity

by [24]. Opacity [15, 16] and TMS2 [8] treat aborted transac-

tions in this context (see [11] for a survey).

Our model of SC-TDRF replaces the global real-time order

by memory orders. We exploit the LDRF framework [8] to

achieve a modular form of LTRF that is insensitive to races

that are spatially and temporally isolated from the trans-

actions under consideration. LDRF is defined operationally

in [9], using machine states. We give an axiomatic account.

The two approaches are equivalent if every machine state is

derivable from the initial state.

Our results in §5 show that our model does not suffer from

“optimization obstruction” [35]. Prior work, e.g., [22, 34, 35],

requires that programmers place quiescence fences in order

to guarantee safe privatization. Our low level model illus-

trates the correctness criteria for such techniques.

In Spear et al. [35], transactions can optionally be marked

with annotations corresponding to publishing/privatizing

transactions. The weakest ordering
sfs
−−→ in [35] is the smallest

transitive relation that includes transactional ordering and

ensures that a sfs
−−→ c in the cases when: (1) a is an acquire

transaction, a po
−−→ c , and a ̸

tx
∼ c , or (2) there is some release

transaction b such that a po
−−→ b and either b lwr c or a

is transactionally ordered before c . There are two kinds of

fences in the implementation level model of §5, namely the

explicit quiescence fences ⟨Qx⟩, and the implicit memory

fences arising from our transactional abstraction. In each

case, we can deduce a sfs
−−→ c , thus showing that our require-

ments for synchronization are no stronger than those of [35].

Our treatment of the implementation model is inspired by

Khyzha et al. [22]. They divide actions into request/response

pairs such that transactional response actions may abort. Our

treatment ismore abstract.We record all failed requests using

a single abort action. Our commit action corresponds to the

commit request in [22]. All of our other actions correspond

to a response in [22].
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A Proof of SC-LTRF Theorem
We begin with an example to explain the last condition in

the definition of transactional L-stability.

Example A.1. Recall the definition of transactionally L-sta-
bility: A trace is transactionally L-stable for Σ if it is L-stable
for Σ, every transaction is both contiguous and resolved, and

there are no σρ ∈ Σ, β ∈ σ, and α ∈ ρ such that α touches a

variable in L and α xrw β .
To see the need for the last requirement, consider the

following consistent execution:

Wx 1 a:Wx 2

b:Rx 1 Wy1
wr crw

Take L = {y} and consider the execution in σ contains the

top thread, ρ contains the read of the bottom thread, and α
is the write. Ignoring initialization, we have σ = ⟨sWx 1⟩
⟨a:sB⟩ ⟨sWx 2⟩ ⟨sCa⟩, ρ = ⟨b:tB⟩ ⟨tRx 1⟩, and α = ⟨tWy1⟩.
This particular decomposition invalidates the theorem,

since we must remove a from σ in order to linearize b, yet a
occurs in σ.
The last requirement forbids this decomposition. In con-

sidering the trace where a occurs before b, we must include

a in ρ, not σ.

In order to prove the theorem, we first establish several

lemmas. The first two concern causal closure. Recall that

σ ↓ a is the subtrace of σ that discards all causal dependents

of a, defined as:

b < (σ ↓ a) iff a (
hb
−−→∪ lwr ∪ xrw )+ b

In the rest of the appendix, we use the notation σ ↓ρ to stand

for:

b < (σ ↓ ρ) iff (∀a ∈ ρ) a (
hb
−−→∪ lwr ∪ xrw )+ b

It is immediate that σ ↓ ρ is invariant under permutations of

ρ.
Note that a ∈ σ ↓ a. In the case where a is transactional,

the effect of σ ↓a is to remove all the dependent transactions

that read from the transaction, and also the anti-dependent

transactions. Thus, for any transactional b
tx
∼ a that is a read,

there are no transactional conflicting writes in σ ↓ a with a

later timestamp.

The first lemma shows that σ is included in σρα ↓α when-

ever it is stable.

Lemma A.2. Suppose σ is transactionally L-stable ρ is trans-
actionally L-sequential in σρ, and α touches a location in L.
Then σ is a prefix of σρα ↓ α .

Proof. We show that for all b ∈ σ

¬(α (
hb
−−→∪ lwr ∪ xrw )+ b)

It suffices to prove ∀c ∈ σρα , if a ∈ σ is such that

c ( hb
−−→∪ lwr ∪ xrw ) a,

then c ∈ σ. We proceed by cases:

• c xrw a. By the assumption that ρ is transaction-

ally L-sequential. (This requires the assumption that

α touches a location in L.)
• c lwr a. Since σ is a prefix of σρα , the result follows
by WF8.

• c hb
−−→ a. There are two sub cases.

– c hb
−−→ a by item HBbase. The required result follows

by WF9–WF11.

– c hb
−−→ a by item HBww. The required result follows

by transactional L-stability of σ. □

The next lemma establishes that causal closure preserves

transactional L-sequentiality.

Lemma A.3. Suppose σ is transactionally L-stable ρ is trans-
actionally L-sequential in σρ, and α touches a location in L.
Then σρα ↓ α = σρ ′α , where ρ ′α is transactionally L-sequen-
tial in σρ.

Proof. If α < σ, then the result is trivial, since σ↓α = σ. Thus,
assume α ∈ σ. Using the Lemma A.2, we know that σρα ↓ α
includes σ. Thus we can fix ρ ′ so that σρα ↓ α = σρ ′α .
First, we show that σρ ′α is well-formed. WF1–WF5, and

WF7–WF8 follow from the well-formedness of σ.WF6 follows

since π ↓ α is closed under the predecessors of
lwr

, for any

π . WF9 and WF10 follow since, π \ (π ↓ α) is closed under
tx
∼.

WF11 follows, since it is preserved under removal of actions.

Consistency of σρ ′α follows from the consistency of σρα
since all relations on σρ ′α are subrelations of σρα .

Transactional L-sequentiality of σρ ′α follows from trans-

actional L-sequentiality of σρα . □

The next lemma establishes that that any L-weak action

participates in an L-race. The proof mirrors the last two para-

graphs of the proof theorem 13 of [9]. Instead of reasoning

operationally, we use the consistency axioms Coherence

and Causality.

Lemma A.4. Suppose σ is L-stable, ρ is L-sequential and
σρ⟨c⟩ ∈ Σ. If c is L-weak then there exists some b ∈ ρ such
that (b, c) is an L-race.

Proof. Suppose c is L-weak. Then, there exists a write action
b index
−−−−→ c such that either

• c ww b, or
• a wr c and a ww b; thus, c rw b.

If b hb
−−→ c , we have a contradiction, either because

• c ww b contradicts the irreflexivity of (
hb
−−→;

lww ), or

• c rw b contradicts the irreflexivity of (
hb
−−→;

lrw ).

So, (b, c) is an L-race. Further, b cannot be in σ since σ is

L-stable; therefore, b must be in ρ, as required. □

The next lemma says that every execution has an order-

preserving permutation with contiguous transactions. The

proof formalizes the following argument: All the ordering
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between transactional actions is reflected in the causality

order. Furthermore, two actions in the same transaction are

treated identically by the causality order. Consequently, since

the causality order is acyclic, we can use a linearization of it

to achieve contiguity in transactions.

Lemma A.5. Let Σ be the semantics of a program, and fix
σρ ∈ Σ. Suppose that all transactions of σ are contiguous and
no transactions of σ are live in σ. Then there exists an order-
preserving permutation σπ of σρ such that σπ ∈ Σ and σπ
has contiguous transactions.

Proof. By Causality, (
hb
−−→ ∪ lwr ∪ xrw ) is acyclic. Thus,

we can extend (
hb
−−→∪ lwr ∪ xrw )∗ to a total order over the

actions of σρ. Fix such a total order (with the initializing

begin transaction as minimal element), and let R be the sub-

order that includes only nontransactional actions and begin

actions. We extend R to a total order over the actions of σρ
as follows. Define a ⊴ b when one of the following holds:

a ∈ σ ∧ b ∈ ρ (1)

a
tx
∼ a′ R b ′

tx
∼ b (2)

a
tx
∼ b ∧ a index

−−−−→σρ b (3)

Condition (1) ensures that the actions in σ are ordered be-

fore those in ρ. Condition (2) ensures that the actions in a

transaction of σρ are treated identically by ⊴ with respect

actions outside the transaction—recall that
tx
∼ relates each

nontransactional action to itself. Condition (3) forces order

within a transaction of σρ to coincide with the order from

index
−−−−→σρ .

It is clear that ⊴ induces a total order on the actions σρ
with contiguous transactions. Supposing that the trace or-

dered by⊴ is well formed, then it trivial to show that it is con-

sistent, since no orders are changed. Because the semantics

of a programmust be closed with respect to order-preserving

permutation, we further have that the trace belongs to Σ.
Thus, to prove the lemma it suffices to show that the trace

ordered by ⊴ is well-formed. We consider each of the well-

formedness criteria given in §2.

WF1 follows from the choice of R.
WF2–WF4 and WF6–WF7 follow from the well-formedness

of σρ.
WF5 holds due to well formedness of σρ and (3).

If both actions are nontransactional, WF8 follows from

well-formedness of σρ. If both are transactional, it follows

because
cwr

is included in
hb
−−→. Suppose the write is transac-

tional and the read is not. Then the begin is ordered with re-

spect to the read in the lifted relation
lwr

. Using (2) and (3),

the result holds. The argument is symmetric for the case

where the read is transactional and the write is not.

For WF9, if a,b are conflicting transactional writes, then

a hb
−−→ b or b hb

−−→ a. In the former case, a ⊴ b, by definition

of R. The case for b hb
−−→ a is symmetric.

For WF10, let a,b be conflicting transactional writes such

that a ww b and let a wr c . Thus, c rw b. Since c is also

transactional we have c xrw b. Thus, c ⊴ b by the definition

of R.
For WF11, let b be transactional and a wr b and a ww c

and c
tx
∼ b. If c ⊴ b, then c index

−−−−→ b contradicting WF11 on

σρ. □

The next lemma shows that races are preserved by delay-

ing the timestamp of writes. The intuition is that delaying

the timestamp of a write can only decrease happens before.

Note that only the timestamp of the last write is increased,

and since timestamps are rationals, it is straightforward to

change a timestamp so that the execution under considera-

tion remains consistent.

The key step in the proof is the inductive case for HBww,

which requires Antiww.

Lemma A.6. Let σ = πα be a consistent execution such that
(β,α) is an L-race in σ between two writes. Let ρ = πα ′ where
α ′ act

∼ α and α ′ has a later timestamp.
Then ρ is a consistent and (β,α ′) is an L-race in ρ.

Proof. Since ρ = πα ′
and a hb

−−→ρ c implies a index
−−−−→ρ c , it is

not possible that α ′ hb
−−→ρ c or α hb

−−→σ c . We call this property

Terminal.
We show that a hb

−−→ρ c implies a hb
−−→σ c , for any a, c .

The proof proceeds by induction on the definition of
hb
−−→.

The empty relation satisfies the hypothesis. For the inductive

step, we have three cases. If a hb
−−→ρ c and α ′ , c , then a hb

−−→π
c and therefore a hb

−−→σ c . Thus, we need only consider cases

where α = c .

• For HBbase, note that
init
−−−→σ =

init
−−−→ρ and

po
−−→σ =

po
−−→ρ .

If α ′
is transactional, then, by construction, α must

also be transactional. In this case, using Terminal, we
deduce that

cwr
σ =

cwr
ρ . Since α and α ′

are transac-

tional writes on the same variable, using Terminal, we
deduce that

cww
σ =

cww
ρ . If α

′
is nontransactional,

then modifying the timestamp of α has no effect on

any of the relations in HBbase.

• HBtrans follows immediately by induction.

• For HBww, suppose that a and b are nonaborted and

transactional, α ′
is plain, a lww

ρ α ′
, a crw

ρ b and

b hb
−−→ρ α ′

.

We have a crw
π b and therefore a crw

σ b.
Since α

act
∼ α ′

, we know that α and α ′
have the same

name. Applying the induction hypothesis to b hb
−−→ρ α ′

,

we have b hb
−−→σ α .

Note that the timestamp of α cannot be less than that

of a. If this were the case, then we would also have

that the timestamp of α is less than that of a, and we

would have α lww
σ a and a crw

σ b hb
−−→σ α . Thus, σ

would fail to be consistent by Antiww.

Since the timestamp of α must be greater than that

of a, we have a lww
σ α . Thus, by HBww, we have as

a hb
−−→σ α required.

Well-formedness of ρ is immediate.
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Consistency of ρ follows from
hb
−−→ρ ⊆

hb
−−→σ , using the

consistency of σ.
The raciness of (β,α ′) in ρ also follows from

hb
−−→ρ ⊆

hb
−−→σ ,

using the from the fact that
hb
−−→ρ is included in

hb
−−→σ , using

the fact that (β,α) is an L-race in σ. □

The next lemma shows that races are preserved by delay-

ing the timestamp of some reads. The intuition again is that

delaying the timestamp can only decrease happens before.

The sole case when delaying the timestamp of a read can

actually increase happens before is when the read is transac-

tional and the newly matched write is also transactional. The

hypothesis of the following lemma rules out this problematic

case.

Lemma A.7. Let σ = πα be a consistent execution such that
(β,α) is an L-race in σ, β is a write and α is a read. Let ρ = πα ′

where α ′ act
∼ α and α ′ has a later timestamp.

Suppose that the writes satisfying α and α ′ are nontrans-
actional when α is transactional (and therefore α ′ is transac-
tional).

Then ρ is a consistent and (β,α ′) is an L-race in ρ.

Proof. The proof is similar to the proof of Lemma A.6.

For HBbase, the result follows since the writes matching

α,α ′
are not transactional when α and α ′

are transactional.

For rule HBww, the result follows since α and α ′
are not

writes. □

Lemma A.8. Fix Σ to be the semantics of a program. Fix
σρα ∈ Σ such that

• σ is transactionally L-stable,
• ρ is transactionally L-sequential in σρ, and
• ρ has no L-races in σρ.

Then, there is σρ ′α ∈ Σ such that
• ρ ′ is transactionally L-sequential in σρ ′,
• ρ ′α has contiguous transactions, and
• ρ ′ is an order-preserving permutation of a subsequence
of ρ.

Proof. If α is non-transactional or a begin action, setting

ρ = ρ ′ meets the requirements. Thus we suppose that α is

transactional, belonging to transaction a of thread s .
Let π = σρα ↓ a. Let ρ ′ be derived from π by permuting

the events of the open transaction a to the end.

This order preserving permutation establishes contiguity

of transactions in ρ ′α .
Next, we show that σρ ′α is well-formed. WF1–WF7 are

immediate.WF8 follows because the writes of a are only read
by actions of a by WF7. WF9 and WF10 follow because ρ ′ is
derived from π . WF11 is inherited from well-formedness of

σρα .
Finally, we show that ρ ′ is L-sequential in σρ ′. We proceed

by contradiction. There are two cases to consider. Let c be
an arbitrary action in ρ ′.

• c touches a location in L and there is a b index
−−−−→ c such

that c ww b. Since σρα is well formed, this can only

happen if c is in open transaction a and c was before
b in σρα .
We reason by cases based on whetherb is transactional.
– If b is transactional, c hb

−−→ b; so b < π .
– If b is not transactional. In this case, since b < π , we
deduce that ¬(c hb

−−→ b). So, since there are no data

races in ρ, we deduce that b hb
−−→ c which contradicts

Coherence of σρ.
• c touches a location in L, a wr c , and there is b index

−−−−→

c such that a ww b. We reason by cases based on

whether b is transactional.

– If b is transactional, c xrw b; so b < π .
– If b is not transactional. In this case, since b < π , we
deduce that ¬(c hb

−−→ b). So, since there are no data

races in ρ, we deduce that b hb
−−→ c which contradicts

Observation of σρ. □

We now turn to the theorem.

Theorem 4.1. Fix Σ to be the semantics of a program. Fix
σρα ∈ Σ such that

• σ is transactionally L-stable,
• ρ is transactionally L-sequential in σρ,
• ρ has no L-races in σρ, and
• α is L-weak in σρα .

Then, there are b ∈ ρ, α ′ act
∼ α and σρ ′α ′ ∈ Σ such that

• ρ ′α ′ is transactionally L-sequential in σρ ′α ′, and
• (b,α ′) is an L-race in σρ ′α ′.

Proof. By Lemma A.8, we can assume without loss of gener-

ality that σρα has contiguous transactions.

Choose b as follows. Since α is L-weak, by Lemma A.4, we

know that there is some b such that (b,α) is an L-race. By
the definition of stability, we know that b must occur in ρ.

Choose α ′
as follows. Since Σ is sequentially-closed, there

must be a L-sequential action α ′ act
∼ α such that σρα ′ ∈ Σ.

Choose ρ ′ as follows. By Lemma A.3, there is some ρ ′

such that σρα ↓ α ′ = σρ ′α ′
. Since Σ is causally-closed, we

know that σρ ′α ′ ∈ Σ. Since ρ ′ is a subsequence of ρ, all
transactions of ρ ′ are contiguous. By construction, using

LemmaA.3, we know that ρ ′α ′
is L-sequential inσρ ′α ′

. Thus,

ρ ′α ′
is transactionally L-sequential in σρ ′α ′

.

We need only show that (b,α ′) is an L-race. We proceed

by cases.

• Suppose that α is a B, C, and A action. This is not

possible since these actions are always L-sequential.
• Suppose that α is a write. The result follows from

Lemma A.6.

• Suppose that α is a non transactional read. The result

follows from Lemma A.7.

• Finally, suppose that α is a transactional read.

The write matching α must be nontransactional. Oth-

erwise WF10 guarantees that α would be L-sequential.



PPoPP ’19, February 16–20, 2019, Washington, DC, USA Brijesh Dongol, Radha Jagadeesan, and James Riely

The write matching α ′
must be nontransactional. Oth-

erwise it would follow α in
xrw

, and thus must have

been removed from the causal closure. (This case cor-

responds to executions illustrated at the beginning of

the paragraph labelled “From D to T” on page 8.)

Given that the fulfilling writes for α and α ′
are not

transactional, the hypotheses of lemma A.7 are satis-

fied, yielding the required result. □

B Aborted Transactions
Theorem 4.2. If σ is consistent then so is σ with aborted
transactions removed.

Proof. Let ρ be any well-formed and consistent trace. Then:

• ρ without a is well-formed in the case that a = ⟨R⟩ or
a = ⟨W⟩ and a is not the source of an

xwr
edge.

• by WF7, if a = ⟨W⟩ is in an aborted transaction, any

read of a is also in the same aborted transaction.

• ρ with ⟨B⟩ ( and any matching ⟨end⟩) removed is also

well-formed.

Let σ be a well-formed and consistent trace. Let us write

σ \ A for σ with aborted transactions removed. By above

observation, σ\A is well-formed. Consistency of σ\A follows

from the consistency of σ because the relations on σ \ A are

merely the restriction of those in σ to a subset of events. □

C Technical Development for §5
The intuition behind the proof of Lemma 5.1 is that the extra

explicit ordering in an implementation race free execution

compensates for the specified extra HBww and Antiww ax-

ioms in the programmer model.

Lemma 5.1. Let σ be an execution in the implementation
model without mixed races. Let ρ be the induced execution in
the programmer model obtained by dropping all the quiescence
fences in σ. If σ is consistent, then so is ρ.

Proof. Well-formedness of ρ is immediate.

Consistency of ρ follows if we can show that the orders

in ρ agree with those in σ. Thus, it suffices to show that σ
satisfies HBww and Antiww. We proceed as follows.

To showHBww, let c be plain, a
lww c , and a crw b hb

−−→ c
in σ. Then, by implementation race freedom, we must have

a hb
−−→ c , otherwise a and c would be racing.

To show Antiww, suppose a
crw b hb

−−→ c lww a in σ.
By implementation race freedom, we must have c hb

−−→ a.
However, this leads to a cycle in

crw ∪
hb
−−→, contradicting

the observation axiom of σ. □

Suborders We follow [9] in providing an alternate charac-

terization of
hb
−−→ in the implementationmodel. Recall that the

hb
−−→ relation in the implementation model does not include

HBww.

Let
swe
−−−→ = ( cwr ∪ cww ) \

po
−−→ be the external trans-

actional communication relation, which captures the basic

ingredients in the
hb
−−→ relation across threads, namely ex-

ternal transactional reads-from and external transactional

coherence.

Let
hbe
−−−→ = po-T

−−−→; (
swe
−−−→;

poTT
−−−−→)⋆;

swe
−−−→;

poT-
−−−→ be the exter-

nal component of
hb
−−→, which captures how synchronization

propagates across different threads.

These definitions provides a clean decomposition of hb.

Lemma C.1 (Characterizing hb). hb
−−→ = init

−−−→ ∪
hbe
−−−→∪

po
−−→

Proof. The inclusion of
init
−−−→∪

hbe
−−−→∪

po
−−→ ⊆

hb
−−→ is immediate.

For the converse direction. The following calculations are

immediate.

init
−−−→;

hb
−−→ ⊆

init
−−−→

poT-
−−−→;

po-T
−−−→ ⊆

poTT
−−−−→

po
−−→;

hbe
−−−→;

po
−−→ ⊆

hbe
−−−→

Thus we are able to deduce that
hbe
−−−→;

hbe
−−−→ ⊆

hbe
−−−→ as follows:

hbe
−−−→;

hbe
−−−→

= po-T
−−−→; (

swe
−−−→;

poTT
−−−−→)⋆;

swe
−−−→;

poT-
−−−→;

po-T
−−−→; (

swe
−−−→;

poTT
−−−−→)⋆;

swe
−−−→;

poT-
−−−→

⊆
po-T
−−−→; (

swe
−−−→;

poTT
−−−−→)⋆;

swe
−−−→;

poTT
−−−−→; (

swe
−−−→;

poTT
−−−−→)⋆;

swe
−−−→;

poT-
−−−→

⊆
po-T
−−−→; (

swe
−−−→;

poTT
−−−−→)⋆;

swe
−−−→;

poT-
−−−→

= hbe
−−−→

Hence,
init
−−−→∪

hbe
−−−→∪

po
−−→ is transitive. The proof is completed

by noting that
cwr ∪ xrw ⊆

hbe
−−−→∪

po
−−→. □

They also provide an alternative characterization of con-

sistency in the implementation model
1
.

Let
wre
−−−→ = lwr \

po
−−→ be the external portion of the read-

to-write relation, and
xrwe
−−−−→ = xrw \

po
−−→ be the external

portion of the transactional read-to-read relation.

LemmaC.2. An execution is consistent in the implementation
model iff the following hold.

(
hbe
−−−→∪

poT-
−−−→ ∪

po-T
−−−→∪

poRW
−−−−−→∪

wre
−−−→∪

xrwe
−−−−→) is acyclic.

(
init
−−−→ ∪

hbe
−−−→∪

poCon
−−−−−→); lww is irreflexive.

(
init
−−−→ ∪

hbe
−−−→∪

poCon
−−−−−→); lrw ) is irreflexive.

Proof. For causality, we need that ( hb
−−→∪ lwr ∪ xrw ) is acyclic.

We deduce:

hb
−−→∪ lwr ∪ xrw

is acyclic.

⇔
init
−−−→ ∪

hbe
−−−→∪

po
−−→∪ lwr ∪ xrw

is acyclic.

⇔
hbe
−−−→∪

po
−−→∪ lwr ∪ xrw

is acyclic.

⇔
hbe
−−−→∪

po
−−→∪

wre
−−−→∪

xrwe
−−−−→ is acyclic.

The first step follows from Lemma C.1; the second since
init
−−−→

is acyclic, and the last from definitions of
wre
−−−→, xrwe

−−−−→.

Consider a cycle in the last relation above. Without loss

of generality, assume that every two adjacent elements of

the cycle are in different threads. All the relations other than

wre
−−−→ use transactional events. So, if we have two adjacent

events a po
−−→ b, neither of which is transactional, the cycle

1
We include

init
−−−→ to be consistent with [9]. It can be removed since the

initializing transaction has only one write per location; thus, initialization

actions are not the target of any of our relations.
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contains c1
wre
−−−→ a po

−−→ b wre
−−−→ c2. Thus, we deduce that

a poRW
−−−−−→ b.
In the last three items, we use Lemma C.1 for the alterna-

tive characterization of
hb
−−→. We can replace

po
−−→ by

poCon
−−−−−→

by the following reasoning. If a ( lww ∪ lrw ) b, then a,b
access the same location and at least one is a write. □

The following lemma addresses the infrastructure needed

for reordering transformations.

LemmaC.3. Letσ, ρ be well-formed executions with the same
events that agree on the init

−−−→, ww , wr , and tx
∼ relations and

satisfy:

(
po-T
−−−→σ,

poT-
−−−→σ,

poTT
−−−−→σ,

poRW
−−−−−→σ,

poCon
−−−−−→σ,

swe
−−−→σ )

= (
po-T
−−−→ρ ,

poT-
−−−→ρ ,

poTT
−−−−→ρ ,

poRW
−−−−−→ρ ,

poCon
−−−−−→ρ ,

swe
−−−→ρ )

Then, σ is consistent iff ρ is consistent.

Proof. We first show that the happens-before relations of

σ, ρ coincide. Since
swe
−−−→ coincides for σ, ρ, hbe

−−−→ coincides

for σ, ρ. Result is immediate using lemma C.1.

Since σ, ρ also agree on all the base relations
init
−−−→, ww

,

wr
, and

tx
∼, they also agree on all the derived lifted relations.

Result follows. □

The following lemma addresses the infrastructure needed

for roach-motel transformations.

LemmaC.4. Letσ, ρ be well-formed executions with the same
events that agree on the init

−−−→, ww , wr and po
−−→. Let the tx

∼

relation of ρ be a superset of the tx
∼ relation of σ.

Then, if ρ is consistent, so is σ.

Proof. Since the tx
∼ relation of σ is a subset of the

tx
∼ relation

of σ, and σ, ρ agree on all the base relations
init
−−−→, ww , wr

,

and
po
−−→, we deduce that all lifted relations of σ are a subset

of the lifted relations of ρ and
hb
−−→σ⊆

hb
−−→ρ .

Consistency of σ follows from the consistency of ρ. □

The following lemma addresses the infrastructure needed

for fusion transformations.

Lemma C.5. Let ρ be a consistent, well-formed execution
with transaction a in s . Let b be a new name. Let σ be derived
from ρ by:

• introducing ⟨a:sC⟩⟨b:sB⟩ between the begin and end of
transaction a

• replacing the end (commit/abort) of a, if any, by an end
(commit/abort) of b

Then, σ is well-formed and consistent.

Proof. Well-formedness ofσ follows from thewell-formedness

of ρ. WF1–WF8 are unaffected by the changes. Any violation

of WF9–WF11 in σ induces a violation of the same in ρ.
All orders in σ restricted to the actions from ρ are con-

tained in the corresponding orders on ρ. Any simple cycle

in any of the consistency criterion on σ induces a simple

cycle in ρ with the new actions replaced by ⟨a:sB⟩. Thus,
consistency of σ follows from consistency of ρ. □

The following lemma addresses the infrastructure needed

for removing empty transactions.

Lemma C.6. Let ρ = ρ ′αβρ ′′ be a consistent, well-formed
execution, where α is an action of s that is not part of any
transaction.

Let b be a new name. Let σ = ρ ′α ⟨b:sB⟩⟨b:sCβ⟩ρ ′′.
Then, σ is well-formed and consistent.

Proof. Well-formedness of σ follows immediately from the

well-formedness of ρ.WF1–WF8 are unaffected by the changes.

Any violation of WF9–WF11 in σ induces a violation of the

same in ρ.
The new actions in ρ only participate in the

po
−−→ order,

where they have a unique predecessor and successor. All

orders in σ restricted to the actions from ρ are contained in

the corresponding orders on ρ. Any simple cycle in any of

the consistency criterion on σ induces a simple cycle in ρ
with the new actions replaced by αβ .

□

D Additional Examples
The next two examples discuss aborted transactions.

Example D.1 (Opaque writes). Final outcome r = 1 is not

permitted in the program below.

atomica { x:=1; abort } || atomicb { r:=x }

This is trivial to justify by well-formedness (condition 7)

since
wr

cannot originate from an aborted transaction.

Example D.2 (Race-free speculation). The only permitted

final outcome is r = 2.

atomica { x++;y++ }
|| atomicb {if x , y then {z:=1; abort}} || z:=2; r:=z

Since the guard of transaction b will never hold the program

is race free, and hence it will never execute z:=1. This means

that there is no danger that the abort will undo the nontrans-

actional write to z. In particular, for every execution ⟨Wz2⟩
obscures the read of z in the third thread.

Example D.3 (Dirty reads). Final result x = 0 and y = 1 is

forbidden.

atomica {if !y then x:=1; abort}; atomicb {if !y then x:=1}
||if x = 1 then y:=1

The result would be possible if the second thread observes the

write of x in transaction a, then updates y. Since a rolls back,

it will restorex ’s value back to 0, causing transactionb to skip
over the update to x on re-execution. However, in our model

such an execution is not possible since non-transactional

events cannot read from live or aborted transactions.

Example D.4 (No overlapped writes). Final result r = 0 is

forbidden in the program below, where z is an array. The

result would be possible if transaction a initializes z[y] and
then publishes it by writing it to shared volatile variable x .
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Since lazy version copies cached values in any order, the

second thread may see the update to x before it sees the

update to z[y]. In our model, this results in the execution

below.

atomica {y:=4; z[y]:=1;x:=4}
||r:=1; atomic {q:=x };
if q , 0 then r:=z[q]

a:Ry4 Wz[4]1 Wx 4

Rx 4 Rz[4]0
cwr lrw

Since we model volatile accesses as a singleton committed

transaction, we obtain an edge
cwr

to the read of x in the

second thread, which violates axiom (Observation).
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