1 Fibonacci numbers

One of the most famous sequences of numbers is the Fibonacci sequence:
1,1,2,3,5,8,13,21, 34, The sequence is defined recursively:

F(n) = 1 ifn=0orn=1
| Fn—1)+F(n—-2) ifn>2

The Fibonacci numbers have various interesting properties, including being
related to the golden ratio and its conjugate:

1+45
2

1-V5
2

¢ = ~ 1.61803

b= ~ —0.61803

You could prove by induction that F'(n) = %

Here is an obvious algorithm for computing F'(n), the n-th Fibonnaci num-
ber:

Fib(n)
ifn=0o0rn-=1
return 1
else
return Fib(n-1) + Fib(n-2)

The running time T'(n) of this algorithm on input n is?

Tn)=Tn—-1)+T(n—-2)+06(1).

Consider the tree of the calls made during the computation of Fib(n):

Fib n
/ \
/ \
/ \
Fib n-1 Fib n-2
/ \ / \
/ \ / \
Fib n-2 Fib n-3 Fib n-3 Fib n-4
/ \ / \ / \ / \

/ \
Fib n-3 Fib n-4
/ \ / \

Note that the shallowest node of this tree is the “rightmost” node and it
has depth %. Therefore, the total number of recursive calls is in Q(22). In
fact, the solution to the above recursion is:

which is exponential. The reason our recursive algorithm is so slow is because
of the same recursive calls are recomputed over and over (note that Fib(n-3),
for example, is computed 3 times).

We would like a better strategy for computing the Fibonacci numbers, one
that does not duplicate so much of the computation. We can achieve that
if we take a bottom-up approach, rather than a top-down approach. For
example, to compute F'(n) we should start by computing F'(2) from F'(0) =1
and F(1) = 1. Then we compute F'(3) from F'(2) and F(1), and then F'(4)
from F(3) and F'(2), and so on. Here is a much faster algorithm:

FastFib(n)
F[0] =1
F[1] =1

for i = 2 to n do
F[i] = F[i-1] + F[i-2]
return F[n]

The running time of this algorithm is obviously ©(n). Note that this algo-
rithm uses ©(n) space. Can you modify it so it uses ©(1) space?

2 Dynamic Programming, an introduction

The FastFib algorithm is an example of dynamic programming. The idea
behind dynamic programming is to avoid recomputation of partial results.
It uses the familiar divide and conquer approach; in addition it uses some
data structure (usually some kind of table) to keep track of the solutions to
subproblems to avoid recomputation. The idea is to use it when a straight-
forward divide and conquer approach would use the same values over and
over again. Typically it is well suited for optimization problems.

3 Matrix Multiplication

Given two matrices A of size p x ¢, and B of size ¢ X r, the product A-B = C
is a matrix of size p x r where ¢;; = 23:1 a;,b;. Note that C' contains pr
entries, and that to compute each entry requires ¢ multiplications and ¢ — 1
additions. Thus, computing C takes ©(pgr) operations.

4 Multiplying three or more matrices

Now consider the case where we have more than two matrices to multiply.
Suppose, for example, that we want to multiply four matrices, A of size
13 x 5, B of size 5 x 89, C' of size 89 x 3, and D of size 3 x 34. We want to
compute the matrix ABCD that has size 13 x 34.

There are five ways we can do the calculation of ABCD:

1. ((AB)C)D. We compute the number of operations that this would re-
quire. The product AB = X requires 13-5-89 = 5, 785 multiplications
to produce a matrix of size 13 x 89. The product XC' =Y requires
13 -89 -3 = 3,471 multiplications to produce a matrix of size 13 x 3.
The product Y D requires 13-3-34 = 1, 326 multiplications to produce
the final matrix. In total, this is 10, 582 multiplications.

(AB)(CD) requires 54,201 multiplications.
(A(BC))D requires 2,856 multiplications.
BC)D) requires 4,055 multiplications.
. A(B(CD)) requires 26,418 multiplications.
The best parenthesization is nearly 20 times better than the worst one! It

thus pays to think about how to multiply matrices before you actually do
it. Let us now formalize the problem.

5 Matrix Chain Multiplication (M CM)

Input: A sequence A1, A, ..., A, of matrices, of size py X p1, p1 X P2, P2 X p3,
wery Pn—1 X Pn, respectively.

Output: The smallest number of multiplications/operations to find the
product, and the order in which the matrices should be multiplied.

Let us take a divide-and-conquer approach to the problem. To do that we
define m/[i, j] to be the smallest number of multiplications necessary to find
the subproduct A; - A;y1-...- A;. Suppose that the best place to ”split” the
sequence is at k. Then the computation will look like:

(Ai o Ap) - Ay - e Aj) (1)

Note that m[i, k] is the number of multiplications needed for (A4;-...- Ax), and
m[k+1, j] is the number of multiplications needed for (Ag4;-...-A;). Note also
that (A;-...- A) is a matrix of size p;_1 X py, that (Ag41-...- A;) is a matrix
of size py X p; and that their product uses p;—1 X py x p; multiplications.

We thus obtain the following recurrence, for 7 < j:

and if ¢ = j, then we only have a single matrix, so there is no multiplying
to do and m|i, j] = 0.

These observations produce the following algorithm:

MCM(p,i,j)

if 1 =3
return O
else

min = infinity
for k = i to j-1
test = MCM(p,i,k) + MCM(p,k+1,j) + pli-1] pl[k] pl[j]
if test < min
min = test
return min

We will get the answer to the general problem if we start with MCM(p,1,n).

Let us analyze the running time of this algorithm on input of size n = j—i+1.
First note that in each iteration of the loop for k = i to j-1, we have to
compute MCM(p,i,k) and MCM(p,k+1, j). This means that we are evaluating
the following recursive calls during the call to MCM(p,1i,j):

MCM[i,i], MCM[i,i+1], ..., MCM[i,j-l]
and
MCM[i+1,j]1, MCM[i+2,j1, ..., MCM[j,j]

Note that we make a total of 2n recursive calls. Note, furthermore, that
each one of MCM[i,i+1], ..., MCM[i,j-1] will again make the recursive
call MCM[i,1i]. So the same recursive calls are made over and over and the
same ml[i, j]’s are being recomputed so many times that the algorithm is
exponential time as we have written it.

We can speed up the computation if, as with the Fibonacci numbers, we
work bottom-up instead of top-down and avoid the recomputation of the
entries mli, j|. To do this we will construct a table of values. The entry in
position (7,) will represent m[i, j]. Since we are interested in computing
the product of four matrices we will need a table of size 4 x 4:

SECROPS

0
X 0
X X 0

Observations:

e We cannot have ¢ > j so the table below the main diagonal will be
ignored.

e All the values on the main diagonal are 0. It corresponds to the case
1 = j, which means we only have a single matrix and no work to do.

In order to do the computation bottom-up, we will compute each diagonal
in turn, using the values that already exist in the table. The recurrence will
tell us how to compute the diagonal values.

Example 1 Computing ABCD, where A has size 13 x5, B has size 5 x 89,
C has size 89 x 3 and D has size 3 x 34. This means that pg = 13, p1 = 5,
p2 = 89, ps = 3 and py = 34. First we do the computation along the diagonal
just above the main diagonal:

m[l,2] = popip2 = 13-5-89 = 5,785
m[2,3] = pipaps = 5-89-3 = 1,335
m(3,4] = popsps = 89-3-34 = 9,078
Now do the computation along the next diagonal:
m([1,3] = min{m[l,1] +m[2,3] + pop1ps, m[1,2] + m[3, 3] + pop2ps}
= min{1530, 9256}
= 1530
m[2,4] = min{m(2,2] +m[3,4] + p1paps, m[2, 3] + m[4, 4] + p1pspa}
= min{24208, 1845}
= 1845

and finally, we compute the last entry, the one we’re really looking for:

m([l,4] = min{m[l,1] +m[2,4] + pop1pa,
’I?’L[l, 2} + m[3> 4] + pop2p4, m[la 3] + ’I?’L[4, 4] + p0p3p4}
= min{4055, 54201, 2856}
= 2856

The final table is:

5,785 1,530 2,856
0 1,335 1,845
0 9,708

0
X
X
X X 0

X
X
6 Dynamic Programming, in more depth

In order to apply a dynamic programming approach to solve a problem, the
problem must have two properties:

Optimal substructure: the optimal solution to a problem contains, within
it, the optimal solutions to its subproblems;

Overlapping subproblems: the total numberof subproblems is small and
the obvious recursive algorithm solves the same subproblems over and
over.

The matrix chain multiplication example has both these properties.

In order to solve a dynamic programming problem, we must perform the
following steps:

1. Describe the structure of the optimal solutions. For example: In order
to minimize the multiplications for A;...A; we have to minimize the
total number of multiplications needed for computing the matrix X =
A;... Ay, and the matrix Y = Aj4q...A; for some k and for computing
the product of X and Y.

2. Define the solutions recursively. For example, for ¢ < j, we define
mli, j] = minj<p<j{mli, k] + m[k + 1, j] + pi—1prp; } if © < j.

3. Compute the values bottom-up. For example, the table of values all
mli, j]s.

4. Construct an optimal solution from the computed values. For example,
in addition to the number of multiplications in the optimum parenthe-
sization, we would like to know what the optimum parenthesization
is. We show below how to do this.

The dynamic programming algorithm for matrix chain multiplication is:
MCM(p,n)

// initialize the main diagonal
for i =1ton
m[i,i] =0

// for each diagonal
for d =2 ton
// for each entry on the diagonal
for i = 1 to n-d+1
j = i+d-1
m[i,j] = infinity
// check all possible k
for k =1 to j-1
q = m[i,k] + m[k+1,j] + p[i-1] p[k] pl[j]
if q < m[i,j] then
mli,jl = q
sli,jl = k
return m[1,n]

The running time of this iterative algorithm is ©(n?). The values si, j] are
kept in order to construct the optimal prenthesization as follows: for each
mli, j|, use k = sli, j] to discover that m][i, j] was produced using mli, k] and
mlk +1,7].

7 Memoization

The version of matrix chain multiplication that we wrote was iterative. In
re-writing the algorithm using dynamic programming, we changed the form
of the algorithm from recursive to iterative. Instead we can use a table to
store the values, and at the beginning of each recursive call check to see if
the value we want already exists. If it does, then we re-use it. Otherwise we
compute it. This technique is called memoization. It allows you to keep the
top-down structure of the algorithm, but look up, instead of re-compute,
the smaller values.

Consider writing a memoized version of the Fibonacci numbers solution:

e The first time we compute F; we will store in into an array in position
i.

e We will check the array before doing any recursion. If the value is
there, we will use it. Otherwise we will compute the answer recursively.

This allows us to maintain the familiar structure of the problem but with-
out the exponential costs of re-computing all the values. The memoized
algorithm for Fibonacci numbers is:

Memo-Fib(n)

for i =0 ton
F[i]l = 0

return Find-Fib(n)

Find-Fib(n)
if F[n] > O then
return F[n]
else
if n = 0 or n = 1 then
F[n] =1
return 1
else
F[n] = Find-Fib(n-1) + FindFib(n-2)
return F[n]

8 The 0 — 1 knapsack problem

Suppose a thief finds n items in a safe. Each item has a weight and a value.
Let the set of items be given by S = {1,2,...,n} and let wy,...,w, be the
corresponding weights and vy, ...,v, be the corresponding values of the n
items. The thief wants to take as valuable a load as possible, but she can
only carry so many pounds, say C, in her knapsack.

Here is our first strategy: keep choosing the item with highest value/weight
ratio that can fit the knapsack until no remaining item can fit. This is what
is called a greedy strategy!

Example 2 Let the size of the knapsack be 50 lbs. Suppose there are 3
items:

1. wy = 10lbs, v1 = $60, value/weight = $6/1b.
2. wg = 201lbs, v = $100, value/weight = $5/1b.

3. ws = 30lbs, v3 = $120, value/weight = $4/1b.

Our strategy tells us to take the first two items for a total values of $160. A
better plan, however, is to take items 2 and 8 with total value $220.

So our greedy strategy fails miserably. Let us develop a dynamic program-
ming solution to the 0 — 1 knapsack problem.

8.1 Optimal substructure

First we have to check that the problem has the optimal substructure prop-
erty. Let K be a most valuable subset of items (so K C S). If item n belongs
to K then K —{n} must be a most valuable load for the subproblem defined
by items S — {n} and knapsack weight C' — w,. If item n ¢ K then K
must be a most valuable load for the subproblem defined by items S — {n}
and knapsack weight C'. So the problem does have the optimal substructure

property.

8.2 Recursive solution

Let Ti, ¢] be the optimal value of a 0-1 knapsack problem with i items and
knapsack weight ¢. Then T'[i, c] is defined recursively as follows:

T[i,c] = max{T[i — 1,¢c],T[i — 1,¢ — w;] + v;}.

(If ¢ —w; < 0 then T[i,c] = T[i — 1,¢] — this is the case when the last
item, item 4 of weight w;, is too big.) Note that the subproblems overlap.
So, we can use dynamic programming. Note that to obtain T'[i,c — w;], we
also need to compute T'[i — 1,¢ — w;]. So, as in the Fibonacci example, the
recursive solution solves the same problem again and again, and we should
use dynamic programming to compute T'(n, C).

10

8.3 Bottom-up, dynamic programming algorithm

Note that to compute entry T[i, ¢] of the table T'[1..n, 1..C], we need to look
up the entries T — 1,¢] and T[i — 1,c — w[i]. So, assuming the rows are
numbered top to bottom and columns are numbered from left to right, we
need to to fill the table T" top to bottom and left to right.

Knapsack(C,v,w,n)
// C is the knapsack weight, v[1..n] is the array of item values and w[l..n] is
// the array of item weights; let T[0..n, 0..C] be the table of solutions to

subproblems.

for i =0 ton
T[i, 0] =0

for ¢ = 0 to C
T[O, c] =0

for c =1 to C
for i =1 ton
if c-w[i] < 0 or T[i-1,c] > T[i-1,c-w[i]] + vI[i] then
T[i,c] = Tli-1,c]
else
T[li,c] = T[i-1, c-wlill + v[il
return T[n,C]

The running time is O(nC) = ©(n2'°e).
Example 3 Let us solve the 0-1 knapsack problem with inputs (v1, vy, v3) =

(10,15,20), (w1, w2, w3) = (1,2,3) and C = 5. We show our work in the
4 x 6 table T obtained by the algorithm.

ol 1] 2] 3] 4] 5

0] o 0ol o] o] o

6 1|0|10]10]10] 10] 10
10 2|0 10]15]25] 25/ 25
20 3| 0]| 10| 15| 25| 30| 35

and the optimal solution contains items 2 and 3 and has value 35.

We have the value of the optimal solution. Think about how would we find
the optimal solution itself?

11

9 The Maximum Sum Subvector problem (MSS)

We consider problem 5 from homework 2. Given a vector X of N real num-
bers we would like to find the maximum sum of entries found in any con-
tiguous subvector of the input. For instance if the input vector is

31 -41 59 26 -53 58 97 -93 -23 84

then the program returns the sum of entries in X[3..7], or 187. The problem
is easy when all the entries are positive — the maximum subvector is the
entire input vector. The rub comes when some of the numbers are negative:
should we include a negative number in hopes that the positive numbers
to its sides will compensate for its negative contribution? Of course, if the
entries are all negative then zero should be returned.

The trivial algorithm that checks every possible interval runs in ©(n3) time.
With a bit more thought, you could improve the trivial algorithm to run
in ©(n?) time. For your homework, you designed an even faster, ©(nlogn)
divide and conquer algorithm for this problem. We will now describe an
optimal algorithm that runs in ©(n) time and uses dynamic programming.
Let us develop our algorithm:

1. We first need to describe the structure of the optimal solutions. We
note that the maximum sum subvector of X[1..j] is either the max-
imum sum subvector in X[1..j — 1] or it is a subvector that ends in
position j.

2. We define the solutions recursively. For j > 1, let s; be the sum of
the entries in the maximum sum subvector in X[1..j] and let m; be
the sum of the entries in the maximum sum subvector that ends in
position j. Then

mj = max{mj_l + X[j],()},

s; = max{sj_1,m;}.

3. We compute the values bottom-up as described in the following algo-
rithm.

12

MSS(X,N)
m=20

j =1ton
max{m+X[j], O}
max{s, m}
return s

Hh
o
H
I« O

n
]

Note that we do not use a table to store all m1, ms,... and sq, s9,
This is because, in iteration j, only values m;_1 and s;_; are used.

4. We construct an optimal solution from the computed values. Note
that the above algorithm does not return the subvector Z whose sum
of entries is maximum — it just returns the sum of the entries. For
homework, do modify this algorithm so it also returns the first and
last position of the optimal subvector.

10 Longest Common Subsequence (LCS)

Consider two sequences of characters X = z1x2...7,, and Z = 2129...25. £
is a subsequence of X if there is an ascending sequence i1, is, ..., i such
that for all j, z;; = z;. For example, let X = ABCAB and Z = ABB; then
i1 = 1,40 = 2 and i3 = 5. A common subsequence for two sequences X3
and X5 is a subsequence of both X; and Xs. For example, if X1 = ababca
and X9 = aabb then bb, abb, and aab are (some of the) subsequences common
to X7 and Xs.

We define the Longest Common Subsequence (LCS) problem as follows:

Input: Two sequences X = x1...xy, and Y = y1...y5.

Output: A longest sequence Z = zj...z; such that Z is a subsequence
common to both X and Y.

We will use dynamic programming to solve this problem.

10.1 Optimal substructure

First we have to check that the problem has the optimal substructure prop-
erty. Let X = z;...xp, and Y = y1...y, be two sequences and let Z = 27...2;

13

be a longest common subsequence for X and Y. We observe:

1. If xpy, = yn then 2z = x, = y, and 2z1...2z;_1 must be a LCS of
T1.Tm—1 and yl...y,_1.

2. If x,, # y, then two cases are possible:

o If z; # x,, then 21...z; is a LCS of z1..2p,—1 and yp...y,. (We
can throw out z,, and not affect the result).

o If z;, # y,, then z1...zx is a LCS of z3...x, and yp...yp—1. (We can
throw out y,, and not affect the result).

Note that one of the two cases must hold since z; cannot be equal to both
T, and y,. Note also that both cases could hold.

10.2 Recursive solution

Let c[i, j] be the length of a LCS of z;...2; and y;...y;. Then

0 ifi=0orj=0
max{c[i — 1, j],cli,j — 1]} if z; # y;

Note that the subproblems overlap. So, we can use dynamic programming.

10.3 Bottom-up computation

As with the matrix chain multiplication problem we will keep a table of
values and compute the table entries using the recursive solution above.
The table will have m rows and n columns. The rows will represent the
sequence X and the columns will represent the sequence Y. Our goal will
be to compute ¢[m,n] since that gives us the LCS of X and Y. We start
the computation as follows:

cli,0) = 0 for every i

cl0,j] = 0 for every j

14

We can compute the remaining table entries by observing that c[i, j] will be
either:

cli—1,5 — 1]+ 1 or max{c[i —1,j],c[i,j — 1]}.

Note that c[i, j] is defined in terms of entries that are either above and/or
to the left of it, so we should be filling the table row by row, from top to
bottom and from left to right

Example 4 Let X = ABC and Y = BCDE. We start with the following
table:

Qo

W N = O

coococon
oW
o Q
o wly
o =

We compute the first row and obtain c[1,j] =0 for 1 < j < 4 since x1 # y;
for 1 < j <4 and max{c[0, j], c[1,7 — 1]} = max{0,0} = 0:

B
1
0
0

Qe

W N = O

coo0o oo
o o Q
cowly
o o i

Computing the second row:
o ¢2,1] =¢[1,0] +1 =1 since x2 = y1.
e ¢[2,2] = max{c[1,2],¢[2,1]} = max{0,1} =1 since x2 # Y.
e ¢[2,3] = max{c[l,3],¢[2,2]} = max{0,1} =1 since z2 # ys3.

o ¢[2,4] = max{c[l,4],¢[2,3]} = max{0,1} =1 since x2 # y4.

15

to obtain:

Qoo

W N = O

coocoon
— o o~y
— o o Q
— oo wly
— o o & I

Computing the third row:
e ¢[3,1] = max{c[2,1],¢[3,0]} = max{1,0} =1 since x3 # y1.
o ¢[3,2] =¢[2,1] + 1 =2 since x3 = ya.
e ¢[3,3] = max{c[2, 3], ¢[3, 2]} = max{1,2} = 2 since x3 # ys3.

o ¢[3,4] = max{c[2,4],¢[3,3]} = max{1,2} = 2 since x3 fa.

This completes the table:

e B C D FE
01 2 3 4
e 00 0O O O O
A1 0 0 0 0 O
B 2 0 1 1 1 1
c 301 2 2 2

and the longest common subsequence has length c[3,4] = 2.
Here is a formal description of the algorithm:

LCSLength(X,Y)
m = length(X), n = length(Y)

for i =0 tom

c[i,0] =0
for j =0 ton
cl0,3]1 =0

16

for i =1 tom
for j=1ton
if X[i] = Y[j] then
cli,jl = 1 + c[i-1,j-1]
else

cli,jl = max{cli-1,j], cli,j-11}

return c[m,n]

Let us analyze the running time. The initializations of the first row and
the first column each take ©(m) and O(n) steps, respectively. The nested
for-loops require ©(mn) steps. So, the overall algorithm takes ©(mn) steps.

10.4 Constructing the optimal solution

In order to construct the optimal solution we have to save a pointer for each
cli, j] that will indicate us which one of ¢[i — 1, j], ¢[i — 1,7 — 1] or c[i,j — 1]
was used to produce c[i, j|. There are three possibilities:

1. cfi,j] =c[i—1,j — 1] + 1. In this case we need a pointer diagonally to

cli—1,5—1].

2. cli,j] = c[i — 1, 7] because c[i — 1, j] < ¢[i,j — 1]. In this case we need

a pointer up to c[i — 1, j].

3. c[i,j] = ci,j — 1]. In this case we need a pointer back to c[i, j — 1].

LCSSaveOpt (X,Y)
m = length(X), n = length(Y)

for i = 0 tom

c[i,0] =0
for j =0 ton
cl0,j1 =0

for i =1 tom
for j=1ton

17

if X[i] = Y[j] then
cli,jl = 1 + cli-1,j-1]
pli,j] = "\"
else if c[i-1,j] >= c[i,j-1] then
cli,jl = cli-1,j]
P[l,J] = llIIl
else
cli,jl = cli,j-1]
pli,j] = "

return c[m,n]

Example 5 The p[l1..3,1..4] table for X = ABC and Y = BCDE looks as
follows:

Qe
W RO
|
|
|
|
|
|

Now, constructing the optimal string is very similar to finding the optimal
parenthesization for the matrix chain multiplication. You simply start in
position p[3,4] and follow the "direction signals” back, adding characters to
the LCS when a ”"Signal is encountered. You stop when you reach either
boundary.

18

