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Abstract
Writing is a critical educational task because it encompasses so many skills necessary
for the modern world, including vocabulary and grammar acquisition, critical thinking,
adapting to different audiences, and determining how best to communicate one’s ideas.
However, written assignments are notoriously time-consuming for teachers to grade, and
timely feedback is critical for students’ learning. Automated evaluation can provide quick
student feedback while easing the manual evaluation burden for teachers. Current machine
learning-based methods of evaluating student textual responses have met with varying
degrees of success. One main challenge in training these models is the scarcity of student-
generated data. Large volumes of training data are needed to create accurate models, and
few educational tasks are large enough. To overcome this data scarcity issue, text augmen-
tation techniques have been used to balance and expand the data set so that classification
models can be trained with higher accuracy, providing more useful feedback for teachers
and students. This paper examines the performance of text augmentation using two Large
Language Models (LLMs) to provide supplemental texts for training models for classify-
ing student answers in English and French educational tasks. Our results show that text
generation can dramatically improve model performance on small data sets over simple
self-augmentation, especially when the LLM is set to generate more varied responses.
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1 Introduction

Researchers in educational contexts investigate how students reason and learn to discover new

ways to evaluate their performance and provide feedback that promotes growth. Intelligent

learning environments (ILEs) for K-12 students are designed to incorporate inquiry-based,

problem-solving, game-based, and open-ended learning approaches (Geden et al., 2021;

Käser & Schwartz, 2020; Luckin & du Boulay, 2016). By allowing students to choose how

they approach and tackle open-ended tasks (Zhang et al., 2020), they can utilize the resources

available in the environment to gather information, understand the problem, and apply their

knowledge to solve problems and achieve their learning objectives. At the same time, ILEs

monitor students’ performance and behavior, allowing for the creation of adaptive support

to help students overcome challenges and become more effective learners (Azevedo, John-

son, Chauncey, & Burkett, 2010; Biswas, Segedy, & Bunchongchit, 2016; Winne & Hadwin,

2013).

Research in this field aims to understand the factors that impact learning in various

contexts. One area of study is centered on national and international literacy standards

(Achieve, Inc, 2013), which mandate that students should be able to think critically about

science-related texts, understand scientific arguments, evaluate them, and produce well-

written summaries. This is crucial for addressing societal issues such as bias, “fake news,” and

civic responsibility. However, achieving deep comprehension of explanations and arguments

can be difficult for teenage students (OECD, 2021). Additionally, research in discourse psy-

chology suggests that students’ reading strategies are shaped by their assigned reading task

and other contextual dimensions (Britt, Rouet, & Durik, 2017). For example, prior research

has shown that students generate different types of inferences when reading as if to prepare

for an exam compared to reading for leisure (van den Broek, Tzeng, Risden, Trabasso, &

Basche, 2001). Similarly, students’ writing is influenced by their perception of the audience

(Cho & Choi, 2018).

2



Student responses in educational settings usually have a specific structure or purpose,

which aligns with the grading criteria and demonstrates the student’s level of understanding

of the material. Natural Language Processing (NLP) techniques like sentence classification

can be used to analyze student performance and provide feedback quickly (Hastings, Hughes,

Britt, Blaum, & Wallace, 2014). Transformer-based models like BERT have revolutionized

the NLP field due to their pre-training on large data sets such as Wikipedia and BookCor-

pus (Devlin, Chang, Lee, & Toutanova, 2018), which gives them a deep understanding of

language and how words are used in context. These models can then be fine-tuned for spe-

cific tasks by adding an output layer and training it with a smaller labeled data set. However,

these models still require sufficient training data from the target task for the fine tuning to be

effective.

One common approach to improve models’ performance with limited data is data aug-

mentation (Shorten & Khoshgoftaar, 2019). This technique is commonly used in other fields

of AI, such as computer vision. Attempts have been made to apply data augmentation tech-

niques to textual data (Chen, Tam, Raffel, Bansal, & Yang, 2021), but text is more challenging

because small changes in the text can produce bigger changes in the meaning, leading to errors

in model training. Some current data augmentation techniques for text data involve modify-

ing original responses, such as misspelling words or replacing them with similar words (Wu

et al., 2022).

This paper is an extended version of Cochran, Cohn, Hastings, and Rouet (2023). The

extensions investigate the use of different Large Language Models (LLMs) with different

“temperatures” to generate texts to augment the original data, and we compare the results to

baseline measurements. Temperature is a parameter that a generative LLM uses to control

how much randomness is used when generating text. Higher temperature settings allow for

more varied responses. We also compared performance with four different base classifier

models to determine if augmentation provides benefits for all of them, or for some more than

for others.
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As a baseline, we used a “self-augmentation” method where the original data set was

replicated to increase training data. This self-augmentation method has been successful in

previous research (Cochran, Cohn, & Hastings, 2023), and similar methods have been applied

to computer vision with improved model performance (Seo, Jung, & Lee, 2021). We aim to

determine the appropriate level of augmentation and establish a baseline measurement for

comparison when additional augmentation techniques are applied.

2 Background and Research Questions

Data sets in educational contexts can sometimes be large, but when they are comprised of

students’ textual responses to specific questions, they tend to be on the order of at most few

hundred examples. The amount of data obtained was a function of the nature of the texts and

the effort required to label the data. Modern machine learning models come pre-trained on

various data sets. However, in order to improve performance on a given downstream task,

these models need to be fine-tuned using labeled data (Yogatama et al., 2019). Although some

of these models can be good at zero-shot or few-shot learning (Xia et al., 2020), especially

when the evaluated texts are relatively “standard”, they are designed to allow further fine-

tuning to improve performance for specific tasks when sufficient training data in both quantity

and quality is available (Gururangan et al., 2020).

These educational data sets are often imbalanced, meaning each label does not have

equal representation. Machine learning models perform better when the data is close to being

balanced across labels (Schwartz & Stanovsky, 2022). Data augmentation has improved

model performance in image processing (Shorten & Khoshgoftaar, 2019). However, that pro-

cess does not translate directly to text-based models. Studies have used text generation to

improve classifier performance by augmenting data to create additional training data arti-

ficially (Quteineh, Samothrakis, & Sutcliffe, 2020; Shorten, Khoshgoftaar, & Furht, 2021).

The intent was to address the imbalance in data sets and allow smaller data sets to acquire

larger data volumes to aid model training. Simple data replication can be used and is referred

4



to as self-augmentation (Cochran, Cohn, & Hastings, 2023). Looking at techniques beyond

self-augmentation, Bayer, Kaufhold, and Reuter (2021) described a taxonomy and grouping

for data augmentation types which used replication of the existing data with modifications

to the data at the character, word , phrase, and document levels. Cochran, Cohn, Hutchins,

Biswas, and Hastings (2022) showed that augmentation using masking, noise, and synonyms

can improve classification performance.

The current study continues this research by exploring augmentation using generative

AI methods. Several survey papers on text augmentation break down the various types of

data augmentation currently being researched (Bayer et al., 2022; Feng et al., 2021; Liu,

Wang, Xiang, & Meng, 2020). In the generative method of text augmentation, artificial stu-

dent responses are generated using a predictive model that infers the response given a text

prompt as input. Piedboeuf and Langlais (2024) showed that data augmentation can improve

performance for smaller data sets by generating text data similar to external data, resulting

in fine-tuned models that are higher performing than those with self-augmentation. External

data refers to data not generated from paraphrasing or modifying a sentence from the data set,

but from data that appears to be provided from an outside source.

The OpenAI API performs NLP tasks such as classification or natural language generation

given an input prompt. One of their models is the Generative Pretrained Transformer 3.5

(GPT-3.5) (Brown et al., 2020). For this experiment, we used model “text-curie-001” with 6.7

billion parameters. (Wikipedia, n.d.) A recent study has shown improvement for short text

classification with augmented data from GPT, stating that it can be used with additional fine-

tuning to improve classification performance (Balkus & Yan, 2023). Additionally, a review

by Bayer et al. (2021) noted that GPT was the leading augmentation method among recent

papers and may even be able to replicate some instances whose labels were left out of the

data set (zero-shot learning).

According to Kumar, Sharma, and Bedi (2024), the most optimal model for NLP tasks,

based on size, performance, and resources required for fine-tuning, is Llama from Meta AI
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(Touvron et al., 2023). The latest version as of this writing is Llama3 70b. The 70b indi-

cates that the model contains 70 billion parameters. There is a smaller model with 8 billion

parameters; however, for this paper, we used the larger 70b version to see if we could get

more diverse answers with higher temperatures (Meta, n.d.). In the current study, both GPT

and Llama were used for generating augmented responses based on the existing student data

and will be compared by analyzing the performance of models fine-tuned by the original stu-

dent data with the addition of the generated data. The intent was to determine if the language

model used matters when generating augmented data, and how much extra data i needed to

achieve acceptable performance.

The student response data sets contain labels for each response corresponding to a hand-

graded value on a grading rubric. Transformer-based NLP models, such as BERT (Devlin et

al., 2018) and GPT (Brown et al., 2020), are now the industry standard for modeling many

NLP tasks. Previous research by Cochran et al. (2022) shows that BERT-based transformers

work well for text classification of student responses to STEM questions. Therefore, we are

using the artificially augmented data sets to fine-tune four types of BERT-based models for

text classification. Since we have two data sets, one in English and one in French, we used

three BERT-based multilingual models and one French model as the classifiers of choice.

In this paper, we compared the benefits of generative textual data augmentation from two

LLMs for evaluating student textual responses. This evaluation of student responses could

be used by teachers and/or given directly to students, but the efficacy of such feedback is

beyond the scope of this paper. Accordingly, we evaluate the following research questions

and hypotheses.

RQ 1: Can classification performance be improved by augmenting training data with

generated responses? Our hypothesis H1 was that additional generated data would improve

model performance for smaller data sets. Determining how large a data set needs to be before

it would no longer require data augmentation was out of the scope of this study. Here, we

determined if augmentation would work for relatively small data sets.

6



RQ 2: Can generated responses outperform self-augmentation when used for training

models for sentence classification? Our hypothesis H2 was that generated responses will out-

perform self-augmentation because they are not simple copies of the data, so more of the

domain was likely to be filled with unique examples when creating the augmented data space.

RQ 3: Does altering the response diversity settings of the LLM used to generate stu-

dent responses affect model performance? Generative models have mechanisms to allow for

variability in response generation. Recall that the temperature parameter for GPT and Llama

allows for altering the probability distribution for a given pool of most likely completions. A

lower value creates responses almost identical to the prompt text. A higher value allows the

model to choose more “risky” choices from a wider statistical field. H3 proposes that aug-

menting the data with slightly more complex answers will generally perform best because

generating more complex texts provides additional responses that are not simple paraphrases

of the provided student data, allowing the model to generalize.

RQ 4: Does performance ultimately degrade when the model reaches a sufficient level

of augmentation? It can be assumed that any augmentation would encounter a plateau

such that model performance begins to level off or degrade with additional augmentation

(Cochran, Cohn, & Hastings, 2023). When performance levels off, it signals that additional

augmentation is not improving performance and that any additional augmentation is provid-

ing diminishing returns. When performance degrades, it indicates additional augmentation

is either not varied enough, causing the classifier to behave more like self-augmentation, or

too varied, causing the knowledge represented in the model to be less focused on the target

concept. A counterargument is that generated text that is too complex will be less represen-

tative of the student’s texts and will ”water down” the representation in the model. H4 was

that the performance would level off or degrade with additional augmentation after reaching

a peak. We assumed there was a point where additional LLM-generated augmentation from a

small data set would add little or possibly degrade performance. H5 was that the performance

would degrade more slowly with higher temperature augmented data sets and thus support the
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idea that more risk involved in generated responses was better for more significant amounts

of augmentation.

3 Methods

3.1 Cross-Entropy

Entropy measures the disorder or randomness in the data set’s label distribution. Looking

at the balance between labels in each data set, the entropy can be calculated to indicate the

degree of imbalance in a data set.

Entropy =−
n

∑
i=1

pi log2(pi)

In this formula, n was the number of classes in the data set, and pi was the probability of

class i. It represents how surprising it was to find a particular label in the data set on aver-

age. Cross-entropy can be used to compute how distant a distribution was from the balanced

distribution.

Cross−Entropy(H(p,q)) =−∑
x

p(x) log(q(x))

In this formula, p was the balanced probability distribution, and q was the current distri-

bution. Using this calculation, a perfectly balanced data set with two labels would have an

entropy of 1.0. When the number of labels increases to four, the entropy goal for a perfectly

balanced data set was 2.0. Numbers further away from the ideal value and toward zero indi-

cate a higher degree of imbalance. The cross-entropy has been calculated for each data set to

indicate the probability of finding a particular label, indicating the degree of imbalance.

3.2 Data Sets

Two data sets were used in this study. The first data set was from a discourse psychol-

ogy experiment at a French university where 163 students were given an article describing
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links between personal aggression and playing violent video games. Responses were given in

French. The participants were asked to read the article and write a passage either to a friend

in the “personal” condition or a colleague in the “academic” condition. Our evaluation was

around whether or not they asserted an opinion on the link between violent video games and

personal aggression. The label quantities from the data set are shown in Table 1. The majority

label quantity, “No Opinion”, is shown in bold. The rightmost column gives the cross-entropy

measure for the data for the four possible outcomes. A data set balanced across four labels

would have an entropy value near 2.

Table 1 French Student Response Data Split for the Opinion Concept

No No Partial Link Cross-
Opinion Link Link Exists Entropy

Count 118 13 25 7 0.619

The second data set was obtained from a study on students learning about rainwater runoff

with responses from 95 6th-grade students in the southeastern United States (Basu et al., 2022;

Hutchins et al., 2021; McElhaney et al., 2020; Zhang et al., 2020). Responses were given

in the English language. In this study, three questions related to a fictitious student named

“Libby” were asked. The six concepts came from the following three questions where their

associated concepts were:

Question 1: What do you think the different-sized arrows in Libby’s model could mean?

Question 1 had one correct response: the size of the arrows indicates the amount of water.

Question 2: What are two things that you would change about Libby’s model to explain

where the water goes? This question focused on finding errors in the model, explaining the

error, and providing the correct answer. Good answers to the question would included two

concepts: the size of the runoff and absorption arrows should sum to the size of the rain-

fall arrow (conservation of matter), and the direction of the runoff arrow should be pointing

downhill.
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Question 3: What are two things that Libby’s model does a good job of explaining? The

ideal answer to this question could address three concepts: rainfall either gets absorbed or

becomes runoff, the sizes of the arrows in the diagram correspond to the different amounts of

water, and rainfall is the origin of the water.

The six concepts from the Rainwater data set are shown in Table 2. They were each

modeled individually as a binary classification task. Student responses that included the

corresponding concept were coded as Present. Responses were otherwise coded as Absent.

Table 2 Concepts present in each question for Rainwater Runoff

Question Concept Description
1 C1 Arrow size indicates the amount of water
2 C2a Size of runoff and absorption arrows should sum to the size of rainfall arrow
2 C2b Direction of runoff arrow should be pointing downhill
3 C3a Model demonstrates rainfall either absorbed or becomes runoff
3 C3b Model illustrates where water is coming from
3 C3c Model uses arrow size to indicate water amount

As previously mentioned, many small educational data sets are imbalanced. Table 3 shows

the label quantities indicating the scarcity of data and the corresponding cross-entropy, show-

ing the degree of imbalance in the Rainwater concepts. A data set balanced across two labels

would have a cross-entropy of 1.

Table 3 Rainwater Runoff Student Response Data
Split per Question

Concept Absent Present Cross-Entropy
1 10 85 0.485
2a 25 70 0.831
2b 64 31 0.911
3a 44 51 0.996
3b 73 22 0.895
3c 57 38 0.971

3.3 Augmentation Approach

Tables 1 and 3 show the label quantities for each concept (with the majority label in bold),

along with the cross-entropy. Cochran et al. (2022) showed that balancing the data set was
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imperative to get a reliable performance result when fine-tuning with small educational data

sets. Each label would have equal quantities to balance a data set, and the cross-entropy values

would be at or near 1.0 for binary labels and closer to 2.0 for a data set with four labels.

In this work, we define an augmentation level of 0x to indicate when all labels have the

same quantity as the majority quantity of reference for that data set. Therefore, the data set

was balanced. That is, 0x does not mean that there was no augmentation, but that augmen-

tation was used to add enough data per label to equal the majority quantity in the original

set for all labels. For example, with the French data with a majority quantity of 118 for “No

Opinion”, we needed 105 additional examples of “No Link”, 93 of “Partial Link”, and 111

of “Link Exists” to reach 0x, or 118 examples per label. Additional augmentation was then

applied in multiples of the majority quantity, starting at 1x and going up to 100x, or 100 times

the majority quantity for that data set.

With GPT, we generated data using the prompt “paraphrase this sentence” and inserted

each actual student response to fill in the rest of the language prompt. We repeated this for

each student’s response. For Llama, a similar approach was used, except that the instructions

for generating text were placed in the “system content” section and the example prompt was

placed in the “prompt” section of the API. The Llama system content used for English sam-

ples was “Your task is to generate a response similar to the text provided, without saying

the same exact text.” For the French samples, the system content was “You will be provided

with a sentence in French, and your task is to generate a response similar to the text provided

without saying the same exact text, and return it in French.”

The data was generated, stored, and used directly to fine-tune the BERT-based language

models. The only modification was to add BERT’s special [CLS] and [SEP] tokens so the

model could process the text properly.
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3.3.1 Temperature

Both GPT and Llama provide a method for varying the degree of freedom in generating text

by adjusting the input parameter, “temperature”. Temperature sampling balances predictabil-

ity and creativity during text generation. Higher temperature settings allow less likely tokens

to be selected during text generation, whereas a lower temperature value increases the con-

fidence in statistically most likely choices. GPT allows a floating-point temperature range of

0.0 to 1.0, whereas Llama has a temperature range of 0.0 to 2.0. In this study, we performed

tests at temperature values of 0.1, 0.5, and 0.9 for GPT and 1.5 and 2.0 for Llama. The results

were then analyzed to determine if temperature was an important factor in text generation in

that it affected fine-tuned model performance.

0 10 20 30 40
Average Word Count

Self (0)

GPT (0.1)

GPT (0.5)

GPT (0.9)

Llama (1.5)

Llama (2.0)

M
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el
 (t

em
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re
)

15.8

25.7

27.3

28.1

43.1

44.4

Fig. 1 Average Word Count of Generated Responses based on Model and Temperature Setting.

The different temperature settings for the models had a significant effect on the length

and complexity of the generated sentences. Figure 1 shows the average word count for each

text generation method and temperature. The “Self (0)” bar shows the average length of the

original student texts. Examples of generated texts are provided in the following section.
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3.3.2 Sentence Complexity

As mentioned above, sentences generated by GPT and Llama showed differing profiles. The

GPT-generated responses were similar in length and complexity to the student’s responses.

However, the Llama-generated responses were much longer and more complex than those

generated by GPT. The Llama model with a temperature = 2.0 showed the highest complexity

and longest length of all models and temperatures that generated responses. In this section,

we describe how we measured sentence complexity.

There are many different metrics for readability. For this study, we used the Gunning

fog index,1 developed in 1952. Although the Gunning fog metric was developed for use on

English texts, its definition is simple enough to apply to other languages with the same alpha-

bet. It also allows us to directly compare (albeit approximately) the readability levels between

languages. For this research, we are less concerned about the absolute readability levels for

the texts and more interested in the relative complexity levels of the generated texts.

The Gunning fog index is meant to reflect the number of years of schooling that a student

would need to be able to read the text. It is defined in terms of the number of words in the

text, the number of sentences, and the number of complex words, i.e., words with 3 or more

syllables (not counting common suffixes). It is calculated as:

0.4
[

words
sentences

+100
complexWords

words

]
With respect to the United States education system, fog index values from 1 – 6 would

be associated with elementary school (i.e., up to roughly age 12), scores from 7 – 12 denote

middle to high school, 13–16 are college level, and 17 or above would indicate graduate or

post-graduate level.

In addition to the limitation mentioned above that the Gunning fog formula was developed

for English-language texts, other limitations are that its accuracy is best with texts of over 100

words. It also relies on some simplifying assumptions. For example, some words of three or

1https://en.wikipedia.org/wiki/Gunning fog index
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more syllables words are easily understood by younger students. But again, we are primarily

interested in comparing the complexity of texts rather than for computing the most accurate

absolute readability values.

Table 4 shows an original student-generated correct answer to rainfall question 3a and

LLM-generated text responses with different temperatures. It also gives the Gunning fog

readability score for each. Table 5 shows examples from the French Video Games data set,

also with the Gunning fog readability scores.

Table 4 Sample of Generated Student Responses for Rainwater Runoff (Concept 3a). (Note: GF is the
Gunning-Fog Readability score for the sample.)

Generator Temp Sample for concept 3a GF Score

Original I think it means the amount of rainfall or water that is either falling, being
soaked in, or running off.

8.0

GPT 0.1 The word “rain” means the amount of rainfall or water that is either
falling, being soaked in, or running off.

8.8

GPT 0.5 The word “rain” usually refers to precipitation, which is water that falls
from the sky, is soaked in, or runs off.

12.7

GPT 0.9 I think what you are trying to say is that rain means liquid water that falls
from the sky, gets soaked up by the ground, or runs off.

11.2

Llama 1.5 I believe it refers to the sum of precipitation, absorption, and drainage of
water in a specific area, encompassing water that’s falling from the sky,
being absorbed into the ground, and flowing over the surface.

19.7

Llama 2.0 So you’re referring to the total sum of water fluxes involved in the hydro-
logic cycle, encompassing precipitation, infiltration, runoff, and perhaps
also evapotranspiration, which together govern the flow of water within
watersheds and ecosystems.

25.4

To determine if the two generators with their different temperature scores were creating

texts with significantly different complexity values, we compared the readability scores of the

texts using t-tests. Our initial observations suggested two things:

• Higher temperature settings resulted in more complex sentences (i.e., higher readability

indices).

• Llama3 70b generated more complex sentences than GPT 3.5 did.

Accordingly, we performed t-tests to evaluate these observations. More specifically, for

each separate question in our French and English data sets and for each generator / temper-

ature combination, we performed a two-sample, one-sided t-test to test the hypothesis that
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Table 5 Sample of Generated Student Responses for the French Study by Model and Temperature (T). (Note: GF
is the Gunning-Fog Readability score for the sample.)

Generator T Sample GF score

Original Text Je penses que d’apres les sources telles que la tribune et le monde avec des
resultats d’experiences assez divergeants, la violence ne serait pas forcement
liée aux jeux vidéos mais plutot peut etre à la nature meme de la personne qui
joue. peut etre elle ne fait que faire ressortir ce qu’est réellement la personne en
question. c’est donc quelque chose qui depend de plusieurs variables.

13.6

GPT 0.1 Je pense que les résultats des expériences telles que la parole et le monde mon-
trent que la violence n’est pas forcément liée à des jeux vidéo, mais plutôt à la
nature du joueur en les jouant. Peut-être révèlent-ils ce qui se cache sous la sur-
face de l’individu. Cela dépend des facteurs.

8.4

GPT 0.5 Je pense que les résultats d’expériences indiquent que la violence n’est pas
forcément liée aux jeux vidéos, mais plutôt à la nature même de la personne qui
les joue. Peut-être qu’elle ne fait que révéler ce qui est réellement la personne,
et cela dépend de plusieurs variables.

13.7

GPT 0.9 Je crois que selon les sources telles que la tribune et le monde, avec des résultats
d’expériences assez différents, la violence ne serait pas forcément liée aux jeux
vidéo, mais plutôt peut-être à la nature même de la personne qui joue. Peut-être
qu’elle ne fait que ressortir ce qu’est réellement la personne en question. C’est
donc quelque chose qui dépend de plusieurs variables.

11.6

Llama 1.5 Je crois que, nhu ce que suggèrent des études de différentes sources, notamment
La Tribune et Le Monde, les résultats sont contradicoires et qu’il est difficile de
drawers une corrélation directe entre les jeux vidéos et la violence. Il est pos-
sible que ces derniers ne fassent que révéler certaines tendances préexistantes
chez les joueurs, plutôt que d’en être la cause directe. De plus, il est évident
que d’autres facteurs interviennent, ce qui rend la compréhension de cette
problématique complexe.

15.1

Llama 2.0 Il est intéressant de noter que les recherches et les avis d’experts tels que ceux de
Le Monde diplomatique et de nombreuses enquêtes montrent des résultats con-
tradictoires, ce qui suggère que la violence n’est pas une consequence directe
des jeux vidéos, mais plutôt qu’elle constitue une réponse à différents stimu-
lus, notamment lié à la personnalité très especifique du joueur en lui-même.
D’autres éléments, tels que l’environnement familial, vient en complément
porter cette compréhension plus globale signalant ainsi ne plus ne qu’une pos-
sibilité d’eremble mais diversite possibilités.

26.0

the generated texts’ readability scores were the same as those of the “simpler” generators,

i.e., those with lower temperature settings. We used a one-sided t-test because we expected

that the simpler generators would generate simpler sentences. We used 1000 texts randomly

sampled from those returned by each generator / temperature combination.

Table 6 shows the significance values for the French video games question and for English

rainwater questions 2a and 2b. The generator / temperature combinations are shown in the

first row and first column for each subtable. The second row and column show the means and
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standard deviations for the readability scores. Each cell within the table shows the significance

level, with “***” indicating p < 0.001, and “*” indicating p < 0.05.

For example, the French question portion at the top of Table 6 shows that, in every case,

the mean readability of texts generated by a more “complex” generator (i.e., one with a higher

temperature) were significantly higher than those from a “simpler” generator. All the differ-

ences were highly significant (p < .0001) with the exception that texts from GPT 3.5 with a

temperature of 0.9 had a mean readability of 13.9 (SD = 3.8), which was only significantly

higher at a p < .05 level from those generated by GPT 3.5, Temp=0.5, M = 13.6, SD = 3.9.

Table 6 Significance of Gunning fog readability score differences between
Generators (with given temperatures), for French videogames question and
Rainwater Questions 2a and 2b. Each row indicates the probability that the
distribution of readability scores of 1000 randomly selected sentences is not
greater than those generated by the Generator above. (*** indicates p < 0.001, *
indicates p < 0.05)

French Games Question

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 12.8 (4.8) 13.6 (3.9) 13.9 (3.8) 16.8 (3.5)

GPT 0.5 13.6 (3.9) ***
GPT 0.9 13.9 (3.8) *** *
Llama 1.5 16.8 (3.5) *** *** ***
Llama 2 23.1 (9.5) *** *** *** ***

Rainwater Question 2a

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 8.8 (3.4) 8.9 (3.4) 9.4 (3.5) 16.1 (4.8)

GPT 0.5 8.9 (3.4) 0.24
GPT 0.9 9.4 (3.5) *** ***
Llama 1.5 16.1 (4.8) *** *** ***
Llama 2 17.2 (5.2) *** *** *** ***

Rainwater Question 2b

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 9.0 (3.3) 9.2 (3.3) 9.8 (3.5) 16.6 (4.5)

GPT 0.5 9.2 (3.3) 0.10
GPT 0.9 9.8 (3.5) *** ***
Llama 1.5 16.6 (4.5) *** *** ***
Llama 2 17.9 (8.3) *** *** *** ***

Table 7 shows the significance levels for readability between sentences for English-

language rainwater questions 1 and 3a, 3b, and 3c. Here, we can see that there were no
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Table 7 Significance of Gunning fog readability score differences between
generators, for Rainwater Questions 1 and 3a – 3c.

Rainwater Question 1

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 8.2 (3.1) 8.3 (3.4) 9.0 (3.7) 14.1 (5.1)

GPT 0.5 8.3 (3.4) 0.10
GPT 0.9 9.0 (3.7) *** ***
Llama 1.5 14.1 (5.1) *** *** ***
Llama 2 15.6 (6.2) *** *** *** ***

Rainwater Question 3a

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 10.0 (3.7) 9.6 (3.6) 10.2 (3.5) 15.9 (4.9)

GPT 0.5 9.6 (3.6) 0.98
GPT 0.9 10.2 (3.5) 0.10 ***
Llama 1.5 15.9 (4.9) *** *** ***
Llama 2 16.9 (5.4) *** *** *** ***

Rainwater Question 3b

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 10.2 (3.4) 10.1 (3.7) 10.1 (3.4) 15.8 (5.0)

GPT 0.5 10.1 (3.7) 0.78
GPT 0.9 10.1 (3.4) 0.60 0.30
Llama 1.5 15.8 (5.0) *** *** ***
Llama 2 16.8 (5.7) *** *** *** ***

Rainwater Question 3c

Gen/Temp GPT 0.1 GPT 0.5 GPT 0.9 Llama 1.5
Mean(SD) 10.1 (3.5) 9.7 (3.6) 10.0 (3.5) 15.8 (5.0)

GPT 0.5 9.7 (3.6) 0.99
GPT 0.9 10.0 (3.5) 0.83 *
Llama 1.5 15.8 (5.0) *** *** ***
Llama 2 16.8 (5.2) *** *** *** ***

significant differences between the readability of texts generated by GPT 3.5 at different

temperature settings for several questions. Llama did, however, generate significantly more

complex texts.

After we created artificial student responses like these using the two LLMs with five dif-

ferent temperature settings, we used those artificial responses to augment the original (small)

data sets and balance the data between the outcome labels. Then, the augmented data sets

were used to fine-tune classifiers and test model classification performance to see if the

performance improved.
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3.4 Model Selection

Since we had data sets in two different languages, we chose three multilingual models and

one French model to compare the effect of input language when performing fine-tuning.

The chosen models and their original intended tasks are shown in Table 8. We downloaded

pre-trained models from HuggingFace because multilingual models are available, including

French and English languages, perform text classification as a downstream task, and have a

high number of downloads. We chose BERT Base multilingual uncased from this narrowed

list as a general model. Next, we chose the Microsoft Multilingual L12 H384 model due to its

performance gains over the base BERT model and its improved ability for fine-tuning (Wang

et al., 2020). Additionally, we selected jeveuxaider/activity-classifier (HuggingFace, n.d.), a

French multi-class classifier that has a high number of downloads, and classla/xlm-roberta-

base-multilingual-text-genre-classifier (Kuzman, Mozetič, & Ljubešić, 2023) which performs

text classification based on xlm-roberta-base and fine-tuned on a combination of three genre

data sets.

Table 8 Models Chosen for Evaluation

Model Intended Target Task
nlptown: BERT Base multilingual uncased Sentiment Analysis
Microsoft: Multilingual L12 H384 Language Understanding and Text Generation
jeveuxaider: activity-classifier French Text Classification
classla: xlm-roberta-base-multilingual-text-genre-classifier Multilingual Text Classification

We fine-tuned each pre-trained model using original data augmented with generated data

created by the LLMs. During model fine-tuning, we used the following hyperparameters:

max len 128, epochs 3, batch size 32, optimizer Adam, learning rate 1 e-5, warmup 0.1,

cost sensitivity 0. Twenty percent of the data was held out from the original data set for

testing purposes using a different random seed for each experiment. No augmented data were

included in the test sets that we used to measure model performance. Any augmented data

generated from the test data was excluded from the training set for that particular model so it

would not inadvertently provide context around the withheld test data set, creating an inflated
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performance. Six augmentation methods (self + five LLM / temperature combinations) were

applied to each of the four pre-trained BERT models, which were fine-tuned for each of the

six rainwater concepts and one French concept. Ten seeds were used for each model, and nine

augmentation levels were chosen (0, 1, 3, 8, 21, 34, 55, 89, and 100). This 6 x 4 x 7 x 10 x

9 combination resulted in 15,120 (!) separate BERT-based models that were fine-tuned and

evaluated for this study. We used the micro-F1 metric as the performance measurement. Each

model’s performance was averaged over the ten seeds.

3.5 Data Creation, Model Fine-Tuning and Testing

Building models for this paper was computationally intensive, and online resources for model

building, such as Google Colab and IBM Watson, were inadequate to perform this task. For

this reason, a machine was created to perform all calculations for this set of experiments

consisting of an AMD 1900 Threadripper CPU and a single NVIDIA GeForce RTX 2080 Ti

graphics card with 11 GB of memory. This machine fine-tuned all 15,120 models individually

with varying levels and types of augmentation from the two data sources. Generating the

required amount of text for augmentation from the generative LLMs and fine-tuning each

model took over eight weeks of continuous, 24/7 GPU usage.

3.6 Baseline Evaluation

We evaluated two different baseline models for each concept. For the a priori model, we chose

the majority classification label for each concept. In other words, we simply chose the major-

ity label as the guess for the classification. For our unaugmented baseline, we applied BERT

prototypically without data augmentation or balancing. The baseline performance results and

the BERT results on augmented data are included in the tables in the next section.
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4 Results

Tables 9, 10, 11, and 12 present summaries of the results for each model. Each row corre-

sponds to a concept: one for the French data set and six for the English data set. The leftmost

data column shows the percentage of the answers for each concept marked with the majority

label. The following two columns present the baseline results. On the right are the maximum

micro-F1 scores for each concept using self-augmented or LLM-generated data. The highest

performance level for each concept is shown in bold. The two rightmost columns indicate the

augmentation level and temperature that were used to achieve maximum performance. Recall

that the temperatures for GPT are on a 0 to 1 scale, whereas the Llama temperatures are on a

0 to 2 scale.

Table 9 Microsoft Multilingual L12 H384 Model Performance (micro-F1) of Baseline vs All Augmented
Models

% Maj. Baseline Max Performance

Concept Label a priori Unaug. Self GPT-3.5 Llama3 Aug. Temp

French 73 0.730 0.371 0.651 0.612 0.894 100x 1.5
C1 89 0.890 0.735 0.789 0.816 0.853 - -
C2a 73 0.730 0.757 0.932 0.816 1.000 21x 2
C2b 67 0.670 0.547 0.636 0.884 0.936 55x 2
C3a 54 0.540 0.532 0.721 0.832 0.879 100x 2
C3b 77 0.770 0.684 0.926 0.947 0.942 21x 0.9
C3c 60 0.600 0.568 0.742 0.832 0.879 100x 2

Table 10 Jeveuxaider Activity-Classifier Model Performance (micro-F1) of Baseline vs All Augmented
Models

% Maj. Baseline Max Performance

Concept Label a priori Unaug. Self GPT-3.5 Llama3 Aug. Temp

French 73 0.730 0.575 0.667 0.789 0.924 100x 1.5
C1 89 0.890 0.789 0.753 0.789 0.873 - -
C2a 73 0.852 0.842 0.895 0.905 0.973 21x 2
C2b 67 0.670 0.737 0.789 0.858 0.921 55x 2
C3a 54 0.540 0.460 0.763 0.815 0.805 55x 0.1
C3b 77 0.770 0.947 0.868 0.974 0.952 21x 0.9
C3c 60 0.600 0.527 0.747 0.868 0.905 100x 2
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Table 11 Classla xlm-roberta-base-multilingual-text-genre-classifier Model Performance (micro-F1) of
Baseline vs All Augmented Models

% Maj. Baseline Max Performance

Concept Label a priori Unaug. Self GPT-3.5 Llama3 Aug. Temp

French 73 0.730 0.371 0.681 0.821 0.939 100x 2
C1 89 0.890 0.789 0.795 0.816 0.895 89x 2
C2a 73 0.852 0.842 0.895 0.916 1.000 8x 2
C2b 67 0.670 0.737 0.789 0.889 0.947 34x 2
C3a 54 0.540 0.460 0.726 0.816 0.867 89x 2
C3b 77 0.770 0.947 0.947 0.968 0.974 100x 2
C3c 60 0.600 0.525 0.721 0.842 0.894 100x 2

Table 12 Nlptown BERT Base multilingual uncased Model Performance (micro-F1) of Baseline vs All
Augmented Models

% Maj. Baseline Max Performance

Concept Label a priori Unaug. Self GPT-3.5 Llama3 Aug. Temp

French 73 0.730 0.371 0.648 0.821 0.873 100x 1.5
C1 89 0.890 0.789 0.789 0.821 0.863 - -
C2a 73 0.852 0.842 0.842 0.905 0.968 21x 2
C2b 67 0.670 0.737 0.753 0.889 0.937 89x 1.5
C3a 54 0.540 0.544 0.747 0.732 0.842 89x 2
C3b 77 0.770 0.947 0.947 0.847 0.953 100x 2
C3c 60 0.600 0.525 0.753 0.905 0.926 100x 1.5

Figure 2 illustrates how each of the six augmentation methods (self + five tempera-

ture/LLM combinations) affected model performance as more augmentation was used to

fine-tune each of the four types of models using the French data. The “self” label on the chart

indicates the self-augmentation method of creating multiple copies of the original data. The

numbers 0.1, 0.5, and 0.9 indicate the temperature setting used on the GPT API to provide

varied responses, as previously discussed. For Llama, the temperature settings were 1.5 and

2. At levels of augmentation less than 20x, classification performance with all of the BERT

models was generally unreliable.

Figures 3, 4, 5, and 6 show how each model’s performances varied with training data using

the rainwater data in English, showing different augmentation types of self, and the five LLM

/ temperature combinations used to generate text. Here, too, augmentation levels below 20x

resulted in unreliable classifications in the majority of cases. The classifications were quite

good, but the performance depended significantly on the particular concept being classified.
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Although there was more variability here, Llama-generated text with the highest temperature

= 2 generally resulted in the best performance.
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Fig. 3 Rainwater Runoff Model Performance (micro-F1) per Augmentation Amount for each Augmentation Type
for the Microsoft Multilingual L12 H384 Model. (Note: The x-axis shows the level of augmentation applied from
0x to 100x.)

Table 13 shows the peak performance for each concept, along with the corresponding

augmentation details. As mentioned above, for the French data, Llama with a temperature

setting of 1.5 provided the best performance, at a high level of augmentation, 89x. The Classla

xlm-roberta-base-multilingual-text-genre-classifier model produced the highest classification

accuracy, but the other models also performed well, as shown in Figure 2.

For the English concepts, again the Llama LLM generated the most useful sentences for

augmenting the training set, with the exception of concept C3b, where the GPT-generated

sentences performed equally well, with a very high micro-F1 of 0.974. For the English sen-

tences, however, a higher temperature (2 for Llama, .9 for GPT) produced more useful

texts. High augmentation levels were also beneficial, with one notable exception; both the
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Fig. 4 Rainwater Runoff Model Performance (micro-F1) per Augmentation Amount for each Augmentation Type
for the Jeveuxaider Activity-Classifier Model. (Note: The x-axis shows the level of augmentation applied from 0x to
100x.)

Microsoft Multilingual L12 H384 model at 21x augmentation and the Classla xlm-roberta-

base-multilingual-text-genre-classifier at 8x augmentation were able to correctly classify

every item in the test for each of the 10 random seeds that were used.

Table 13 Best Performance (micro-F1) Achieved for Each Model Chosen for Evaluation

Concept Model Aug LLM Aug Level Temperature Max Performance
French Classla Llama 89x 1.5 0.939
C1 Classla Llama 89x 2 0.895
C2a Microsoft and Classla Llama 21x and 8x 2 1.000
C2b Microsoft Llama 55x 2 0.936
C3a Microsoft Llama 100x 2 0.879
C3b Microsoft and Classla GPT and Llama 21x and 100x 0.9 and 2 0.974
C3c Nlptown Llama 100x 1.5 0.926

5 Discussion

Recall RQ 1, which asked if LLM-augmented data sets would improve classifier model per-

formance over unaugmented data sets. Our hypothesis H1 stated that additional augmented

data would improve model performance for smaller data sets, compared to unaugmented
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Fig. 5 Rainwater Runoff Model Performance (micro-F1) per Augmentation Amount for each Augmentation Type
for the Classla xlm-roberta-base-multilingual-text-genre-classifier Model. (Note: The x-axis shows the level of
augmentation applied from 0x to 100x.)

training sets. The current study showed that models trained on LLM-augmented data outper-

formed the unaugmented models for all seven concepts, no matter which of the four classifiers

was used.

However, the a priori computation, which always selected the majority label, outper-

formed augmented models on one of the data sets, C1. This is likely due to the severe

imbalance of the data set prior to augmentation. The C1 data set had 89% of the data marked

with the majority label and an entropy value of 0.485. Note in Table 2 that the first concept

was simple, and most students would likely get this question correct as it simply asks what the

size of the arrow on a diagram indicates (i.e., the amount of water). Whenever there are sim-

ple or, on the contrary, difficult questions, there will likely be an imbalance in the data set. In

our testing, we observed that the more straightforward the question, the more imbalanced the

data was because the majority of students got it correct. Incorrect responses were few, mak-

ing it difficult to generate enough unique samples to expand the minority class, resulting in

a minority class augmentation pool that resembles self-augmentation, which has been shown
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Fig. 6 Rainwater Runoff Model Performance (micro-F1) per Augmentation Amount for each Augmentation Type for
the Nlptown BERT Base multilingual uncased Model. (Note: The x-axis shows the level of augmentation applied
from 0x to 100x.)

to only improve performance slightly more than no augmentation. The resulting classifier

suffers in performance due to the minority class deficiency.

In our testing, only one combination of classifier model and augmentation method

increased performance enough to outperform blind guessing of the majority label. We con-

cluded from our experimentation that data sets with an entropy of less than 0.5 were

challenging to augment sufficiently (i.e., with enough generated data) to create a classifier

that would outperform simply guessing the majority label. This shows that the initial classifier

model selection was important because models do not rise in performance equally, and exper-

imentation is necessary to determine which classifier models will perform the best. Because

classifier model performance is difficult to predict, we recommend testing to find the best-

performing classifier model by augmenting the data and applying additional fine-tuning. It is

also essential to augment the training set and continue to train the model with this data until

peak model performance is achieved. The results supported the hypothesis for the unaug-

mented baseline, but concept C1’s a priori performance outperformed augmented classifier

performance in three of the four classifiers trained.
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RQ 2 asked if using LLM-generated responses would outperform self-augmentation when

training models for classification. Our hypothesis H2 stated that training with LLM-generated

responses would outperform simple replication of existing data. This hypothesis was sup-

ported by our results which showed that maximum performance was achieved using generated

responses for all seven concepts. LLM-generated responses outperformed self-augmentation

because the generated texts were longer and more complicated. Higher performance was

achieved above augmentation levels of 20x, most notably by the Llama-augmented texts

with a temperature = 2 for binary classification. However, it is interesting to note that since

the French data was a multi-class classification (i.e., with four possible labels), performance

was better with a lower temperature = 1.5. In all cases, performance by self-augmentation

plateaued more quickly and often decreased in performance with additional augmentation,

indicating that classifier model training is more stable when using generated text. The self-

augmentation method led to unstable models that varied in performance at higher levels of

augmentation.

RQ 3 asked if adjusting the randomness of generated student responses would affect

model performance. H3 proposed that augmenting the data with slightly more risky (i.e.,

varied) answers would provide the best performance in general. Examining the maximum

performance at each augmentation level revealed that Llama with temperature = 2 was the

top performer among the five generator / temperature combinations used for student response

generation. Figure 1 above shows the average word length of the generated responses based

on the model and temperature combination. The average student response was 15.8 words

on average, indicated by the “Self(0)” value. Tables 4 and 5 above show a sampling of the

sentence complexity, and Figure 1 shows the word count, demonstrating that Llama with a

temperature = 2 generated the longest and most complex texts. Figures 2 and 3 and Table 9

demonstrated that models using Llama-generated texts with a temperature = 2 also resulted

in the highest performance. This setting generated texts that were 44.4 words on average,

whereas GPT with a temperature = 0.1 generated responses of 25.7 words on average, or
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about 60% as long. The longer set of generated texts from Llama appears to lead to improved

performance in almost every case. Tables 4 and 5 above also showed an increase in response

complexity, paralleling the increase in word count.

Interestingly, GPT-generated responses did not increase in complexity with a higher tem-

perature value like the Llama-generated responses, as shown in Table 6. The Gunning fog

readability score decreased with larger temperature values for GPT, especially for concepts

3a, 3b, and 3c. This could be attributed to the greater complexity of the answers associated

with these concepts. Recall Table 2 where the first concepts (1, 2a, 2b) were the ques-

tions were simpler, asking for either direction or quantity measures. Question 3 required a

more advanced response as the students needed to show an understanding of how the model

represented each of the concepts.

It appeared that the responses from GPT more closely resembling a rewording of the

original text, as directed by the prompt instructions. Llama, on the other hand, went beyond

rewording and attempted to explain the prompt with higher temperature values and, therefore,

generated much more complex completions. This indicates that future performance gains may

be had with additional prompt engineering, where input to the LLM is modified to guide the

generator to producing more suitable alternative texts for augmenting the training set.

The charts presented in Figures 2, 3, 4, 5, and 6 above showed that each data set

augmented by the different models and temperatures varied in performance, but the top per-

forming models used augmented data from Llama with a temperature = 2. Toward higher

levels of augmentation, the more risky, variable generation continued to increase model per-

formance. These results support the hypothesis that temperature settings do affect model

performance when the responses generated have a larger word count and are more complex.

From this set of experiments, the generated responses with the highest sentence complexity

pushed classification model performance to the highest levels for the English rainfall data
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set. However, the lower temperature = 1.5 for Llama produced the highest classifier perfor-

mance for the French video games data set. For this reason, this hypothesis was only partially

supported.

Finally, RQ 4 asked if performance would ultimately level off or degrade when the train-

ing set reached a sufficient level of augmentation. H4 posited that the performance with

additional augmentation would either level off due to diminishing returns, or even degrade due

to a training set that became less centered on the target concept. In self and GPT-augmented

models tested, performance peaked and degraded after 55x to 89x augmentation. For the

Llama-augmented models, performance continued to rise as the augmentation neared 100x,

suggesting more augmentation could be applied above 100x to achieve even higher perfor-

mance. This hypothesis was partially supported as not all models degraded as augmentation

amounts reached 100x. They will likely eventually level off, but this evidence does not fully

support the hypothesis. Table 13 above showed the augmentation level at which performance

peaked for each concept, showing the model and augmentation details.

H5 suggested that the performance would slowly degrade with higher temperatures and

more varied generated responses. This was true up to 100x for our experiments. As shown in

Figures 2 and 3 above, using texts from the Llama generator with the highest temperature =

2, performance rose with increasing amounts of augmentation, but did not show the decrease

that the other combinations of generator and temperature did at higher augmentation levels.

Due to this observation, this hypothesis was partially supported by the data. As augmentation

increased, the “self” method peaked and began to decline in performance with additional

training data added, where the augmented models using GPT did not drop off as much. With

Llama-generated texts, the peak in performance was seen at higher amounts of augmentation,

and many did not degrade. This indicates the model was more tolerant of generated data,

especially when the text was more complex and lengthy than the original text. It was difficult

to determine the exact level of augmentation required as a universal constant. From this study,

the exact level of augmentation required to gain a sufficient level of performance varied with

the data set and model chosen.
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6 Conclusion

This study aimed to determine if we could improve classification of student answers by

augmenting small, often imbalanced, training sets with texts generated by GPT-3.5 and

Llama3 70b at different temperature settings. We used one French and three multilingual

BERT-based classifier models, trained them using two different data sets in two languages

augmented by six different methods, one using self-augmentation and five with GPT and

Llama augmentations, and compared the results to two baseline models. Our results showed

that including texts generated by these two LLMs produced marked performance improve-

ments over self-augmentation alone. The texts generated from Llama with higher temperature

settings resulted in the best overall classifier performance.

Another objective of this study was to determine if temperature settings in response gen-

eration would affect classifier performance. Our results showed that, especially for Llama,

higher temperature settings produced texts that were longer and more complex. Temperature

settings close to zero pushed the LLMs to generate texts much closer to the original text in the

prompt. The higher the temperature setting, as it approaches infinity, the closer the response

generation comes to universal sampling, meaning the probability is ignored and every possible

completion is equally likely to be generated. Both GPT and Llama have limits on the tempera-

ture, but higher temperatures allow for completions with a lower probability of being the best

completion. Most of the models augmented with Llama-generated responses with tempera-

ture = 2 pushed the performance beyond what was achieved by other augmentation methods

because the text generated from this combination of model and temperature provided more

robust, varied training sets that included longer, higher-complexity texts. This type of aug-

mentation allowed the models to continue to increase performance with more augmented data

before performance began to show signs of leveling off. The performance also maintained a

stable increase longer than those with lower temperatures, including self-augmentation.

We tested only one classifier model in the original conference paper that we are extending

here (Cochran, Cohn, Hastings, & Rouet, 2023). In this paper, we include three additional
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models. This was done to see if model selection was essential or if augmentation would

overshadow any performance differences between classifiers. As shown in Table 13 above,

the Classla model performed well for the severely unbalanced data sets for concept C1 and

the French data, whereas the Microsoft model performed higher in most other concepts. Since

the Jeveuxaider classifier was trained on French text, it might be assumed that this model

would perform best on French data. As it turns out, this model performed well but was not

the overall highest performer. Selecting a model was not as easy as picking one trained in the

language of the data set and fine-tuning it on the target task. Some models that may not appear

to be the ideal fit initially will sometimes perform better than those that fit the problem well.

These empirical tests show that augmentation using LLM text generation can markedly

improve performance over unaugmented or self-augmented models. It also showed that gen-

erated texts can vary in quality, and the more complex and longer the word length of the text

is, the better the performance of classification models in general.

Imbalance in the data set is problematic. Both data sets had areas where they were severely

imbalanced. For the English data set, specifically with concept C1, even the highest amount

of augmentation with GPT-generated texts was insufficient to outperform the simple a priori

baseline due to the high level of imbalance. Only the Classla model with Llama augmentation

with temperature = 2 was able to perform better. This shows the importance of having more

complex and lengthy texts for training and the impact of the classification model chosen to

fine-tune.

From these observations, the main takeaways from this study are:

• Better results can be achieved by balancing training sets using augmentation and keeping

those sets balanced as more augmentation is added.

• Significant performance increases can be obtained using an LLM to generate augmentation

data from the original data set.
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• Increasing the temperature setting of the generating LLM can produce generated texts

which are longer and more complex, improving performance over shorter texts that are

closer in size and complexity to the original texts.

• Models trained on generated data have different levels of maximum performance. This

study showed that by testing multiple models and varying augmentation levels, we could

find the best combination of generator, temperature, and classifier to produce the best

highest performance.

Using a higher temperature when generating texts from an LLM, specifically Llama,

produced the best classification performance. The added benefit of using the higher temper-

ature was that the generated responses were more diverse, allowing the model to continue

improving, even at higher augmentation levels.

7 Future Work

This study was limited by the processing power needed to train and compare models. As

such, we chose a limited number of temperatures to test on each model and limited the aug-

mentation amount to 100x at its maximum. Even so, it took many weeks of round-the-clock

fine-tuning to perform the testing. Several models using Llama for augmentation continued

to rise in performance up to 100x. Continuing the augmentation to see the ultimate perfor-

mance the model could achieve would be an important metric to record. Dynamic testing

methods could also be used to limit unnecessary computation by pruning out models that are

not promising. In future work, there is a need to test more combinations of factors in aug-

mentation generation to exercise sufficient control and see if temperature was the only factor

in achieving higher performance.

Further work should also be done to determine augmentation methods that improve per-

formance on low-entropy data sets by identifying ways of enriching the minority classes of

the training data for the model, resulting in more varied minority label samples and, therefore,

higher performance.
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Temperature variation in generated texts significantly altered fine-tuned model perfor-

mance, and a combination of different temperatures or a combination of generating LLMs

should be investigated further to see if there is a tighter correlation between complexity and

downstream classifier performance.

Determining how much data is needed to maximize performance is traditionally complex

to test empirically because a typical data set is obtained from a study where the number of

instances produced is not a design feature. An alternative would be to use larger data sets

trained on a model, sample the data, and augment the smaller set by adding data from the

remaining data set to find where performance matches the full data set performance. Sampling

the data requires stratification to ensure a representative label distribution for training.

Another issue to address is that the data may not have samples representative of the entire

domain. The data set may contain responses that are only a subset of the entire domain space,

leaving a gap in learning for part of the problem space. Understanding the degree of variance

required in student responses could lead to a more generalized model that proves accurate

across the entirety of the domain.

Another technique that could be employed in maximizing completion complexity and

length and potentially expand the knowledge of a downstream classifier model to become

more generalizable would be applying prompt engineering to the generator’s input.

Finally, downstream tasks other than binary or multi-class classifiers should be tested

using LLM-generated training data to determine if performance can increase for those

particular tasks.
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