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Abstract

This paper presents an ACT-R model of a realistic menu item
selection task from a previous study. The model aims to ex-
plain observed trends in both the mean and dispersion of re-
sponse time (RT) with respect to both menu length and amount
of practice. Our model follows previous work in assuming that
the primary strategies for determining the location of the tar-
get menu item are visual search and recall from memory. The
model introduces a hypothesis about how the visual search is
performed that yields a very good fit with no free parameters
for the slope of the linear relationship between RT and menu
length. We validated this hypothesis by testing the model’s
predictions for the dispersion of RT. The model was also used
to generate predictions to test the hypothesis that the observed
RT reduction with practice could be predicted as the sum of
the time required for initiating the task and the lesser of the
realized visual search time or realized recall time. The model
generated predictions for both means and dispersion of RT as
a function of practice.

Introduction

Menu item selection is an important practical topic in
HCI. Locating a menu item can be accomplished by ei-
ther visual search or by recalling the location from mem-
ory. Each of these strategies requires the careful coor-
dination of cognitive, perceptual and motor mechanisms
to be efficient. Previous models of practice effects in
menu item selection have focused on the evolution of
only the mean RT (Cockburn, Gutwin, & Greenberg, 2007;
Das & Stuerzlinger, 2010). We investigated how the distribu-
tion of response time (RT) evolved across experimental con-
ditions. Our aim was to explore the coordination of the un-
derlying mechanisms within each of these strategies, as well
as the interaction of the two strategies.

Response time variance has gained attention more recently
as a useful window on the psychological processes underlying
task performance. This approach has received significant at-
tention in mathematical psychology accounts of speeded two-
choice tasks (Wagenmakers & Brown, 2007). We extended
that concern to menu item selection tasks by investigating the
psychological processes involved and how they contribute not
only to the evolution of the mean RT, as with previous work,
but how they contribute to the evolution of the dispersion of
the RT distribution.

The models from Cockburn et al. (2007) and
Das and Stuerzlinger (2010) both explained the observed
reduction in RT with practice as driven by a shift from a
visual search strategy to a strategy based on recalling item
locations. If this explanation is correct, then an accurate
detailed description of these strategies and their interaction
in terms of the underlying cognitive, perceptual, and motor
processes involved should allow accurate predictions about

the evolution of the RT distribution. We specifically aimed
to make predictions about the dispersion of RT as well as
the mean. Dispersion was quantified as median absolute
deviation, or MAD, which is less sensitive to outliers than
standard deviation.

There were two independent variables that we were inter-
ested in. Since visual search is necessarily used when there
is no prior exposure to a menu, the distribution of RT without
practice is determined entirely by the visual search strategy.
To investigate this we modeled the increase in mean RT with
menu length. Menu length was used instead of target posi-
tion because prior studies have indicated that visual search is
not strictly top-down (Byrne, 2001). Our second aim was to
model the reduction in mean RT with practice. The model
was constructed in ACT-R (Anderson, Matessa, & Lebiere,
1997), which has the requisite detailed perceptual-motor
modeling capabilities, as well as a detailed model of declara-
tive memory.

Cockburn et al. (2007) described an analytic model of
menu performance. The model predicts response times to be a
linear interpolation of visual search times and memory based
decision times. As users gain experience with a menu layout,
the interpolation shifts primarily to the decision strategy. The
mean RT for visual search is assumed to be a linear function
of the number of items in the menu. The decision strategy is
modeled with Hick’s law (Hick, 1952), which predicts RT for
a decision task as an increasing logarithmic function of the
number of alternatives.

Das and Stuerzlinger (2010) explored the memory recall
strategy in more detail. Their model adds an additional term
to the equation used by ACT-R to describe how the activa-
tions of declarative memory chunks change with time. This
additional term is intended to account for the proactive in-

terference with declarative memory learning caused by the
presence of distractor menu items other than the target. In
contrast to our model, the contributions to the total RT from
elements of the task other than declarative memory latency
are accounted for by a single multiplicative constant adjusted
to fit to the data. It was their hypothesis that proactive inter-
ference explains why mean RT does not decrease as fast as
would be expected if one assumes that the RT for the item re-
call strategy is determined primarily by the latency of declar-
ative memory recall.

Our model is similar to both of these in that it describes the
transition from a visual search strategy to a recall strategy.
The visual search strategy in our model was motivated by the
observation that the mean increase in RT per added menu item
without prior practice is very low, approximately 82ms after



factoring out movement time as described later. Our hypothe-
sis to explain this is that pre-attentive search, requests to shift
visual attention, and processing of encoded visual data occur
in parallel. In this respect, the visual search component of our
model is similar to the EPIC model from Hornof and Kieras
(1997). Each of these operations corresponds to a different
module in ACT-R. A key part of the ACT-R theory is that the
top level modules represent psychological operations that can
occur in parallel. To further validate the model, the model
was also used to generate predictions about the how disper-
sion of RT changes with menu length.

Our hypothesis to explain the observed reduction in RT
with practice was that RT could be predicted as the sum of
the time required for initiating the task and the lesser of the
realized visual search time or realized recall time. The model
embodies this hypothesis by describing the detailed execution
of each strategy in terms of the underlying cognitive, percep-
tual, declarative memory and motor operations. The lesser of
the realized times from either strategy is used because our hy-
pothesis supposes that the strategies operate in parallel. We
used the standard ACT-R equations for the declarative mem-
ory latency calculations and standard values for most param-
eters. As described below, we compared our predictions for
the reduction in RT with practice to empirical data and to
Das and Stuerzlinger (2010).

The model was validated with data from a previous study
described in Cockburn et al. (2007). That experiment was de-
signed to test their analytic model for the evolution of mean
RT with practice. Response time data was collected for multi-
ple menu lengths across multiple blocks with the same menu.
This makes the data useful for investigating trends in the RT
distribution versus both menu length and amount of practice.
In Cockburn et al.’s model (2007) for predicting mean RT as
a function of menu length, a regression line is fit to a subset
of the data to estimate visual search parameters. Likewise, a
subset of the data was used to estimate the parameters for the
decision process, which predicts response time as an increas-
ing logarithmic function of the number of menu items.

In contrast, our model provides a good parameter-free fit
for predicting mean RT for the same visual search data. There
was an interesting discrepancy between our model and exper-
imental data regarding the shape of the predicted relationship
between menu length and MAD. Our model’s predictions for
how the RT mean and dispersion evolve with practice were
not as close a match to the data, though the general trends
were reproduced. A closer look at the data shows that there
may be more than one effect responsible for the observed re-
duction in RT with practice.

Materials and Methods

The data used for validating our model came from the ‘static
+ unfamiliar’ condition in Cockburn et al. (2007). In that
condition, country names were used for the items. For each
block, the same set of country names was used throughout,
so the menu was static. The positions for each item were ran-

domly assigned, though constant throughout the block. Due
this randomness, and because the item text was not as famil-
iar as common menu items like ‘File ‘ and ‘New’, the menus
were unfamiliar.

The task on each trial was to select a cued menu item.
The item to select was cued when the subject clicked a but-
ton marked ‘Menu’. Movement times were measured from
when the cue was displayed, which occurred immediately af-
ter clicking the button, to when the correct item was clicked.
Trials that resulted in the subject clicking on an incorrect item
were ignored.

In each condition, the subject proceeded through 4 menu
lengths. There were 7 successive blocks with each menu
length. The same set of country names was used to populate
the menu for all trials with each length, in the same positions
each time. For each block, each menu item was indicated as
the target once. The items were indicated as the target in a
different order for each block with that menu length. Each
country name was used in at most one menu length for each
subject.

Since movement times were not part of the dependent vari-
able of interest in the original experiment, a procedure was
devised to remove movement time from the mean RT. A sep-
arate experimental condition was used to determine average
Fitts’s Law (Fitts, 1954) coefficients across all participants. In
this experimental condition, the menu presented to the subject
had only one non-empty item. Response time was measured
starting from when the mouse cursor exited the menu button.
These coefficients were used to estimate the movement time
for each trial, which was then subtracted from the total RT.
The result is referred to as decision/search time (DST). DST
was the dependent variable of interest in the original exper-
iment, and is the dependent variable of interest in this study
as well. As described later, we applied a similar procedure to
the data generated from the model.

Cognitive Model

This section describes the complete cognitive model in more
detail. The model executes the experimental task in its en-
tirety, from clicking on the ‘Menu’ button and identifying the
target, through moving the cursor, and finally clicking on the
target item. For each trial, there are three steps that must be
completed:

Search Initiation Clicking ‘Menu’ button, then shifting at-
tention to and encoding the cued target

Search/Recall Locating the target item by visual search or
recall

Search Completion Moving the cursor to the item and click-
ing on it once located

This breakdown provides a useful framework for describ-
ing our model. The time required for search initiation puts
a floor under all response times. Search initiation and visual
search actually overlap, as described shortly. The time re-
quired for locating the item is the lesser of the time required
for visual search or for recalling the item location, since these



strategies operate in parallel. The model executes the comple-
tion of the search through clicking on the correct item. This
is important in order to accurately model the distribution of
times between trials for a given target menu item, which in
turn determines the strength of the memory for that item’s
location and how fast that location can be recalled. The de-
scription of the model focuses on the visual search and item
recall strategies used for locating the correct item. The initia-
tion and completion of each trial are discussed afterward.

Visual Search Strategy

Consistent with our hypothesis regarding visual search for
the target menu item, the model implemented a pipelined

visual search strategy. The term pipeline is used here, as
in Hornof and Kieras (1997), because multiple sequences of
serial cognitive and perceptual operations operate in paral-
lel. The sequence of operations for finding and inspect-
ing a possible target item location are: 1. Find a location
meeting preliminary criteria using pre-attentive visual search
(Treisman & Gelade, 1980). This is modeled with the visual-
location module in ACT-R. The model uses a simple ap-
proach; it finds the first item below the current location. Thus,
it is top-down search. 2. Shift visual attention to the location
found using pre-attentive visual search and encode the infor-
mation. This is modeled with the visual module in ACT-R.
3. Once the information is encoded, it can be processed to de-
termine if the target item has been located. That is the final
stage of the pipeline, modeled with the procedural module in
ACT-R.

In our model, finding a location, initiating an attention
shift, and processing previously encoded information occur
in parallel, as shown in Figure 1. As seen from the diagram,
the pipeline requires 135 ms per item searched. Noise in the
time required for executing the cognitive processing in the
pipeline is modeled by adding noise from a logistic distribu-
tion to the time required to execute a production, using the
:vpft parameter in ACT-R (Bothell, 2004, p. 158).

Figure 1: Visual Search Pipeline

Item Location Recall Strategy

The item location recall strategy that runs in parallel with the
visual search strategy is very simple. After the target cue has
been encoded, an attempt to recall a matching target loca-
tion from memory is made as soon as declarative memory
is free. Item locations are committed to memory only when
the correct item is successfully located. This is motivated by
the observation that only the correct target item is likely to
be fully encoded, and that it is also the most salient item in

the visual field. When an item location is recalled, it is used
immediately to direct a movement.

The simulated time elapsed between the presentation of a
chunk to declarative memory and an attempted retrieval is
an important component in determining the activation of the
chunk, which in turn determines the latency for retrieving the
chunk. In the current model, it was assumed that no time
elapsed between trials or between blocks. That means that
the time between preceding presentations of a chunk and an
attempted recall is determined entirely by the time required
to complete the intervening trials. Since the items occur in
a random order with each block, the time between succes-
sive presentations varies. This in contrast to the model in
Das and Stuerzlinger (2010), which assumed a constant time
between succeeding trials with each item.

Standard parameters for the ACT-R declarative memory
module were used, with two exceptions. The base activa-
tion :blc was set to 1.0 instead of the default 0.0. This
value was chosen so that for menu length 12, the activa-
tions of the declarative memory chunks for the locations of
each item were greater than zero when the second set of trials
started. Without this adjustment, the activations of the chunks
increased, but never significantly exceeded zero. Noise in
declarative memory activations was modeled by setting :ans

to 0.2. This adds noise from a logistic distribution with mean
0 and scale 0.2 to the current activation.

Search Initiation and Completion

Previous models have largely ignored the transition into the
main visual search or item recall strategy. The time required
to locate, attend to, and remember the target cue adds a con-
stant amount of time on average to each trial in our model.
Since several productions are required to model this phase,
the simulated time required for this phase of the task is not
constant, due to the simulated noise in production execution
time. After encoding the target cue, both the visual search and
recall strategies begin execution. The visual search strategy
is initiated by requesting the location of the first menu item
below the target cue display area. This initiates the visual
search pipeline. Once the visual location of the first menu
item is obtained, an attention shift to to that location is initi-
ated in parallel with requesting the location of the next menu
item. When attention has been shifted to the location of the
first menu item, the text of that menu item can be compared
to the target cue. In parallel with encoding the text of the first
menu item, an attention shift to the previously determined lo-
cation of the second menu item is initiated and the location of
the next menu item is requested. At this point, the pipeline is
full, as in Figure 1.

After the correct item is located, the model generates motor
actions to move the cursor to the located item and click on it.
As described above, both the experimental and model gener-
ated data are treated to remove the mean movement time from
each trial to obtain the DST. Our model also addresses motor
feature preparation for the mouse click by modeling this as
occurring while the mouse movement occurs. Motor feature



preparation for the mouse movement occurs when the search
is initiated. Whether current models of motor feature prepa-
ration are accurate is an active research area (Kieras, 2009),
but the model is designed so that changing the assumptions
about the need for feature preparation would not significantly
affect the results. In the current version of the model, there
is no visual verification that the cursor is over the target after
the mouse movement.

Using Model to Generate Predictions

In order to compare the model’s predictions to those of
Cockburn et al. (2007) and Das and Stuerzlinger (2010), we
computed estimated decision/search times (DSTs) from the
simulated task completion times. The procedure for doing so
was as follows. The Fitts’s law calibration data from the orig-
inal experiment was used to fit the coefficient for the form of
Fitts’s Law used by ACT-R. Cockburn et al. (2007) used the
traditional form of Fitts’s Law, whereas ACT-R uses a modi-
fied form of Welford’s formulation (Welford, 1968). This co-
efficient was used in the ACT-R model runs to generate move-
ment times. To compute DST for the model trial comple-
tion times, the same form and coefficients that Cockburn et al.
(2007) was used to calculate an MT to subtract from the total
time. The reason for using the same form of Fitts’s Law and
coefficients for computing DST from total time for both the
experimental data and the model is that the coefficients for
the experimental data are based on times that include click-
ing on the target item, whereas ACT-R’s simulated movement
time calculation is strictly for movement. Note that only the
movement time from the calibration data was used to to fit the
coefficient for ACT-R.

Data from the first block was used to validate the model’s
predictions about visual search. There were two tests against
the empirical data: 1. Mean DST vs menu length 2. Median
absolute deviation (MAD) vs menu length

We provide results for both the square of the Pearson cor-
relation coefficient and root mean squared deviation (RMSD)
to emphasize how close the predictions are to the data without
any scaling. 100 runs of the model were used.

Data from all blocks was used to test the model’s predic-
tions for the evolution of the RT distribution with practice.
Block number is the dependent variable representing amount
of practice. Again, there were two tests against the data:
1. Mean DST averaged across each menu length, with those
results then averaged for each block. This specific measure is
the one used in (Cockburn et al., 2007). 2. Since the medians
for different menu lengths are not the same, we used the data
for menu length 12 to look at the MAD of the DST versus
block.

Results and Discussion

Results

The plots showing the comparison to experimental data for
visual search are shown in Figure 2. The first plot shows mean
vs menu length; the second shows MAD vs menu length. For

the means, the square of the Pearson correlation coefficient
between the model’s predictions and the data is 0.99. RMSD
is 39 ms. For the MADs, the square of the Pearson correlation
coefficient between the model’s predictions and the data is
0.96. RMSD is 75 ms.

The plots showing the comparison to experimental data for
practice effects are shown in Figure 3. The first plot shows
mean DST averaged across each menu length, with those re-
sults then averaged for each block. The square of the Pearson
correlation coefficient between the model’s predictions and
the data is 0.75. The second plot shows the MAD vs block
for menu length 12. The square of the Pearson correlation
coefficient between the model’s predictions and the data is
0.65.

Discussion

The model provides a good fit for the mean RT as a function
of menu length, as shown by the low RMSD. That the model
reproduces the slope is unsurprising since the model was con-
structed to achieve this result. The model’s prediction for the
intercept of this relationship is also fairly close, as the first
plot in Figure 2 shows.

The comparison of the model’s predictions for MAD ver-
sus menu length, shown in the second plot in Figure 2, pro-
vides additional support for the model. The expected upward
trend in MAD with menu length is reproduced. This is ex-
pected because longer search require more underlying cog-
nitive operations, each adding to the total noise. Given the
way noise in the time to execute a production is modeled in
ACT-R, the line for the model’s predictions reflects a sum of
logistic random variables. There is an interesting discrepancy
between the model and empirical data, however. The model’s
predictions are best fit by a straight line, with the slope in the
regression significant at a 0.1% level, but the data is better fit
to a logarithmic function of menu length, with the slope again
significant at a 0.1% level. In order to explain this effect we
may need to account for dispersion in movement times. As
described earlier, the mean movement time is removed from
DST, but this procedure does not account for the dispersion
in movement times.

The comparisons of the model’s predictions for the reduc-
tions in the mean and MAD of RT with practice are shown in
Figure 3. The model reproduces the general trends in the data,
but does not provide as good a fit as the visual search model.
Recalling that the values in the mean DST trend versus block
plot are computed as an average of averages, it is useful to
look at some of the values that go into the averages for the
data and the model. For menu length 12, the drop in mean RT
from block 1 to block 7 for the model is 480 ms versus 496
ms for the experimental data, so the overall reduction in RT
matches quite well. The model doesn’t reproduce the drop
with the same shape, however. The data shows a much bigger
drop from block 1 to block 2, 272 ms, than the model does,
66 ms. For menu length 2, on other hand, the data shows
a reduction in mean RT of 245 ms from block 1 to block 7,
while the model produces a reduction of only 36 ms. In fact,



Figure 2: Mean/MAD of DST vs Menu Length

2 4 6 8 10 12

4
0
0

8
0
0

1
2
0
0

Mean DST vs Menu Length

Menu Length

M
e
a
n
 D

S
T

 (
m

s)

Model
Experimental Data

2 4 6 8 10 12

1
0
0

3
0
0

5
0
0

7
0
0

DST MAD vs Menu Length

Menu Length

D
S

T
 M

A
D

 (
m

s)

Model
Experimental Data

Figure 3: Mean/MAD of DST vs Block
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the reduction in mean RT seen in the data is greater than the
observed time required to visually search 2 additional items,
as reflected in the slope of the line of DST vs menu length.
This may reflect more efficient initiation of the search or de-
cision process with practice, in addition to decreased latency
for memory recall.

Our model does not fit the observed reduction in RT as
well as the model in (Das & Stuerzlinger, 2010). However,
our model uses only one non default value for ACT-R pa-
rameters and has no free parameters. Das et al. adjusted the
activation decay factor to a small value to reflect minimal ac-
tivation decay due the time between trials with the same target
item (2010, p. 40). Our model also predicts a sustained re-
duction in MAD with increased practice, but the data shows
continued reduction in MAD only through the first 4 blocks.
This may reflect the fact that our model does not account for
all significant sources of RT dispersion, especially between
subjects differences.

Conclusions

The model’s fit to the visual search data is encouraging. The
parameter free fit for the dispersions also provides support
for the model. The observed difference between the empiri-
cal data and the model in the shape of this relationship merits
further investigation. The first step is a more careful account-
ing for movement times, so that the dispersion in movement
times is not ignored. The challenge is that Fitts’s Law pre-
dicts only mean movement times. Thus, further investigation
may require a more detailed model of movement times, as in
(Meyer, Abrams, Kornblum, Wright, & Keith Smith, 1988).
In addition, the mouse movement may overlap with the cog-
nitive and perceptual processes for finding the correct item, as
Cockburn et al. (2007) and others have noted. If the amount
of overlap is a function of one or more experimental condi-
tions, such as menu length, this may yield spurious effects in
the analysis of trends in RT dispersion.

The model’s predictions for the reduction in both the mean
and MAD of RT with practice reproduce the expected down-
ward trends, but this part of the model requires more substan-
tial investigation. One step is to determine whether there is



more than one underlying effect is responsible for the reduc-
tion in RT.

The model provides an alternate explanation for the
slower than expected reduction in RT, as compared to
Das and Stuerzlinger (2010). Tests of the model’s predictions
for the evolution of the RT distribution confirm that the mean
and dispersion for the RT distribution follow roughly the ex-
pected trends given the assumption that the reduction in RT
is driven by a transition from visual search to item location
recall.

We intentionally used standard ACT-R declarative memory
parameters and equations for the initial model, but it may be
that the most accurate model could constructed by account-
ing for not only the detailed execution of the strategy, as our
model does, but for additional significant effects in declara-
tive memory learning, as Das et al. proposed (2010).
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