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Abstract. There is an increasing emphasis, especially in STEM areas,
on students’ abilities to create explanatory descriptions. Holistic, overall
evaluations of explanations can be performed relatively easily with shal-
low language processing by humans or computers. However, this provides
little information about an essential element of explanation quality: the
structure of the explanation, i.e., how it connects causes to effects. The
difficulty of providing feedback on explanation structure can lead teach-
ers to either avoid giving this type of assignment or to provide only
shallow feedback on them. Using machine learning techniques, we have
developed successful computational models for analyzing explanatory es-
says. A major cost of developing such models is the time and effort re-
quired for human annotation of the essays. As part of a large project
studying students’ reading processes, we have collected a large number
of explanatory essays and thoroughly annotated them. Then we used the
annotated essays to train our machine learning models. In this paper, we
focus on how to get the best payoff from the expensive annotation pro-
cess within such an educational context and we evaluate a method called
Active Learning.

1 Introduction

There is an increasing emphasis at the educational policy level on improving
students’ abilities to analyze and create explanations, especially in STEM fields
[1, 2]. This puts pressure on teachers to create assignments that help students
learn these skills. On such assignments, teachers could provide several different
kinds of feedback, including identification of spelling and grammatical mistakes,
overall holistic evaluations of explanation quality, and detailed analyses of the
structure of the explanation — what parts of a good explanation were present
and how they were connected together, and what parts were missing. It is much
easier for teachers (and computers using shallow processing techniques) to pro-
vide the first two types of feedback [3]. Deep analysis of explanation structure is
much more challenging, but it is necessary for helping students truly improve the
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quality of their explanations. Holistic and shallow evaluations may help students
fix local problems in their explanations, but they do not help students create
better chains from causes to effects that are the core of good explanations.

An AI system for analyzing the structure of explanations could be used in
a variety of ways: as the back-end of an intelligent tutoring system that would
help students write better arguments, as an evaluation system to provide for-
mative assessment to teachers on their students’ work, or as the basis of deeper
summative assessments of the writing [3].

In educational contexts, as in many others, there is growing availability of
large amounts of data. That data can be leveraged by increasingly sophisticated
machine learning techniques to evaluate and classify similar data. The bottle-
neck in many such situations is that most machine learning techniques require
a significant amount of labeled data — i.e., data that has been annotated by
human coders at high cost of time and money — in order to be effective. A large
number of texts may be collected, but what is the best strategy for annotat-
ing enough of those texts to produce an automated system that can effectively
analyze the rest? That is the research question that we address in this paper.

For several years, we have been working as part of a project aimed at study-
ing students’ reading processes. To assess how much students understand from
what they have read, we collected over 1000 explanatory essays dealing with a
scientific phenomenon. Over the course of six months, expert annotators iden-
tified the locations of conceptual information and causal statements in these
essays. This has provided us with an excellent data set on which to evaluate our
research question about how to get the necessary sample size of annotated data
for adequate performance; we simply assume that most of the data is unlabeled
and try to identify methods that allow machine learning to most quickly create
a model that will accurately classify the rest.

This paper focuses on one method called Active Learning in which you start
with a small set of labeled data for training. Based on the uncertainty of classifi-
cation of the rest of the data, you select another batch of data to be labeled, and
continue this process until acceptable performance is achieved. The paper de-
scribes the specifics of the educational context that our data came from and how
the essays were collected and annotated. Then we describe related research and
the experiments we performed. We conclude with a discussion of our experiments
and results and implications for future research.

2 Student Explanatory Essays

The essays used in this research were scientific explanations generated by 9th
grade biology students in 12 schools in a large urban area in the United States.
During a 2-day, in-class activity, students were given 5 short documents that
included descriptive texts (M=250 words), images, and several graphs that the
student could use to understand the causes of a scientific phenomenon, coral
bleaching. Each document was a slightly modified excerpt from an educational
website and was presented on a separate sheet with source information at the



bottom of the text. In collaboration with our science educators, we co-created all
materials and the idealized causal model, shown in Fig. 1, which depicts the ideal
explanation that students could make from the documents. The students were
told to read the documents and “explain what leads to differences in the rates
of coral bleaching.” They were told to use information from the texts and make
connections clear. They were allowed to refer to the documents while writing
their essays.

Fig. 1. Causal model for coral bleaching

As mentioned above, the primary goal of the larger research project was to
study the students’ reading and to try to learn how to help them read more
deeply. In support of this goal, all of the essays were closely annotated to de-
termine what the students did and did not include in their explanations. The
brat [4, 5] annotation tool was used for the annotation process. The mean length
of the students’ essays was 132 words (SD = 75). The mean number of unique
concepts from Fig. 1 in the essays was 3.1 (SD = 2.2) and the mean number of
causal connections was 1.3 (SD = 1.7). (See [6] for more details.)

Fig. 2. Annotation with brat

Fig. 2 shows two sentences of one (relatively good) student essay in brat,
where an annotator has marked the locations of the concepts from Fig. 1 and
the causal connections between them. In the first sentence, the annotator has
identified a reference to concept code 1, decreased trade winds, and a reference
to concept code 3, increased water temperatures. The annotator has also iden-
tified an explicit causal connection from code 1 to 3. The next sentence has an



(anaphoric) causal connection from code 3 to code 5, and further connections to
codes 6 and 7. Although brat significantly sped up the annotation, and although
the essays were relatively short, it still took trained annotators 15–30 minutes
to annotate each one — a significant manpower cost.

3 Related Research

Along with increased emphasis on standardized testing has come an increased
emphasis on creating automatic mechanisms for evaluating written essays or
responses. Although these Automatic Essay Scoring systems [7] are becoming
increasingly sophisticated, they generally use shallow language analysis tools
like lexical and syntactic features and semantic word sets [8, 9] to provide a
single holistic score for the essay rather than a detailed analysis of the contents
of the essay [10]. The holistic-score approach has been criticized for its failure
to identify critical aspects of student responses [11] and for its lack of content
validity [12, 9]. The appeal of the holistic-score approach is partly due to the
tasks for which these systems are being used, but also due to the difficulty of
performing a deeper analysis. Causal connections in text have been very difficult
to identify, with two recent systems getting F1 scores of 0.41 and 0.39 [13, 14].

Our previous research has been more successful at identifying causal connec-
tions, producing F1 scores of 0.73 [15]. We have some advantages however. We
know what the students are basing their essays on: documents from a narrowly-
defined topic. We also have a large amount of training data that we use to
train classification models: 1128 annotated student essays. Recent refinements
are producing even higher performance [16]. To identify concept codes, we use a
window-based tagging approach, creating a separate classifier for each concept
and for both causal connection types (Causer and Result) based on a sliding
window of size 7 of unigrams and bigrams along with their relative positions in
the window [15]. We use stacked learning [17] to identify specific causal connec-
tions from the results of the window-based tagging models. We view this level
of performance as acceptable for the creation of formative feedback on the ex-
planations. The point of this research, however, is to ascertain whether similar
performance can be achieved using fewer annotated essays, and if so, what is the
best method for choosing essays to annotate.

There has been a wide range of previous work aimed at reducing the amount
of training data needed to produce an effective classification model. One ap-
proach was to ensure a broadly representative sampling of data, but it was found
to be no better than random selection [18]. Other research has applied Active
Learning (AL) to various tasks [19–21], but they have generally been concerned
with predicting a single class for each instance, have often produced results not
significantly better than random sampling [22], and there has been little focus
on applying AL to text-based tasks [22], especially multi-class tasks like ours.
One exception [23] aimed to classify newswire articles into one of 10 different
categories. In contrast to our situation, however, that was a whole-text task. We



have a large set of conceptual and causal codes that we want to identify within
the students’ essays, from which we can infer the structure of their explanations.

The research reported in [24] did focus at a sub-document level, namely on
temporal relations between two specified events within the text. In this case, the
authors were attempting to identify which of 6 temporal relations (e.g., Before,
Simultaneous) held between the two events. This was also applied to newswire
texts, which tend to be longer and less error-ridden than student texts. They
combined measures of uncertainty, representativeness of a new instance with
previously classified instances, and diversity of the entire set to choose the next
items to classify, with the first two having a larger effect than the third.

A related technique to AL is Co-training [25] which could further reduce the
requirement for annotated data by applying the predictions of the current model
to unlabeled data, then assuming that the instances about which the model was
most certain were correctly classified, and adding some portion of those instances
to the training set. It requires, however, that the model is trained with two sets of
features which are conditionally independent of the target class, and performance
can be degraded if the predictions were wrong.

4 Experiments

This section describes the method that we used to evaluate different variants of
AL on the explanatory essays, including the overall algorithm that was used, the
different selection strategies, the measures used to evaluate performance, and the
two experiments that we ran.

4.1 Algorithm

Our dataset consisted of 1128 explanatory essays collected as described above.
We used a variant of cross validation described below, 10-fold for the first ex-
periment, and 5-fold for the rest:

1. Randomly select 10%3 of the essays and put them in the initial training set,
and put another 10% into the validation set.4 The rest of the essays were
put in the pool of “unlabeled” essays. (In our case, of course, these essays
were actually labeled, but those labels were not used until the essays were
selected for inclusion in the training set.)

2. Repeat until 80% of the essays are in the training set (with 10% of the essays
in the validation set and 10% in the remainder pool):

3 The percentages are all parameters to the model. These were selected because they
allowed us to see the performance of the models at a reasonable granularity. It
should be noted, however, that in our case, 10% of the total set represents over 100
additional essays. In real-world settings, a smaller increment would likely be used
due to the cost of annotation.

4 We used a validation or holdout set to provide a consistent basis on which to judge
the performance of the models.



(a) Train the model on the training set using Support Vector Machines
(SVMs) [26, 27] to create a classifier for each concept code and each
causal connection code. The features for the SVM came from the window-
based tagging method described above. The 7-word window was dragged
across all the texts. Each training instance consisted of the 7 unigrams
and 6 bigrams along with their relative positions in the window. The tar-
get class was the code of the word in the middle of the window, and its
annotation indicated if that instance was a positive or negative instance
of the class.

(b) For each line in each essay in the remainder pool, calculate the predicted
confidence for each code. Because we used SVMs, the decision boundary
was at 0, so a positive confidence value was a prediction that the code was
present. Negative values were predictions that the code was not present.
The higher the absolute value, the more confident the model was that
the code was or was not there.

(c) Calculate Recall (= Hits/(Hits+Misses)) and Precision (= Hits/(Hits+
FalseAlarms)) for each code at the sentence level in the validation set.
(Codes rarely occur more than once per sentence.)

(d) Sort all the essays in the remainder pool based on the average absolute
confidence per sentence according to the selection strategy. Selection
strategies are described below.

(e) Move the next 10% of essays from the sorted remainder pool to the
training set.

4.2 Instance Selection Strategies

In the AL literature, an Instance Selection Strategy refers to the technique for
choosing the next item(s) to have labeled or annotated. Common strategies
are based on the uncertainty of classifying the instances, the representativeness
of the instances, “query-by-committee”, and expected model change [19, 21].
Because our instances are complex, containing many different classes (i.e., the
codes from the causal model), in this work we focused on the simplest type of
strategy, uncertainty sampling.

Although the default approach for uncertainty sampling is to prefer to select
the least certain items for labeling, researchers have also evaluated other variants
of this [20]. We evaluated three: the default (i.e., Closest to margin, the least
certain), the most certain (Farthest from margin), and interleaving certain and
uncertain items. These were implemented by sorting the remaining essays in
step (d) of the algorithm above based on this criterion. Specifically, because
we used SVMs to classify the codes, and because their decision boundary (the
threshold between positive and negative predictions) is 0, we took the absolute
value of the confidence in the prediction (i.e., the distance from the SVM’s
marginal hyperplane), and averaged that over all the sentences in the essay.
For the different strategies, we used the lowest average confidence, the highest
average confidence, and interleaving of the two, respectively. We compared these



methods with a control condition: randomly selecting the next items to be added
to the training set.

For each of these (non-random) strategies, we also evaluated two different
methods for aggregating the confidences for each sentence. In our first experi-
ment, we simply added all of the scores for the 51 different codes that our models
were predicting: 13 codes for concepts in the causal model, and 38 codes for the
“legal” connections in the model (i.e., those that respected the direction of the
arrows, but potentially skipped nodes, e.g., 1→2 and 1→3, but not 2→1). We
called this the Simple Sum method. Because the causal connection codes are so
much more numerous than the concept codes, we also evaluated an aggregation
method, which we called the Split Sum method, that normalized the confidence
scores by the two sets of codes. In other words, we added the confidence scores
for all of the concept codes and divided that sum by 13, then added it to the
sum of the causal codes divided by 38. The intuition behind using this approach
was that we wanted to avoid biasing the selection decision too much toward the
(numerous but relatively rare) causal connection codes.

4.3 Measures

As mentioned above in the section describing the algorithm, we calculated Recall
and Precision for each concept code and causal connection code in the validation
set. From these, we calculated two averaged F1 scores that could be used to judge
the overall performance of the model. F1 is defined as:

2 ∗ Precision ∗Recall

Precision + Recall

The two different ways of combining the F1 scores for all the codes in the vali-
dation set are the mean F1 and the micro-averaged F1. The mean F1 is simply the
average across the F1 scores for all of the 51 different codes. The micro-averaged
F1 is derived from the Precision and Recall from the whole validation set. In
other words, the overall Precision and Recall are based on the Hits, Misses, and
FalseAlarms from the whole validation set. As a result, micro-averaged F1 scores
are sensitive to the frequency of occurrence of the codes in the set, and mean
F1 scores are not. Micro-averaged scores are representative of how the model
performs in practice. Mean F1 scores give equal weighting to each code to take
into account rare codes as much as it does frequent ones.5 Averaging F1 scores
can be seen as a way of evaluating a learning method in an “ideal” situation,
when all frequencies are balanced. Micro-averaging evaluates the model based
on its overall performance on natural data with imbalanced code frequencies.
Thus, it is useful to take both into account.

5 For what it’s worth, these are analogous to the U.S. House of Representatives and
Senate, respectively, with one giving more weight to more “populous” (i.e., frequent)
entities, and the other giving “equal representation” to each entity.



4.4 Experiment 1: Absolute confidence values

As mentioned above, in our first experiment, we combined the uncertainty (or
confidence) values by adding all of the absolute values of the predicted confi-
dences for the individual codes, averaged over the number of sentences in the
essay. Figs. 3 and 4 show the mean F1 scores and micro-averaged F1 scores
respectively. Each chart shows the percentage of the essays that were in the
training set at each iteration on the X axis, and the resulting F1 score on the Y
axis. Each line represents one of the different methods described in Sec. 4.2 for
choosing which essays to “label” (move the annotated essay to the training set).

Note that each of the evaluations presented here ends with 80%, or about 900
essays included in the training set. One reason for this is that, at this point, the
remaining essays are least typical of the selection method. For example, with
the high uncertainty selection strategy, there would only be the most certain
instances remaining. The more significant reason is that in a real world situation
where the cost of annotation is high, you would typically want to annotate a
much smaller number of items. So data in the left sides of each of the charts are
more applicable to practical scenarios.

Fig. 3. Absolute mean F1s Fig. 4. Absolute micro-averaged F1s

For the mean F1 scores, the default high uncertainty / low confidence /
closest-to-marginal-hyperplane method always resulted in the best (or equiva-
lent) scores on the validation set. In other words, one should choose the next
set of essays to annotate by selecting those that the classifiers are least sure
of. The clear “loser” was the farthest-from-marginal-hyperplane / highest con-
fidence method. Adding instances which the model was already predicting with
high confidence resulted in much slower increase in classification performance.

For the micro-averaged F1 scores, the results were more mixed. The closest-
to-hyperplane method performed best initially, but its performance actually went
down with 40% of the essays in the training set. At 60 and 70%, the best scores
were produced by the random selection method. However, as mentioned above,
results with lower percentages of items in the remainder pool are less indicative
of what would be found in practical applications.



While this experiment gave interesting initial results, it also raised some
questions. First, we noted that the scores on the randomly selected initial set
(at 10%) were higher for the closest-to-hyperplane method, so we wondered what
effect that might have on performance. Second, what could be the effect of the
frequency of occurrence of the codes (classes) on the overall performance. The
codes follow a Zipfian distribution. The most frequent code (50, which is the
one the students are asked to explain) occurs in 55% (only!) of the essays. The
subsequent frequencies are 12%, 4.7%, 4.2%, and so on. Forty of the 51 codes
occur in less that 1% of the essays. While this is the “natural state of affairs”
for this set of essays (and for many other natural multi-class situations), we
hypothesized that this frequency imbalance would have a differential effect on
the mean and micro-averaged F1 scores. A model could achieve higher mean
scores by performing relatively well on very infrequent codes and not so well
on more frequent codes. With the micro-averaged scores, the same model would
not perform as well. Because of this issue, we wanted to evaluate a method for
combining the confidence scores which would take this frequency imbalance into
account. We addressed these issues in Experiment 2.

4.5 Experiment 2: Performance Gain, Scaled Confidences

The first question resulting from Experiment 1 was: How does the performance
of the initial training set affect increases in performance via AL. To address
this question, we additionally calculated the simple performance gain for each
method, which we defined as Fgain = F1@N% − F1@10%. In other words, we
subtracted the method’s initial absolute F1 score from all the F1 scores for that
method. This allowed us to more easily compare performance because each one
started at 0. Because the initial training sets were all chosen randomly without
regard to the selection strategy, the initial absolute F1 scores tended to be close
anyway. In the results presented in the rest of this paper, we display the simple
performance gain values. The initial absolute mean F1 scores were all in the 0.62
– 0.64 range, and micro-averaged F1 scores were between 0.70 and 0.73. These
values are already relatively good for this complex task — i.e., they classify the
components of the essays with sufficient certainty that beneficial feedback could
be given, assuming the stakes were not too high, but the focus here is on how
to improve the performance of the models most quickly.

The second question raised by Experiment 1 was about the effect of un-
balanced frequencies of the codes, and we hypothesized that mean and micro-
averaged F1 scores would be affected differently. To address this question, we
scaled the confidence ratings (absolute distance from the marginal hyperplane)
for each code in each sentence by dividing by the log of the frequency of the code
in the corresponding remainder pool.6 We assigned a minimum code frequency
of 2 to account for rare codes.
6 Alternatively, we could have used the frequencies from the training set. We used

frequencies from the remainder pool because they would be more accurate, especially
at the earlier stages. In a real-life setting where the items in the remainder pool would
be unlabeled, those frequencies would, of course, be unknown.



Simple Sum Confidence Combination Figs. 5 and 6 show the mean and
micro-averaged F1 gain scores for the Simple Sum combination method described
above, which calculates the prediction certainty for a sentence by adding the
certainties for all the codes. In Experiment 2, however, the values were scaled
by the log frequency of occurrence of the codes before they were summed.

Fig. 5. Simple sum mean F1 gains Fig. 6. Simple sum micro F1 gains

These charts make it more obvious that in the first iteration (i.e., going from
10% to 20% of the essays in the training set), choosing the least certain (closest
to the marginal hyperplane) items most quickly improves the performance of the
models, both for the mean and micro-averaged scores. Conversely, choosing the
most confidently-classified items (farthest from the marginal hyperplane) still
provides the slowest growth in model performance. The rest of the story is more
subtle but supports our hypothesis about differential effects on the mean and
micro-averaged F1 scores.

In the mean F1 scores in Fig. 5, it is clear that the closest-to-hyperplane
approach plateaued, and actually decreased slightly, while the interleaved and
random selection strategies kept improving. This provides some support for the
idea raised in related research [20] that including a broader range of examples is
beneficial, at least later in the training. The behavior of the closest-to-hyperplane
selection strategy could be due to the F1 scores for the whole set of codes not
increasing, or, because the mean F1 score evenly weights all codes, it could be
that some subset goes up, and the rest go down. (Even though the weights
are scaled by code frequency, the scaled values are all added together in this
combination scheme.) Another factor may be that at some point, there are only
high-confidence essays in the remainder set, so adding them to training does not
improve overall performance.

The micro-averaged F1 chart in Fig. 6 gives some insight. Here, the closest-
to-hyperplane is always the highest, except in the last two iterations, and, by a
small amount, at the fourth. This indicates that this method is, in fact, increas-
ing performance on the most-frequent codes (because the micro-average is more



sensitive to code frequency). This presumably happens because we are scaling
the confidence values by frequency. With this form of scaling, we are discount-
ing the certainty on the more frequent codes. By biasing the selection strategy
further toward essays that have low confidence on frequent codes and away
from essays that have low confidence on infrequent codes, we have improved the
micro-averaged F1 scores, but at the expense of the mean F1 scores on the later
iterations. Or, to put it another way, using a frequency-scaled AL combination
strategy effectively increases the overall performance of the classifications given
natural distribution of the classes.

Split-Sum Confidence Combination Figs. 7 and 8 show the mean and micro-
averaged F1 gain scores for the Split Sum combination method described above,
which calculates the prediction certainty for a sentence by adding the average of
the certainties for the concept codes with the average of the certainties for the
causal codes. As above, the values were scaled by the log frequency of occurrence
of the codes before they were averaged and summed. To reiterate, the concept
codes identify the particular factors or events that students might identify in
their explanations. The causal codes identify explicit connections between them,
like “X led to Y.” The rationale for the Split Sum combination method is to
afford equal weight to the set of concept codes and the set of causal codes.

Fig. 7. Split sum mean F1 gains Fig. 8. Split sum micro F1 gains

In the early stages, these charts also show advantages for the closest-to-
hyperplane selection strategies in both the mean and micro-average scores, but
the advantages appear more pronounced. By the end of the second iteration,
the closest-to-hyperplane strategy performs significantly above the others. As
before, the performance of the strategy plateaus on the mean F1 scores, but
only at the point at which it is already well above the others, and it maintains
its advantage. Comparison with Fig. 5 shows that it outperforms all of those
models as well. Performance on the micro-averaged F1 was also superior across
the board, with the exception of one iteration. This method of combining the
average of the conceptual codes with the average of the causal codes, along



with the frequency-based scaling, produced a model that learned quickly and
outperformed the other selection strategies.

5 Discussion, Conclusions and Future Research

The overall goal of our research project is to develop methods for analyzing the
causal structure of student explanatory essays. This type of analysis could be
provided to teachers to reduce the demands on them, or it could become the
foundation of an intelligent tutoring system that will give students feedback on
their essays and help direct the focus of their learning. From the limited number
of connections included in the essays that we collected, students clearly have a
need for additional practice with specific, focused feedback.

Machine learning approaches can create models for performing detailed anal-
yses of texts but require a large amount of relevant labeled training data. This
paper has provided an evaluation of Active Learning to determine how effec-
tively it can improve accuracy of the machine learning analysis models while
minimizing the costs of annotation. Overall, we found that, especially in early
iterations, it was best to choose items that the model was least certain of.

These results suggest some directions for future research. Because the closest-
to-hyperplane strategy was initially very good, but later plateaued, we would like
to evaluate a hybrid model which initially chooses the least certain instances,
then at some point, switches to choosing a mixture of more and less certain items.
There are also many other instance selection strategies that could be explored.
These have previously been applied to tasks in which, unlike ours, there is a
single target classification for items [19]. We would like to explore some of the
others that have been used for natural language processing [28].

The co-training approach described above could also be another fruitful way
to improve model performance with an even lower cost in terms of additional an-
notation. It should be noted, however, that at its worst, this might be equivalent
to a “dumbed down” version of the farthest-from-hyperplane strategy evaluated
here; it would take its predictions (which may be noisy) on the highest confidence
items. The advantage of co-training would come from the use of complementary
feature sets. The trick would be finding feature sets that are conditionally inde-
pendent of the target classes.

Finally, all of the methods we have evaluated in this paper assume that en-
tire essays would be annotated and added to the training set. To select an essay
for annotation, however, we first evaluate the certainty of the predictions at the
sentence level, which is, in turn based on predictions at the word level. Instead
of selecting entire essays to add to the training set, we could instead select sen-
tences, phrases or words. This could obviously significantly reduce the additional
annotation time. The question is how effective it would be at improving model
performance.
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