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Introduction  

Students’ written explanations can shed light on their understanding of complex 
phenomena. If we can provide computational mechanisms to automatically analyze their 
explanations, we can better understand their thought processes, and help improve their 
understanding, either by providing feedback to teachers or through intelligent tutoring 
systems.  

In this chapter, we describe deep and shallow processing of language by computers, but 
our research focus is on helping students learn how to read with deep comprehension. We 
define our view of deep comprehension in the context of argumentation and explanation 
from scientific texts, and we describe the supporting theoretical constructs. Then we 
present a study which assesses deep comprehension in student arguments. We 
demonstrate that shallow (computational) natural language understanding is sufficient to 
assess some aspects of student comprehension, but assessing deeper comprehension must 
be addressed by deeper computational approaches.  

Deep and shallow Natural Language Understanding  
Artificial Intelligence researchers use the term, “Natural Language Processing” (NLP), to 
refer to computational processing of human languages, as opposed to the processing of 
formal languages like computer programming languages. NLP has two major subfields: 
natural language understanding (NLU) and natural language generation (NLG). NLG is 
the production of texts or utterances in a human language to express intended meanings.  
NLU is the computational transformation from a human language into a representation 
which can be more easily manipulated (“understood”) by computers allowing it to 
perform other tasks, for example, summarizing, answering questions, or simply adding to 
the system’s “knowledge base”. 

In this chapter, we are focusing on Natural Language Understanding. Traditionally, this 
starts with parsing of texts into some formal representation. For example, with the 
sentence, “The dog ran after the bouncing toy,” the part of speech for each word would 
be identified (article, noun, verb, etc.). Then, by applying grammar rules, the structure of 
the sentence could be derived (e.g., a noun phrase consisting of an article followed by a 
noun, and a verb phrase consisting of a verb and a noun phrase). Then that structure could 
be converted to a logical statement of the sentence’s meaning (CHASE (DOG, 
BOUNCING-BALL)), and pragmatic processing would be applied to derive the 
contextualized meaning (e.g., What were the intentions of the speaker? Which dog is this 
referring to?). 



Unfortunately, the ambiguities in human language make this process very 
computationally expensive. For example, “dog” and “toy” could both be nouns or verbs, 
and “bouncing” could be used as a verb, noun, or adjective. The ambiguities multiply 
when different grammatical rules can apply (e.g., prepositional phrases which can attach 
to multiple antecedents). These ambiguities could be resolved by applying contextual and 
world knowledge — humans do it all the time. But computers struggle with it, because it 
is practically impossible to predict all such knowledge that might be applicable. This type 
of deep NLU provides a representation of the language which is flexible, but brittle — 
unexpected words or syntax cause complete failure.  

Shallower NLU approaches provide broader coverage of texts, but at the cost of loss of 
information. For example, keyword-based methods are based on the presence of 
particular words or sets of words. Many such techniques ignore word order (and, 
therefore, the syntactic structure) of the text. Some focus primarily on the descriptive 
statistics of the texts (e.g., counts of different types of words). There is a wide range of 
depth in NLU techniques, and, although that depth is not easily quantifiable, the tradeoff 
between coverage and depth is common. 

Deep and shallow language processing in educational contexts  
Educational contexts provide the motivation for our research and for many others’, 
including most of the other research in this volume. It also allows us to explore the 
relationship between the depth of understanding of a “teacher” (which could be a human 
or a computational tutor) and that of a student. Does a teacher need to deeply understand 
a student’s text in order to help the student learn more deeply?  

Studies of untrained human tutors showed that they did not deeply analyze what their 
students said, but still helped the students learn much more effectively than classroom 
instruction because they used a variety of prompting strategies that kept the discussion 
going (Graesser, Person, & Magliano, 1995). This provided the inspiration for the 
AutoTutor family of dialog-based intelligent tutoring systems, which use rather shallow 
NLU, but have been shown to be very successful at helping students learn in both lab 
settings (Nye, Graesser, & Hu, 2014) and as an adjunct to classroom teaching (Arnott, 
Hastings, & Allbritton, 2008).  

Is there a limit to the depth of understanding that this shallow NLU approach can foster? 
We explore that question in this chapter and present a study which sheds light on the 
answer.  

Deep Comprehension from science texts  
Distinguishing “deep” from “shallow” comprehension  
In the past 15 years, there has been a growing call to expand the definition of reading 
beyond learning to decode and comprehend an author’s meaning (Britt, Rouet, & Durik, 
2017; Graesser, Chipman, Leeming, & Biedenbach, 2009; Institute of Education 
Sciences, 2010; OECD, 2015; Snow and the Rand Reading Group, 2002). Graesser et al. 
(2009) state that deep comprehension involves “an analysis of causal mechanisms, logical 



explanations, creation and defense of arguments, management of limited resources, 
tradeoffs of processes in a complex system, and a way to resolve conflicts” (p. 84). This 
is in contrast to shallow learning which involves “perceptual learning, motor skills, 
definitions of words, properties of objects, and memorization of facts” (p. 84).  

In this chapter, we define deep comprehension as going beyond memory for explicitly 
presented facts to being able to reconstruct explanations for scientific phenomena and 
representing the evidence for one or more, possibly competing, explanations. In contrast, 
we view shallow comprehension as learning and memorizing new vocabulary and facts 
from texts (Graesser et al., 2009).  

Structure of scientific explanations  
Scientific explanation and argumentation have been identified in the Next Generation 
Science Standards (NGSS) as foundational skills that enable students to think critically 
about natural phenomena and engage in authentic practices of science (Achieve, 2013). 
Students need to understand explanations of phenomena in the natural world, to evaluate 
which explanations are best supported, and to communicate those ideas to other people 
(Achieve, 2013; Britt, Richter, & Rouet, 2014; OECD, 2015; Osborne & Patterson, 
2011).  Most students need training in explanation and argumentation in science (Duschl 
& Osborne, 2002; Hastings, Hughes, Blaum, Wallace, & Britt, 2016). The focus of this 
chapter is limited to students’ understanding of explanations from written texts. 

While texts or segments of texts can include several types of structures, including 
description, collection, sequence and causation (Meyer & Freedle, 1984), the two that are 
the hallmark of deep comprehension in science texts are causal explanation and 
argumentation. While there are several types of explanations (Braaten, & Windschitl, 
2011; Hempel & Oppenheim, 1948; Salmon, 1989), the U.S. science standards focus on 
students developing skill in representing and using causal explanations (Achieve, 2013). 
This includes reading to understand “how” and “why” questions about phenomena such 
as “How do coral get bleached?” and “Why do humans get skin cancer?”. Causal 
explanations for scientific phenomena have a general structure that includes one or more 
initiating causes coherently connected to intervening states or events that lead to the to-
be-explained outcome (Achieve, 2013, Chinn & Malhotra, 2002; Hempel & Oppenheim, 
1948). For instance, an explanation for “what causes coral bleaching” could include “that 
changes in water temperature in the ocean caused by changing winds can lead to less 
carbon dioxide in water which is necessary for photosynthesis so that the algae will 
survive. Without these algae, the coral will die but before they die, they become white (a 
process called coral bleaching)”. Here the initiating cause is changes in wind patterns that 
changes water temperature and the to-be-explained-outcome is coral bleaching. An even 
more complete explanation would include a second initiating cause of storms leading to 
changes in the salinity of the water.  

Assessing deep structure of explanations  
First, we briefly describe a new Evidence-based Argument assessment of deep 
comprehension of scientific explanations that has students read a set of documents to 
answer a “how” or “why” question about the causes of a scientific phenomenon by 



integrating across multiple sources (Goldman, et al., submitted; Hastings et al., 2016; 
Wiley et al., 2009). We present this new assessment in some detail because it is the only 
one we know of that examines explanation understanding from multiple documents.  
Then we present results from a study using this assessment to show the importance of 
identifying explanation structure as an indicator of the student’s deep comprehension in 
addition to identifying content (more shallow comprehension).  

In this assessment, a document set was built around a causal model, shown in Fig. 1, for 
the coral bleaching topic. To answer the question, the reader had to create inferences 
based on their knowledge of what an explanation is. To construct a complete, integrated, 
coherent explanation, a reader would have to identify all potential initiating causes and 
then make explicit all the relationships between concepts that are linked to them, paying 
special attention to intermediate processes or mechanisms. In contrast to a shallower task 
which would present a single text that has a complete and coherent explanation, students 
had to integrate information from multiple documents. Our assessment of deep 
comprehension included both representing (as measured by multiple choice items) and 
communicating the structure of an explanation (as measured by an essay).  

 

Figure 1: Causal model for coral bleaching 

In a recent study, college students were given the coral bleaching assessment (Kopp et 
al., 2016). One document gave general background information, three documents 
described different parts of the explanation, and one was a graph of the relationship 
between one initiating factor (trade winds) and coral bleaching over the last 30 years. The 
students were asked to read the documents and then write an essay (with the documents 
present) that answers the question “What leads to differences in the rates of coral 
bleaching?”  

Before reading, all participants were told what we meant by a causal explanation in 
science, including information about coherence (“a detailed series of important factors”, 
“illustrates the intermediate steps that lead to”) and completeness (“there are multiple 
causes”, “so please be as complete as possible”). These instructions were also intended to 
help them understand that they needed to integrate across documents. To make sure they 
encoded the instructions, we presented the instructions with key phrases as a closed task 
(i.e., fill in blanks).  

Participants then typed their essays while reading paper copies of the documents. After 
finishing their first draft, the experimenter put it into the “computer annotator” which 



automatically scored it and provided feedback. In actuality, their feedback was randomly 
determined but they were led to believe that the computer scored it. They were given one 
of four types of feedback. The two conditions that we are focused on here are the Revise 
feedback and the Complete feedback conditions. All feedback told them that this was a 
“good start” and that they would now be given a chance to go back and revise their essay. 
For the Revise feedback condition, this was all they were told. For the Complete 
feedback condition, they were reminded about coherence (i.e., “You should include 
factors from different sources and explain how they interact and cause coral bleaching”) 
and completeness (i.e., “there may be multiple causal chains. You may want to now focus 
on how different factors from different sources interact and create a separate causal 
chain”).  

In addition to the essay task that provided a measure of students’ ability to communicate 
the structure of an explanation (participant’s draft) and revise this communication based 
on feedback (participant’s revision), we also had several measures of learning that were 
less production heavy. These included 9 multiple-choice items to test their understanding 
of specific parts of the causal explanation from within a single document and for links 
across documents. For additional measures of deep comprehension (i.e., critiquing and 
evaluating models) in this novel assessment see Goldman (under review). In the next 
section, we describe how these essays were scored by humans and use this study to 
illustrate two conditions in which scoring for structure could enhance a real computer 
assessment tool.  

Description of human scoring  
The initial essays were annotated by human scorers according to the causal model. As 
shown in Fig. 1, there were 13 causal elements (e.g., higher water temperature) that could 
be connected and two distinct initiating factors (i.e., reversing trade winds, storms). As in 
our prior work (Hastings, et al., 2016; Wiley et al., 2017), we scored the essays for the 
number of Unique concepts mentioned from the causal model regardless of how they 
were connected. This measures important information selection but not how that 
information was structured. To get at explicit structural relations to form a coherent, well-
connected explanation, we scored the essays for the number of Intervening factors they 
contained. That is, the number of concepts that the student explicitly mentioned as 
connected from an initiating cause to the outcome. Both of these methods were useful in 
scoring explanation essays. In one study, we found that both measures predicted middle 
school and high school students’ learning of the causes of global warming from multiple 
documents as measured by an inference verification task (Wiley et al., 2017).  

Results showing importance of structure scoring   
We first looked at how performance on the initial drafts would predict learning, 
collapsing across conditions because it was not significant and the conditions were 
identical at this point. The number of Unique concepts and Intervening factors both 
significantly correlated with multiple-choice performance, r = .32, p < .05, r = .47, p < 
.001, respectively. Multiple regression was used to examine the extent to which 
Intervening factors (structure) predicted multiple-choice performance (learning) beyond 
the Unique concepts (content selection).  



In the first step of the regression, Unique concepts were a significant predictor of 
learning, accounting for 10% of the variance (F(1, 43) = 4.86, p < .05 for change in R). 
Most importantly, adding Intervening factors on the second step significantly increased 
the amount of variance accounted for to 22% (F(1, 42) = 6.44, p < .05 for change in R). 
Thus, at least for college students that are told what an explanation is, coding essays for 
structure does help to identify those who learned more on their initial drafts beyond just 
coding for concepts.  

Next, we consider whether identifying explanation structure enables the creation of 
feedback which is beneficial for students’ revisions of their essays. For this analysis, we 
assessed the number of Unique concepts and Intervening factors for the revised 
explanations (i.e., after they received feedback) and looked at performance on the 
revisions between conditions. An ANCOVA with unique concepts from the initial draft 
as the covariate showed that there was a significant difference in conditions for the 
number of unique concepts on the revision. The Complete feedback condition produced 
significantly more Unique concepts than the Revise condition: 6.8 (SE = .30) > 5.7 (SE = 
.33); F(1, 42) = 5.80, p = .02, (MSE = 2.14), d = .77. This shows that students selected 
additional content to include in their essays which would suggest the feedback improved 
learning of the explanation. The two conditions, however, did not statistically differ for 
the number of Intervening factors in their revised essays: Complete = 2.7 (SE = .30) vs. 
Revise = 2.3 (SE = .34); F(1,42) = .85, p > .05, (MSE = 2.26), d=.48. This shows that the 
feedback did not lead to better structured essays. Therefore, if only the amount of content 
were considered, the conclusion would be that the structure feedback was effective. 
However, if the goal is to help students integrate information into a coherent explanation 
for a phenomenon, the conclusion would be that the feedback was not effective. Only by 
performing a deep analysis of explanation structure is this failure evident.  

Computational approaches for assessing structure  
The main goal of this chapter is to address the question of which computational 
techniques (NLU) are effective for determining the causal structure in student 
explanations. First, we need to distinguish this task from the more typical task of 
applying a single holistic score which evaluates the explanation quality. A holistic score 
could be based on a number of factors which are aggregated over the explanation, for 
example, the number of important terms from the sources which the students read, and 
the number of “causal” terms like “causes”, “leads (to)”, and “then”. Instead, causal 
structure identification requires locating specific concepts from the causal model in the 
student’s explanation, and determining how they are explicitly connected to the target 
outcome. From this, we can create a model of the explanation that is a subgraph of the 
complete model. This can provide the basis for very specific feedback on the student’s 
explanation, including the content that was included, that which was omitted, and how 
they were connected. Prior research shows that making suggestions based on specifics of 
student texts results in significant improvements in the quality of revisions (Britt, 
Wiemer-Hastings, Larson, & Perfetti, 2004).  

In this section, we describe the computational approaches which have been shown to be 
effective at identifying the specific structure of student explanations, including 



identification of both concepts and causal connections. We also describe some techniques 
that are not well-suited for this task. For the effective approaches, we provide information 
about specific “off-the-shelf” tools that can give the required computational analyses, and 
also describe some utilities for creating data that are needed for these tools.  

Shallow NLU for structure identification  
As previously mentioned, some shallow NLU techniques are suitable for holistic scoring 
of explanation quality, but they are limited in their ability to identify causal structure. For 
example, keywords for a particular topic could be identified, and very simple search 
mechanisms could count the occurrence of those keywords in the students’ explanations. 
Causation-related keywords can also be searched in the explanations. A holistic score for 
each explanation can be assigned based on the ratio of these keywords to the total number 
of words, perhaps also using the total number of words or sentences in the explanation or 
similar factors as additional indicators. But such an approach cannot identify the specific 
causal structure embedded within the explanations.  

The Coh-Metrix system (available at http://cohmetrix.com) goes significantly beyond 
keyword search. It provides 108 different measures of a submitted text, including 
descriptive statistics (number of words, sentences, paragraphs, etc.) and measures related 
to readability, cohesion and text complexity (McNamara & Graesser, 2012). Some of 
these measures are derived from special-purpose collections of word classes developed 
for the system. Others come from more general-purpose tools. Although Coh-Metrix does 
provide measures that include more local information, for example, the average number 
of sentences in the text with nouns in common between two adjacent sentences, the 
measures are all aggregates over the entire text. Thus, they can be effective at providing a 
holistic score for an explanation (Wiley et al., 2017), but they are inappropriate for use in 
identifying the structure.  

Used appropriately, however, some shallow NLU techniques can identify some aspects of 
explanation structure. For example, a keyword match or regular expression match (i.e., 
matching patterns of word combinations with alternatives) can be applied to successfully 
identify concepts from the source documents in student explanations. Using a tool to aid 
creation and testing of such patterns, Hastings et al. (2012) showed success in identifying 
very specific concepts from the texts, but were less successful with higher-level concepts, 
and concepts that required integration across documents. This type of technique was also 
incapable of identifying causal claims between the concepts due to the wide variety of 
ways that the students expressed those connections.  

Word semantic methods  
The keyword matching method described above relies on identifying specific words in 
the student text. It is a shallow method; if the exact word does not appear (due, for 
example, to misspelling or use of a synonym), the corresponding concept is not 
identified. Regular expression matching is slightly less brittle because it allows more 
alternatives and combinations. But both are dependent on the exact words as they are 
included in the text. If the system had a deeper representation of word meanings, it could 
handle more variation in terms of word synonyms and syntactic constructions. Word 
semantic methods can provide this deeper representation.  



Two well-known examples of such methods are Latent Semantic Analysis (LSA, 
Landauer & Dumais, 1997), and word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 
2013). Both systems represent words as vectors in a high-dimensional space, typically 
using 50 to 300 dimensions. Both create their representations from a corpus of texts. LSA 
uses a mathematical reduction of dimensions from a word-by-document co-occurrence 
matrix. Word2vec is a neural network technique that is trained to predict the probability 
of a word from the context of the words that surround it. The key advantage of these 
types of methods is that their representation places words with similar meanings nearby 
each other within the high-dimensional space.  

LSA, available at http://lsa.colorado.edu, has been used in many ways, for example, 
identifying synonyms, performing analogies, and selecting related texts. In the context of 
causal structure identification, the most obvious way to use it is to compare the similarity 
of the student’s explanation to the original source documents. The trick is to find the right 
level of granularity to compare them. With LSA, word vectors can simply be combined to 
create vectors for phrases, sentences, etc. The geometric cosine between vectors gives a 
measurement of how close two vectors are, ranging, in practice, from 0 to 1. LSA is a 
“bag-of-words” model; it completely ignores word order and syntax. So how does one 
know which sets of words to compare? If each concept from the causal model is 
identified by a single word, then each of those words can be compared with every word 
in the student’s explanation to locate the concepts. But then, its performance is very 
similar to keyword matching. At the other extreme, if the whole student explanation is 
compared to the entire text of the source documents, the cosine score can be used as a 
general holistic score for the similarity, but it is bound to be a rough estimate at best due 
to extra content in the source documents that is not part of the causal model. A common 
intermediate technique is to do sentence-by-sentence matching (Hastings et al., 2012). 
However, because the concepts and causal connections are normally represented by 
smaller phrases, this technique can only accurately identify single-sentence causal 
connections in the student explanations which were given as single-sentence connections 
in the source documents.  

Code for training word2vec is available on the web in many languages, including C, 
Python, and Java. Word2vec can be used in the ways described above as well, but it is 
more often used as a rich input to other neural network techniques. More about these 
below.  

Machine learning approaches  
When working in an educational context, each topic and task may have a different sub-
language associated with it. In other words, student causal explanations for one scientific 
domain will include different words and possibly even different syntactic constructions 
than those in another domain. And other genres of texts will be expressed in different 
ways even if they are on the same topic (Goldman et al., 2016). Because of this 
variability, the best way to ensure deep analysis of student texts is to use machine 
learning approaches to customize the structure analysis to the particular task and topic. 
That can, however, require more sophisticated techniques. But here also there is a range 
of depth of mechanisms available, some easier to implement than others. In this section, 
we describe some techniques that have been shown to be effective for identifying 



structure in causal explanations.  

Text annotation for machine learning  
The most directly applicable machine learning methods for structure identification are 
supervised learning methods, that is, they are trained from a set of texts in which the 
target information has been previously marked by expert coders. Here also, the 
granularity of analysis is important. A simple, easily accessible technique for annotation 
is to put each student explanation into a large spreadsheet, with one sentence in every 
row, and, in separate columns, identify the concepts that occur in that sentence and the 
causal connections if any. The utility of such an approach is very limited, however. It 
could be used to evaluate a sentence-based LSA approach, but, because the specific 
words within the sentence that identify the concepts and causal connections are not 
identified, it cannot be used to train a deeper machine learning approach.  

Instead, an annotation tool like brat (http://brat.nlplab.org/, Stenetorp et al., 2012) is 
recommended. This type of tool makes it easy to label the specific words that correspond 
to important concepts and causal connections in the texts and to visualize the contents of 
each text, and it stores the annotations in a simple, text-based representation. Fig. 2 shows 
an example of annotation in brat from a biomedical domain.  

 
Figure 2: An example of annotation with brat 

 

Multi-word  
A very simple way to use machine learning for causal structure identification is to 
automatically learn the type of regular expressions described above. When learning new 
patterns, there is a trade-off between coverage of the patterns (the hit rate) and the 
number of false alarms. If you make the pattern more general, you get more hits, but the 
number of false alarms increases as well. Hastings, et al. (2012) took an iterative 
approach to creating patterns, adding different options for concepts until the combined 
accuracy went down. They found that, while the technique was not best overall, 
compared to one based on LSA and one based on another machine learning method 
(SVMs, described below), this approach was superior for identifying causal connections 
that students made between source documents, as opposed to those where the cause and 
the effect were both described within the same source document. This type of causal 
connection was relatively rare in the student explanations, and that may be one reason for 
the advantage of the multi-word approach here. The other learning methods need more 
examples to successfully distinguish texts which do and do not contain these connections.  

Support Vector Machines (SVMs)  
SVMs (Vapnik & Chervonenkis, 1971; downloadable code at 
http://svmlight.joachims.org) provide a considerably more sophisticated machine learning 



technique and are very popular for many applications, including text classification. 
Explanation structure identification is treated as a classification problem by posing the 
question, “Does a particular sentence (or phrase, or paragraph, or some other amount of 
text) include a concept or causal connection from the causal model?” For this type of 
task, typically an SVM will be trained with each word in the training corpus treated as a 
separate input feature or with ngrams as features. During the training, the SVM learns to 
separate the positive from the negative examples, i.e., the examples containing the target 
concept or causal connections from those that do not. For many tasks, SVMs perform 
very well. But their depth of analysis for causal structure identification is limited in two 
ways. First, the technique is a bag-of-words model, ignoring word order and syntactic 
structure. Second, as with the LSA approach described above, it is not clear how much 
text (word, sentence, etc.) to compare. For example, if a student sentence is compared to 
a source sentence and no matching causal connection is found, that could be because 
there is none there to be found, or it could be because there are additional words in the 
sentence which outweigh the contribution of the causal connection words. Nevertheless, 
Hastings et al. (2012) showed that an SVM provided better overall classification than the 
multi-word approach and an LSA sentence-to-sentence comparison approach.  

Window-based tagging  
The techniques described so far have either searched for specific keywords or patterns in 
student explanations, or they have used deeper representations to compare relatively 
arbitrary spans of text (usually sentences). One way to combine more localized search 
with a more robust, learned representation is called window-based tagging (Hughes, 
Hastings, Britt, Wallace, & Blaum, 2015). In this technique a window of words with a 
fixed, odd size is “slid” across the text to create training examples where the goal is to 
predict the classification (concept or causal connector) of the central word in the window. 
The features are the other words in the window along with their relative distance before 
or after the target. As an example, consider a window of size 5, and an example sentence, 
“ . . . which causes the salinity to drop, this drop . . . ”, where the phrase, “salinity to 
drop” is marked with code #13 in the graph above. The training instances from this 
example would include: [which:-2, causes:-1, salinity:+1, to:+2] → none; [causes:-2, the:-1, 
to:+1, drop:+2] → 13; etc., where the items in brackets are the 4 features including relative 
position, and the item after the arrow is the predicted classification. Using these features 
as input to a set of SVM classifiers1, one for each concept, Hughes et al. (2015) achieved 
a high level of accuracy, F1 = 0.852, at identifying concepts in sentences. The accuracy 
for causal connections was also quite good, F1 = 0.65, but was limited because it depends 
on the results of the concept classification.  

																																																								
1	For this evaluation, the bigrams were also included, i.e., two consecutive words along 
with their relative positions.  

2	F1 ranges from 0 to 1, and is defined as (2*Precision*Recall)/(Precision + Recall), 
where Recall = Hits / (Hits + Misses), and Precision = Hits / (Hits + False Alarms).  



Neural networks and deep learning 
Advances in algorithms and computational power have recently enabled deep neural 
networks to accomplish a wide variety of tasks including natural language processing 
tasks. At a high level, the idea is this: a network of very simple units takes inputs (either 
in groups, or one at a time) and, via weighted connections to other units, gradually learns 
to improve performance on some task by adjusting the weights to reduce overall error. 
One of the most successful approaches for this type of problem is Long Short-Term 
Memory (LSTM), a type of Recurrent Neural Network (Goodfellow, Bengio, & 
Courville, 2016). It can “read” a text one word at a time, adding information about the 
word to its current state. It can also “decide” when to output the state information and 
when to clear it out. All of the decisions and the way new information is added are 
controlled by weights which are learned during the training process.  

Using syntactic structure  
As mentioned at the beginning of the chapter, the traditional method of natural language 
understanding starts with determining the syntactic structure of the text. Intuitively, this 
makes sense: the syntax is the framework that the meaning is built on. However, the 
ambiguities in language make all but the simplest forms computationally expensive to 
derive. And circularities often occur: you can’t determine the meaning without the 
syntax, but you can’t determine the syntax without the meaning. Nevertheless, there are 
fast statistical parsers available like the Stanford Parser (Socher, Bauer, Manning, & Ng, 
2013, https://nlp.stanford.edu/software/lex-parser.shtml) or SyntaxNet 
(https://research.googleblog.com/2016/ 05/announcing-syntaxnet-worlds-most.html) 
which are trained from large corpora of texts, that can do a good job of determining 
sentence structure. The performance of these systems depends on the size of the training 
set, so the default choice is to use them with a pre-trained corpus, typically newspaper 
texts. If the language that the students uses differs significantly from these texts, which it 
often does, the parser may be less successful.  

Hybrid approaches  
Hastings et al. (2012) compared several different approaches for analyzing causal 
explanation structure, pattern matching, an LSA-based approach, and a sentence-level 
machine learning approach. Their results supported the “functional semantic overlap 
hypothesis”, namely, that each different type of method analyzed had strengths and 
weaknesses for identifying different types of concepts. Thus, a hybrid approach could be 
very effective. The trick to making a hybrid approach work is to know when to prefer the 
classification of one method over the other. An ensemble learning (or multiple classifier) 
method (Rokach, 2010) is trained to make just this type of determination. There are 
several variants on this approach, but with all of them, the trained system learns which of 
several different methods to “trust” in different situations.  

Conclusions  
How deeply do students need to comprehend texts? That depends largely on the task for 
which they are reading (Britt et al., 2017). Likewise, the types of computational 
approaches appropriate for analyzing student texts depends on the goals of that analysis. 
Shallow NLU approaches have been shown to be very effective at analyzing texts in a 



variety of settings that promote student learning. To effectively uncover deeper aspects of 
texts like the causal structure in student explanations of scientific phenomena, more 
advanced NLU techniques are required.  

In this chapter, we have shown why it is important to teach students to be able to read 
with deep comprehension, and why deep NLU is important for helping students learn to 
do that. And we have described a variety of NLU approaches, both shallow and deep, that 
can support student learning.  
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