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Abstract 

The strength of Latent Semantic Analysis (LSA) (Deerwester, Dumais, Furnas, Landauer,& 

Harshman,1990, Landauer & Dumais,1997) has been demonstrated in many applications, many of 

which are described in this book.  This chapter briefly describes how LSA has been effectively 

integrated in some of the applications developed at the Institute for Intelligent Systems, the 

University of Memphis. The chapter subsequently identifies some weaknesses of the current use of 

LSA and proposes a few methods to overcome these weaknesses.  One problem addresses 

statistical properties of an LSA space when it is used as a measure of similarity, while the second 

problem addresses the limited use of dimensional information in the vector representation.  With 

respect to the statistical aspect of LSA, we propose using the standardized value of cosine matches 

for similarity measurements between documents. Such standardization is based on both the 

statistical properties of the LSA space and the properties of the specific application. With respect 

to the dimensional information in LSA vectors, we propose three different methods of using LSA 

vectors in computing similarity between documents. The three methods adapt to (1) learner 

perspective, (2) context, and (3)conversational history. These adaptive methods are assessed by 

examining the relationship between LSA similarity measure and keyword-match based similarity 

measures. We argue that LSA can be more powerful if such extensions are appropriately used in 

applications.  
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Introduction 
As the title indicates, this chapter addresses three goals. The first goal is to identify some 

important strengths of LSA whereas the second is to identify some weaknesses. The third goal is to 

propose a few alternative quantitative models of representation with high-dimensional semantic 

spaces. As amply demonstrated by the range of applications described in other chapters of this 

book, there is no need to address the practical strength of LSA. Instead, we approach the first goal 

by presenting some basic facts about LSA in terms of simple algebra and demonstrate how 

powerfully this “data-mining” method captures human intuition. Limitations of LSA are observed 

from two perspectives: empirical evaluations of LSA in applications and formal analysis of LSA 

algorithms and procedures. Regarding the third goal, we position LSA in a more general 

framework and then examine possible extensions.  These extensions include three methods which 

adapt (1) to learner perspective (2) context, and (3) conversational history.   

Comparing text similarity 
 

The primary task that LSA performs in most applications is to compute the semantic 

similarity of any two texts. To approach LSA from a different angle, we consider two other text 

similarity metrics: word-based and context-based measures of text similarity. The discussion of 

these relatively simple measures will facilitate the introduction of a denotation that allows the 

consideration of LSA in a new framework. 

Word-based Similarity 
Keyword matching is the most frequently used method to measure similarity between two 

texts. There are many different techniques for keyword matching. We list a few in the order of 

simplicity. 

Word Matching: The simplest technique is word matching. In this case, all words are of 
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equal importance and the calculation is based on how many words the two texts share. This 

method does not depend on context or domain knowledge. The similarity measure is a function of 

the total words and the shared words, which can readily be depicted in a Venn diagram 

(http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Venn.html). The most often-used 

formula for the computation is the ratio of the shared words to the total words, which restricts the 

similarity measure between 0 (completely different) and 1 (completely identical). The advantages 

of word matching are its intuitiveness and computational simplicity. One disadvantage of this 

method is the lack of emphasis on important words. The next method improves the word matching 

method by considering which words contribute most to the distinct meaning of the text. 

Keyword Matching: In this case, only keywords are considered. Common words or 

function words like it, is, or the are ignored (Graesser, Hu, Person, Jackson, and Toth, 2004).  This 

is the most widely used method in document retrieval.  The advantage of this method is that it 

considers the importance of the words’ semantic contributions. Some additional requirements 

need to be satisfied in order to have this method work well, especially in narrowly-defined 

domains. For example, which words are identified as keywords largely depends on the domain. In 

most cases, the list of keywords is simply the list of glossary items and therefore is domain 

dependent. One weakness of this method is that it does not consider differential importance as to 

how much information a particular word may carry. The following method addresses this problem 

by differentially weighting the keywords. 

Weighted Keyword Matching: The advantage of weighting keywords is to emphasize the 

degree to which a particular word is important to a particular domain. The challenge lies in how to 

assign the weights, which is often domain dependent. For example, weights can reflect how often a 

word is used in ordinary written language or spoken language (Graesser, Hu, et., 2004). Such data 
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can be obtained either by computing the relative frequency from a given corpus (with a one-time 

computation cost), or by using an established lexical database such as WordNet (Miller, 1985) or 

the MRC Psycholinguistic Database (Coltheart, 1981). As an alternative, weights can be assigned 

by an algorithm that computes the importance of the word in context. However, such an algorithm 

would need to be formulated in a principled fashion and might again depend heavily on domain 

expertise.  

Weighted keyword matching is a powerful abstraction which subsumes word matching and 

keyword matching.  It is also flexible due to the unlimited methods of assigning weights.  However, 

it is limited in that it relies on exact matches between words.  The extended weighted keyword 

matching methods allows consideration of synonyms as well. 

Extended Weighted Keyword Matching: This method simply considers each word 

together with a set of words that are similar in some fashion. For example, each word can be 

associated with a set of synonyms. This method can provide a similarity rating even when the 

compared texts do not have any exact words in common.  In such cases, the use of synonyms can 

also be a liability.  Synonyms never capture exactly the same meaning as the original word, 

especially when one considers a range of contexts of use.  Thus the inclusion of synonyms has the 

potential to significantly distort the meanings of the texts.  

Each of the methods mentioned above operates by finding exact matches between words.   

The information affiliated with a word (i.e. its weight and synonyms) can either be calculated by 

some method from a corpus, or taken from an external resource. As such, the performance of the 

techniques can depend heavily on the resources used. Databases such as MRC (Coltheart, 1981) 

and CELEX (http://www.ru.nl/celex/) can provide word frequency information. Corpora such as 

TASA (Touchstone Applied Science Associates, Inc.), Penn Treebank 

http://www.ru.nl/celex/
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(http://www.cis.upenn.edu/~treebank/home.html), and the British National Corpus (BNC, 

http://www.natcorp.ox.ac.uk/) provide samples of actual texts from which word information can 

be derived.  A lexicon like WordNet (http://wordnet.princeton.edu/)can provide synonyms. The 

information derived from different lexical databases or corpora may be appropriate for the domain 

of interest, but it may also be misleading if there is a misalignment between the corpus and the 

application.  The quality of this information can have a large effect on the overall success of the 

technique. 

Formal definition of similarity between texts 
The various types of word matching methods can be represented within a unified 

mathematical formalism. First, consider that the collection of all possible terms in a given 

language is a set with m elements. If one indexes all the terms from 1 to m, then each term ti (where 

i=1,…m) can be represented by an m-dimensional row vector with only one nonzero element. This 

is captured in expressions 1 and 2 below, with bold letters depicting vectors. 

 ( ) ,
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m
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In other words, ti is a vector which is 0 everywhere except for the ith element which is 1. With this 

notation, for any text T with K words (not necessarily distinct),  there is an m dimensional vector 

representation T, as expressed in equation Eq(3) in which there are K term vectors in the 

summation: 

 .ii
i
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where ni is the number of occurrences of the ith word in the text T. 
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The word match similarity between two texts, T1 and T2 is computed as the cosine between the two 

document vectors: 

 ( ) .,cos
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Notice that T1 and T2 are row vectors, so there is a transpose needed for T2 in Eq(4).  

Assembling all the term vectors together, a diagonal matrix U can be obtained, as 

expressed in Eq(5). 
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With this definition of U, we are able to have similar formulas for different types of similarity 

measures. 

Keyword matching and weighted keyword matching 

Consider an m x m diagonal matrix, W = diag{wi}, where all diagonal elements are 

non-negative. In this case, the similarity measure based on both keyword matching and weighted 

keyword matching can be computed with Eq(4), where the term vector ti is multiplied by the 

number of occurrence to form the ith row of WU. In other words, the matrix WU contains term 

vectors ti multiplied by the occurrences and then weighted by wi (i = 1,…m). Note that keyword 

matching corresponds to the case where elements of W only have the value of 0 or 1. A weight of 

0 for a common word essentially removes it from consideration. 

Extended Weighted Keyword Matching 

The similarity measure corresponds to extended weighted keyword matching can be 

computed as the as Eq(4), where T=WUE and E=(eij)mxm  is a matrix with all elements either 0 or 1.  

When eij = 1, terms indexed as i and j are synonyms of each other. 
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We find the above notations very useful. We can extend the similarity measures from word 

matching to context matching. 

Context-based Similarity 
In the word-based methods, the only way that one could obtain a nonzero similarity 

measure between two distinct terms is when they are somehow related. This occurs, for example, 

when there is extended weighted keyword matching and the two terms are synonyms. A similarity 

measure based on context is different from the keyword-based similarity measure. Consider a 

corpus, with all of the documents indexed from 1,2,…,n. Term ti, i=1,…m, in the corpus is 

represented as the n-dimensional vector expressed in Eq(6),  

( ) ,
1

n
jiji f
=

=t  (6) 

where fij is the number of times term ti appears in document j. Denote ( )
nmijf

×
=F . The similarity 

measure of any two texts based on context can again be computed with Eq(4), where ti is the ith row 

of F. As with the word-based measures, we can also apply weighting to terms and documents. In 

this case, term weights form a diagonal matrix  and document weights form a diagonal 

matrix  The similarity measures between two texts is the same as Eq(4), except that the term 

vector t

mm×W

.nn×Λ

i is obtained as the ith row of .ΛWF  This method of denotation allows us to consider LSA 

in a new framework, as discussed in the next section. 

LSA 
 

The two similarity measures introduced previously have one important common 

characteristic: the terms are represented as multidimensional vectors. The computational formulas 

are the same, namely Eq(4). However, the vector representations of the terms differ between the 

approaches. As we have observed, for all the methods introduced, we always assume the existence 
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of a high dimensional vector representation. This assumption will bring some difficulty when they 

are implemented in real applications due to the computational complexity. 

Representing terms as vectors and comparing similarity between texts using vector algebra 

has been a common methodology in several applications. For example, HAL (Hyperspace Analog 

to Language) uses co-occurrence of word pairs in a corpus to build word vector representations 

(Burgess, 1998). NLS (Non-Latent Similarity) uses similarities between explicit word pairs to 

build word vector representations (Cai, McNamara, Louwerse, Hu, Rowe & Graesser, 2004). 

Latent Semantic Analysis (LSA) is the most well known example of such methods that use vectors 

to represent terms. Instead of using high dimensional vectors (usually, the number of words is in 

the neighborhood of 105 and the number of documents is about the same scale), LSA represents 

each term as a real vector (of up to 500 dimensions), and the similarity between any two texts is 

computed using the formula in Eq(4). 

Basic Steps in LSA 
The difference between LSA and other methods that we have introduced previously 

(Martin and Berry, this volume) is the mechanism by which the term vectors are obtained. We 

briefly summarize the LSA procedures for obtaining term vectors: data acquisition, singular value 

decomposition, and dimension reduction. 

Data Acquisition: The process starts by collecting a massive amount of text data in 

electronic form. With such data, we prepare the nm×  matrix in Eq(7), 

 ( ) ( )( )
nmij jiLiGf

×
××= ,A  (7) 

where m is the number of terms and n is the number of documents (usually m and n are very large, 

and for now, assume  ), the value of  fmn ≥ ij is a function of the number of times term i appears in 

document j, L(i,j) is a local weighting of term i in document j, and G(i) is the global weighting for 

http://locutus.ucr.edu/abstracts/98-b-brmic.html
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term i. Such a weighting function is used to differentially treat terms and documents to reflect 

knowledge that is beyond the collection of the documents (see Martin and Berry, this volume for 

detail) . Notice the fact that if L(i,j) is multiplicative, namely L(i, j) can be written as,  

 ( ) ( ) ( ),, jlikjiL =  (8) 

where k(i) is a weight for the ith term and l(j) is a weight for the jth document, then Eq(7) is a matrix 

(fij) multiplied by a diagonal matrix diag{k(i)G(i)} on the left and another diagonal matrix 

diag{l(j)} on the right, the same form as ΛWF  in the context-based similarity measure. 

Singular Value Decomposition (SVD): Singular value decomposition (SVD) 

decomposes the matrix A into three matrices  

  (9) TVUA Σ=

where U is  and V is  square matrices, such that UUmm × nn× T = I ; VVT=I (orthonormal 

matrices), and  is an  diagonal matrix with singular values on the diagonal. In addition, the 

singular values are non-negative and are ordered from largest to smallest in the diagonal of 

Σ nm×

Σ    

(see Martin and Berry, this volume for detail of SVD).  

Dimension Reduction: By removing dimensions corresponding to small singular values 

and keeping the dimensions corresponding to larger singular values, the representation of each 

term is reduced to a smaller vector with only k dimensions. The original SVD Eq(9) becomes 

Eq(10). 

  (10) T
kkkkk VUA ×= Σ

The new term vectors (rows in the reduced U matrix, Uk ) are no longer orthogonal, but the 

advantage of this is that only the most important dimensions that correspond to larger singular 

values are kept. This operation is believed to remove redundant information in the matrix A and 

reduce noise from semantic information. In the LSA procedure described above, the Data 
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Acquisition and the Dimension Reduction parts are the most intuitive. The most mysterious part is 

the SVD. Why and how it works is a very deep mathematical / philosophical question and is 

beyond the scope of this chapter. For more details, see Martin and Berry (this volume).  

Basic facts about LSA 
After Uk is obtained, each term has a unique k -dimensional vector representation. 

Furthermore, any text containing one or more terms will also have a corresponding vector with the 

same number of dimensions. The vector for a text can be computed as a function of the term 

vectors. Text vectors are computed differently for different applications. The formula for the text 

vector is in the same form as Eq(3), except that ti is the ith row of ,ΛkWU  where W=diag{wi} is a 

diagonal matrix and wi is the weight for term i }{ jdiag λ=Λ  is a diagonal matrix where jλ  is the 

weight of dimension j. The similarity between any two texts is calculated by the formula in Eq(4). 

The procedure outlined above is relatively simple. There are several advantages to using 

LSA, but two of them are primary: 

1) It picks up the word importance score from the information provided by the corpus. 

2) It sets up semantic similarity between words. This widely extends the synonym relation 

between words. 

In addition to the advantages, there are several key elements in LSA that are not directly obvious. 

These are listed below.  

a) The computation of weights G(i) and L(i, j) in Eq(7) is nontrivial. G(i) is a measure of how 

important a term is in the entire collection of texts. In order to obtain G(i) and L(i,j), one needs 

to process the entire corpus first to get some kind of importance measure such as frequency of 

appearance A direct consequence of this is that the entire matrix A needs to be recalculated 

whenever some more documents are put into the corpus, because word frequencies are 
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changed. It presumably encodes the weighting of term i in document j and the importance of 

document j. Such parameters are needed during the data acquisition/encoding phase. It is very 

important to note that the influence of the parameters can only be evaluated after the three steps 

and it is very hard to set the parameters because of the massive amount of computation needed 

to reach the last step.  

b) Selection of the number of dimensions (k) is a challenging task. One needs to specify k before 

the computation. There is no intuitive way to determine the best k, other than by repeated 

empirical evaluations (Zha and Zhang, 1999). 

c) The computation of Eq(4) is task dependent. For example, if one only wants to compare the 

similarity between two texts, then Λ  is an identity matrix ( kjj ,...,1,1 ==λ  ). If one wants to 

retrieve a document from the original corpus and obtain the closest vector in V,  then Λ  is the 

inverse of the singular values from the SVD (Berry, 1992). The former similarity computation 

is called the term method, wherein the later computation is called the document method (see 

http://lsa.colorado.edu/). 

d) The first dimension is problematic. Because all entries of the original matrix A are 

non-negative, the first dimension of Uk always has the same sign (Hu, Cai, Franceschetti, 

Penumatsa, Graesser, Louwerse, McNamara & TRG, 2003) and the mean of the first 

dimension values is much larger than that of other dimensions. This trend is illustrated in 

Figure 1. As a result of this, the cosine value between any two documents, if one uses the term 

method, is monotonically related to number of words contained in the documents. This fact 

was observed by Buckley, Singhal, Mitra, and Salton (1996).  Such trend is illustrated in 

Figure 2.  

Insert Figures 1 and 2 about here 
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e) The vector representations for the terms are not fully used. Up to now, their contribution is 

essentially in the computation of similarities between terms. In other words, in the computation 

of text similarity, LSA only provides the information about “term similarity”. A little 

mathematics can help to make this clear. Denote T1 = (t11+ t12,…,+t1I)  and T2 = (t21+ 

t22,…,+t2I) then  
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where t1itT
2j, t1itT

1j, and t2itT
2j, i=1,2,…I, j=1,2,…J are dot products of the term vectors. In 

other words, the obtained  matrix, nn × ( ) ,
nnijs

×
=P  where sij = titT

j,  i, j = 1,2, …, n is the 

similarity (un-normalized) between term i and term j. Eq(11) gives a way to compute text 

similarities based on the term similarity matrix.  However, we need an  to save the 

un-normalized term similarities. The advantage of vector representation of terms here is the 

saving of storage space (from  to 

nn×

nn× kn×  real numbers). It may be a significant saving, 

when n is greater than k.  One drawback is the lost of flexibility in constructing the term 

similarity matrix (Cai, et al. 2004). 

We end this section by proving a theorem that relates LSA and weighted keyword 

matching (Hu, et al. 2003). This theorem will help to develop other sections of the chapter. 

  Theorem Assume k equals the number of nonzero singular values, then 

1. If  and L(i, j) is multiplicative, as in Eq(8), then Eq(4) is weighted context 

matching. 

,kk×Σ=Λ

2. If  then Eq(4) is weighted keyword matching. ,kkI ×=Λ

Based on our discussions in this section, we observed that there are some facts about LSA 

that is none trivial (facts d) and e), for example).  In the next section, we will examine the use of 
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LSA in several applications and point out some weaknesses of LSA. 

Limitations of LSA 
In order to understand the limitations that we point out here, we briefly describe two 

applications that use LSA. For details about these two applications, the reader may find more in 

other chapters in this book (see Graesser et al., this volume; McNamara, Cai, & Louwerse, this 

volume). 

AutoTutor: AutoTutor is a natural language tutoring system that teaches conceptual 

physics and computer literacy via the Internet (Graesser, Wiemer-Hastings, Wiemer-Hastings,, 

Harter, Person, & TRG. 2000). One challenge for this system is to assess the quality of the 

student's response to the system. LSA cosine match is used to compare the student's response with 

the expected answers stored in a curriculum script. The values are used to help AutoTutor provide 

appropriate feedback for the student. 

Coh-Metrix: Coh-Metrix is a web tool that analyzes texts and provides up to 250 measures 

of cohesion and language characteristics (Graesser, McNamara, Louwerse, & Cai, 2004). Some of 

the cohesion measures consist of density scores for particular types of cohesion links between text 

constituents, such as paragraphs, sentences, clauses, or even words. LSA is used in this system to 

assess the conceptual relatedness of constituents (i.e., the more related, the more cohesive) and to 

assess co-referential cohesion (i.e., the extent to which content words refer to other constituents in 

the text).  

The Statistical Nature of LSA values 
As we have pointed out previously, the first dimension of all the term vectors have the 

same sign. This indicates that if one uses the term method to compute the similarity, the value 

computed by Eq(4) is directly influenced by the number of words in the texts. A simple simulation 
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shows that the cosine value between two texts monotonically increases as a function of the number 

of terms in the two documents (see Figure 2). This property of the term method makes it very hard 

to interpret text similarity measures without considering the sizes of the texts (Hu, Cai et al, 2003). 

In the case of AutoTutor, students’ contributions are compared with stored expectations. 

AutoTutor selects a fixed value between 0 and 1. If the cosine match between students’ 

contribution and the stored expectation exceed such value, AutoTutor assumes the expectation is 

covered. The fixed value for this purpose is called a threshold. The issue here is how to set the 

threshold. The threshold should be a function of the number of terms contained in the student’s 

contribution and the individual expectations. This limitation is not relevant in the case where 

similarity is computed using the document method, where the influence of the first dimension is 

minimized, nor in the case where the similarity is used for information retrieval, where only the 

ordinal property of the similarity value is used (Graesser et al., 2004). 

The use of detailed dimensional information 
The procedure outlined in the previous section has demonstrated that the original U matrix 

from the SVD and the truncated Uk are substantially influenced by the information contained in the 

original corpus. We further observed that even with the remaining k dimensions, LSA only has 

limited use. In fact, all the remaining dimensions are used only to obtain dot-products between 

terms, as it was shown in Eq(11). In the next few sections, we demonstrate that the vector 

representations of terms and documents contain more information. The information contained in 

the dimensions can be further used to extend the usefulness of LSA.  

Extending LSA 
Two observed weaknesses of LSA motivated us to propose two extensions of LSA that 

address the observations.  One extension is to use the statistical characteristics to reduce the text 
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size effect in the LSA similarity computation.  The other extension is to make more use of the 

dimensional information contained in the vector representation. 

Statistical Characteristics of LSA 
LSA was originally used as a tool for information retrieval (IR) (Graesser, Hu, et al., 2004) 

where recall was more emphasized than precision in most of the applications. In IR, the influence 

of the first dimension is not as strong as in similarity measure. This is because (1) the query vector 

is computed from WUkΛ where Λ=Σ-1 so the first dimension was weighted inversely by the largest 

singular value and (2) the document vector is from Vk where the rows are normalized before they 

are truncated. Furthermore, only the ordinal nature of the cosine value is used in IR because the 

main goal is to fetch the most relevant document to the query. As a consequence, consideration of 

the statistical nature of the cosine values is not necessary. In the case of the similarity measure, 

however, the query vector is computed from WUk so the first dimension is always the most 

influential. Furthermore, in some applications, such as AutoTutor, the cosine values are compared 

with a threshold. As indicated in Figure 2 and proven by Hu et al. (2003), the cosine values are 

always a monotonic function of the texts’ size. For example, a cosine value of 0.2 between two 

terms may indicate a high degree of similarity but may not indicate any similarity at all between 

texts with over 200 terms. This analysis suggests that when using LSA cosine values for the 

measures of similarity between texts, one needs to consider the sizes of the texts (Buckley et 

al,1996; Hu, Cai et al 2003). 

Given the weighted term matrix WUk, one can always obtain some basic statistical 

information such as the average cosine ( )21,nnµ  and the standard deviation ( 21,nn )σ  of any two 

texts with n1 and n2 terms respectively. Furthermore, if the distribution of all possible cosine 

values between two texts is normally distributed, one can obtain the relative cosine values between 
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two texts using the following simple formula 
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where n1 and n2 are the number of terms in T1 and T2 respectively. 

Adaptive Methods of LSA 
As we have pointed out in the previous section, the vector representation of terms in LSA 

space has been used only to produce a numerical value (vector dot product) between two terms. 

We argue that there are several other ways of using the dimensional information contained in the 

vector representation. We call this approach the "adaptive method" of LSA. For the purpose of 

later sections, we briefly review a few concepts in linear algebra. 

Some basic concept in linear algebra 
Linear Combination: A vector b is a linear combination of the vectors v1, v2…, vn , if b = 

c1v1+ c2v2+,…, + cnvn, where c1, c2…, cn are scalars. 

Span: Suppose v1, v2…, vn are vectors in a vector space V. These vectors are said to span V 

if every vector v in V can be expressed as a linear combination of these vectors. 

Linear Dependence: A set of vectors v1,v2…, vn are linearly dependent if it is possible to 

express one of the vectors as the others; that is, for some k ,  
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≠
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Linear Independence: A set of vectors v1, v2…, vn are linearly independent if it is 

impossible to express any one of the vectors as the others. 

Basis: A set of vectors v1, v2…, vn in V is a basis for V if the vectors are linearly 

independent and span V. 
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Standard Basis: The set of vectors e1, e2…, en where  
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is called the standard basis for Rn. 

Dimension: A vector space V has a dimension n if V has a basis consisting of n vectors. 

The dimension of V is denoted by dim(V). 

Representation: Since every vector can be represented uniquely by the base, meaning and 

interpretation of any vector can only be understood through the meaning and interpretation of the 

vectors contained in the base. This is the key notion behind the current claims. LSA vector is 

“latent” only because the dimensions are implicit (latent). 

Adapting to Perspective 
The typical feature of LSA is that the dimensions are latent. That means there are no 

explicit interpretations for the dimensions. Even though this is a fact about LSA, researchers 

frequently try to find some more information from the dimensions and interpret the values. For 

example, we observed some special properties of the first dimension (Hu et al., 2003). In this 

section, we explore two questions that are potentially relevant. First, can we make the latent 

dimensions explicit? Second, can we find explicit relations between words and between 

documents? From some initial derivations, we provide a mathematical solution. The basic idea is 

to represent information on some explicit dimensions. To do so, we simply need to (1) find a new 

base with meaningful dimensions and (2) transform the entire LSA vector space to the new base. 

To illustrate, we consider a very simple example where only two dimensions are involved. 

If a vector S is in an arbitrary coordinate system UxV, then S (with coordinates (u,v)) cannot be 
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easily interpreted without an explicit interpretation of U and V. However, if a new system XxY is 

introduced where X is the horizontal axis and Y is vertical axis, S can be interpreted easily, due to 

the obvious interpretation of X and Y (see Fig. 3).  

Figure 3 is about here 

To generalize the above intuitive example, we derive a general algorithm that can be used 

in LSA space with k dimensions. Consider the LSA term matrix Λkkm WUH =×  with m term 

vectors.  Furthermore, we may assume b1, b2, …, bk are any set of independent vectors that serve 

as a base of the space. For example, the base could be k words that represent k distinct categories, 

or a centroid of some categories that can be interpreted. From linear algebra, for any row in , 

h

km×H

i = (hi1, hi2…, hik) there is a unique nonzero vector (ei1, ei2 …, eik), such that  

  (14) . 
1

jij

k

j
i e bh ∑

=

=

In this case, ei = (ei1, …, eik) is the new representation under new base B=(b1, b2 …, bk). To 

illustrate, suppose in the original LSA space, two terms are represented by two rows in  h,km×H s = 

(hs1, hs2… hsk) and ht = (ht1, ht2…, htk) . There exist unique cs = (cs1, cs2… csk) and ct = (ct1, ct2… ctk) , 

for hs= csBT  and ht= ctBT, respectively, where csBT  and ctBT  are inner products of vectors. The 

cosine in the original space is  
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where •  is the length of a vector. On the other hand, since ( ) 1−
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cosine under the new base can be obtained by 
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The interesting question is whether we can find a meaningful base. The answer is yes and 

the construction of such bases can be very simple. For example, we can choose k key terms that we 

think are most relevant to our task. If the corresponding term vectors are linearly independent, then 

these k term vectors form a base. Then, any term in the space can be linearly expressed by these 

selected k term vectors. By definition, these k term vectors form a base of the k-dimensional space. 

In the above description, we have used (b1, b2…,bk) where k is the rank of .Λkkm WUH =×   

In fact, from the derivation above, we can prove that it is not necessary to specify all k 

vectors for the base. One could simply specify a few meaningful vectors (b1, b2…, bk0) and select 

(k – k0) vectors from the old base from Eq(13).  

Adapting to context 
In AutoTutor, every input from student is compared to several expectations. LSA is used to 

decide whether each of the expectations is covered. It turned out that some of the expectations 

have similar LSA vectors. When this occurs, it would be ideal to adjust AutoTutor so that it can 

detect small differences between the expectations. The process of adjusting LSA to this task is 

outlined below. We call this the method of “adapting to context.” 

Before we derive the formal method, consider the following keyword match example to 

help understand our basic claims. Assume that the two target expectations are A: "The horizontal 

speed is constant for the moving body" and B: "The vertical speed is zero for the moving body". 

Assume that the student's input is C: "The moving body will move forward with constant speed.".  

To distinguish A from B, there are some common words (the, is, for, the, moving, body) shared by 

A and B; they will not add much value in discriminating the two alternative expectations. In this 

case, one can either include common words or exclude common words. When common words are 

included, the similarity between A and C is 0.556 whereas the similarity between B and C is 0.444. 
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When common words are excluded, the similarity between A and C is 0.258 whereas the similarity 

between B and C is 0.  

Table 1 is about here 

As shown from this example, one might prefer the exclusion method so that C is relatively 

more similar to A than B. In essence, the differences between A and B would be magnified and this 

would be reflected in the similarity between C and A versus B (See Table 1). There needs to be a 

method to implement this context-sensitive magnification to LSA, where each expectation is 

represented as an LSA vector. Assume the two target expectations have vectors A and B, and that 

the student's input is vector C.  

( )
( )
( )k

k

k

ccc
bbb
aaa

...,,

...,,
...,,

21

21

21

=
=
=

C
B
A

, 

Further assume that nA, nB and nC are the number of words in A , B and C , respectively, and that we 

have identified statistical properties of the LSA space. That is, for each column of ,ΛkWU  such 

as column x, there is the mean xµ  and standard deviation xσ  , x = 1,2 …, k. Given these statistics 

and the number of words in A , B, and C , the expected values and variability (standard deviation) 

of the  xth elements of A , B, and C are ( ),, xAxA nn σµ  ( )xBxB nn σµ ,  , and ( )., xCxC nn σµ  With 

these values computed, we can then decide the difference between A and B by comparing 

quantities computed based on Eq(15) for all x = 1, …, k.   

 x

xBxA

xBxA z
nn

nn
=

+

−
22 σσ

µµ  (15) 

The final comparison between A and B versus B and C is computed in Eq(16),  
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where f(z) is a function such that ( ) ( )"zfzf ≥′  if ".zz >′  The simplest case for the function f(z) is 

the function captured in Eq(17).  
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1

The function Eq(17) was used in the simulation that we describe next. 

Simulation 
We explored the above analysis by a simple simulation (see Fig. 4 as an illustration) where A, B, 

and C are generated random vectors with 300 dimensions. In the simulation, two set of vectors that 

are “similar” at dimension x if zx=0.  A and B are similar for 150 of the dimensions while A and C 

are similar for those 37 of the 150 dimensions for which A and B are different.  Thus, similarity is 

based on those dimensions that differentiate A and B, not all dimensions.  

Figure 4 is about here 

We obtained all simulated values of Eq(16), both with and without using the weighting 

function Eq(17). We observed the difference between ( )CA,S ′  and ( )CB,S ′  is larger with Eq(17) 

(upper picture of Fig. 5,  ) than the case in which Eq(17) was not used (lower picture of 

Fig. 5, ). 

05.3=′d

07.2=′d

 Figure 5 is about here 

From the above analysis and simulation, we argue that when using LSA similarity to select 

one option from multiple alternatives (such as using C to select one of A and B, as in the example 

and simulation), considering detailed dimensional information will help the selection. In this 

method, context constrained and narrows down the alternatives at the level of detailed dimensions. 
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We call this the method of "adapting to context." 

Adapting to dialog history 
This is a method especially appropriate in situations where LSA is used to evaluate 

sequence of contributions. Consider AutoTutor when the tutor's goal is to help the student produce 

an answer to a question. The student typically gives one piece of information at a time. To furnish 

a complete answer to a question, the student needs to produce multiple pieces of information. In 

order for the tutor to be helpful and effective, the tutor needs to evaluate every contribution of the 

student and to help the student every time a contribution is made. We assume that AutoTutor is 

suppose to give feedback based on student's contribution towards the answer and that AutoTutor is 

suppose to give four different context-sensitive feedbacks at every contribution: 

Table 2 is about here 

Similar to the analysis of the previous method, we first consider what AutoTutor would do 

if the evaluation method were keyword matching. For an ordered sequence of statements, S1, S2, …, 

SN and a target statement S0 , for any given i ( )ni ≤≤2 , one can decompose Si into the four 

different bags of words, as specified below: 

• Words that overlap with words in S0 (relevant) 

• Appeared in S1, S2 … , Si-1 (old) 

• Never appeared in S1, S2 … , Si-1 (new) 

• Words that do not overlap with words in S0 (irrelevant) 

• Appeared in S1, S2 … , Si-1 (old) 

• Never appeared in S1, S2 … , Si-1 (new) 

Having established relations between keyword match and LSA in the previous section, the 

similar decomposition can be achieved in the present case. Denote si = siWUk , I = 0,1, …, n. For 
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an ordered sequence of statements, s1, s2, …, sn and a target statement s0 , for any given i ( )ni ≤≤2 , 

one can decompose Si into four different vectors: 

1) Vector that is parallel to s0 (relevant) 

i) Parallel to the spanned space of s1, s2, …, si-1 (old) 

ii) Perpendicular to the spanned space of s1, s2, …, si-1 (new) 

2) Vector that is perpendicular to s0 (irrelevant) 

i) Parallel to the spanned space of s1, s2, …, si-1 (old) 

ii) Perpendicular to the spanned space of s1, s2, …, si-1 (new) 

AutoTutor would ideally provide feedback based on the rate of change on each of the four 

components. For example, AutoTutor would provide positive feedback if each input from the 

student contains more new and relevant information. Ideally, a student would contribute a 

sequence of statements towards the answer. In AutoTutor, feedback at step i is based on how much 

student has contributed to the coverage of the expected answer until step i. To compute the 

coverage score, we need to introduce some notations. Let proj(s, p) denote the projection of vector 

s in the subspace P and Si = span{s1, s2, …, si-1 }, For any given i ( )ni ≤≤2  , the four components 

above can be specified in Eq(18).  
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Figure 6 is about here 

The accumulation of "relevant, new" information is called coverage. To compute the 

coverage score, we use an iterative procedure. If ci is the coverage score for space Si, then the new 

coverage score ci+1 by the space Si+1 is expressed in Eq(19). 
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We illustrate the above arguments by applying to the following example from AutoTutor. 

Question: Suppose a runner is running in a straight line at a constant speed and throws a 

pumpkin straight up. Where will the pumpkin land? Explain why. 

Expectation: The pumpkin will land in the runner's hands. 

Student's contribution: 

1) I think, correct me if I am wrong, it will not land before or behind the guy. 

2) The reason is clear; they have the same horizontal speed. 

3) The pumpkin will land in the runner's hand. 

4) Did I say anything wrong? 

5) Come on, I thought I have said that! 

We use old LSA (with threshold 0.8) and adaptive methods to compute coverage of the student's 

contribution at each step (see Table 1). We observed that even when the student produced a perfect 

answer (such as answer 3), the old LSA method failed to detect it (the cosine match was still less 

than the threshold, due to the fact that contributions 1 and 2 are evaluated with 3 together). 

Furthermore, the last two of the contributions have very little contribution to the coverage of the 

expectation, so the old LSA method decreased, as expected. However, when we used the adapting 

to context method described above, we observed the monotonic increase in coverage scores and a 

perfect match score when the student provided the perfect answer (see Table 3).  

Table 3 is about here 

The basic idea in this method is to consider the span of the vectors prior to current vector. 

Hence, the method is called the "Span Method". As we can see from the above derivation and 

example, this method makes use of the dialog history and the dimensional information of the 
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vector representation. One could imagine that Tutor's feedback could be based on other 

components also. For example, when the student provides old and irrelevant information, 

AutoTutor may detect that persistent misconceptions are driving the answers. AutoTutor's 

feedback is largely determined by the values of ui, vi, xi, yi at any step i. The overall performance is 

computed as an accumulation score, as in the case of Eq(19). 

Conclusions 
In this chapter, we have pointed out two limitations of LSA: 1) limited use of statistical 

information of LSA space and 2) limited use of dimensional information in the vector 

representation of the terms. Based on these observations, we have proposed a few extensions. 

These include a modified cosine match (as shown in Eq(12)) as similarity measures and adaptive 

methods that intelligently select dimensional information of the vector representations. We have 

concentrated large portion of the chapter developing the adaptive methods. We have proposed 

three adaptive methods: 1) adapting to perspective, 2) adapting to context, and 3) adapting to 

dialog history. All three adaptive methods are developed in the context of the application of 

AutoTutor with LSA cosine match being used as similarity measure. In this paper, we primarily 

concentrated on mathematical derivations and explained the extensions at the conceptual level 

with simple simulations. The next step is to implement the extensions in real applications. 
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Table 1.  

Sentences A: “The horizontal speed is constant for the moving body", B: "The vertical speed is 

zero for the moving body", and C: "The moving body will move forward with constant speed.” 

Using two methods of keyword matching. The common words in A and B are “the”,” speed”,” is”, 

“for”, ” moving”, and “body”. By removing the common words from A and B, then resulting A, B, 

and C are three sets of words: A:” horizontal”, “constant”, B: “vertical”, “zero”, and C: ”will”, 

“move”, “forward”, “with”, “constant”. 

 
 

 Remove common words  Keep common words 

A vs. C 0.258  0.556 

B vs. C 0.000  0.444 
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Table 2. 

A sequence of contributions from a student. In the case of keyword matching, treating each 

sentence as a collection of words, this collection of words can be classified into four different types, 

based on what is the answer key and all previous contributions.  

 

 relevant  irrelevant 

New ++  - 

Old +  -- 
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Table 3.  

Old LSA cosine value is the cosine match between all prior contributions and the answer key 

(expectation). This is the reason for the observed decreasing cosine values in the second column. 

New & relevant is computed by the SPAN method in Eq(18). The coverage is computed by 

Eq(19). 

 

 

 

 Old LSA Cosine value  New & Relevant Coverage 

1 0.431  0.431 0.431 

2 0.430  0.175 0.466 

3 0.751  0.885 1.0 

4 0.713  0.000 1.0 

5 0.667  0.000 1.0 
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Figure Captions 

Figure 1: First dimension always has the same sign and its mean is larger than all other dimensions. 

Figure 2. Cosine matches of two documents (i.e., Doc A and B) is a monotonic function of the 

document size (number of words in each of the two documents). 

Figure 3. Vector (u,v) in an arbitrary system cannot be interpreted due to the arbitrariness of the 

coordinates system U and V. However, it can be interpreted if a new system (coordinates system X 

and Y) is used. The vector (x,y) can be obtained from the relations between the two systems, 

namely, U-V coordinates system and X-Y coordinates system.  

Figure 4. This is an illustration of the simulation. Vectors A, B, and C are generated base on the 

following rule: A and B are similar 50% ; A and C are similar 25% among the dimensions where A 

and B are different. In the first simulation, all dimensions are used in the simulation. In the second 

simulation, the dimensions that A and B are similar are removed.  

Figure 5. Darker distribution is the cosine between A and C, and lighter distribution is the cosine 

between B and C. The difference between the two distribution is d’=2.07 for the case where all 

dimensions are used and d’=3.047 when the common dimensions are removed. 

Figure 6.  A vector si is decomposed into components in the direction of the target vector s0 and its 

perpendicular direction.  The components are further decomposed in the direction of the ith span Si 

and its perpendicular direction.
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Figure 1. 

Mean
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Figure 2. 

Doc B 1 2 4 8 16 32 64 128 256
1 0.05 0.02 0.04 0.04 0.05 0.08 0.10 0.11 0.13 0.15
2 0.04 0.02 0.02 0.03 0.05 0.08 0.08 0.10 0.13 0.14
4 0.03 0.02 0.03 0.04 0.05 0.07 0.09 0.11 0.13 0.15
8 0.05 0.03 0.03 0.04 0.05 0.08 0.11 0.13 0.16 0.17

16 0.05 0.05 0.05 0.06 0.09 0.11 0.15 0.18 0.21 0.25
32 0.08 0.06 0.06 0.06 0.11 0.15 0.19 0.24 0.28 0.31
64 0.10 0.07 0.08 0.09 0.13 0.18 0.24 0.28 0.35 0.39

128 0.11 0.08 0.09 0.11 0.15 0.21 0.29 0.34 0.41 0.45
256 0.13 0.10 0.11 0.12 0.17 0.23 0.32 0.38 0.46 0.51

Document A
512
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Figure 3  
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Figure 4  
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Figure 5. 
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Figure 6. 
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