Identifying the structure of students’
explanatory essays
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Abstract. Recent educational standards stress that students should
learn how to read and understand scientific explanations and create
explanations of their own. But these skills are difficult for teachers to
evaluate, so they often assess them at a shallow level or avoid giving
such assignments. Previous approaches for automatically evaluating ex-
planatory and other types of structured essays have relied on the use of
shallow features or bag-of-words methods. These methods might allow
for a reasonable holistic assessment of an essay, but they fail to iden-
tify which concepts students included and which causal connections they
made. In this paper, we investigate which natural language processing
methods are most successful at locating conceptual information in stu-
dent explanations and the causal connections between them. We found
that a combination of a recurrent neural network for identifying concepts
along with a novel causal relation parser produced very good accuracy
in two different scientific domains, significantly improving on the prior
state-of-the-art.

1 Introduction

The US Common Core standards and the Next-Generation Science Standards
reflect an increasing emphasis in education on how important it is for students
to learn how to read and comprehend science theories, models, and explanations,
integrate information from multiple sources, and to create their own explanations
[6,1]. Teachers often find it challenging to evaluate such texts in more than a
cursory manner [13,22]. Automated Essay Scoring mechanisms could be used
to reduce the load on teachers, but they tend to rely on surface-level features
of text aggregated across the essay [14] or bag-of-words approaches like LSA
[8], correlated with expert scores or pre-scored essays. These approaches are not
sophisticated enough to identify the structure of the students’ explanations. In
other words, they cannot determine which components of an ideal explanation
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the students have included, and how they have connected them together. In
this paper, we attempt to determine the optimal natural language processing
(NLP) techniques for identifying conceptual information and causal relations in
explanations, including a novel relation-parsing method.

2 Materials

As part of a larger project focused on understanding students’ reading processes,
approximately 1,300 14-15 year old students in a large U.S. city were asked to
read a small set of documents on a particular scientific phenomenon and create
their own explanation of that phenomenon. Two different topics were used: skin
cancer and coral bleaching. Each student worked with both topics. There were
5 documents of less than 1 page for each topic. One gave a general overview and
the others gave related information including images, maps, and charts. With
input from topic experts, a causal model was created for each topic, indicating
the important concepts described in the documents and the causal connections
made between them. The coral bleaching causal model included 13 concepts,
and the skin cancer model had 9.

Over 1100 student essays were collected for each topic. The brat tool [23, 24]
was used to annotate word spans as concepts and explicit connections between
them as causal relations. Inter-rater reliability was high, with x values of 93%. In
the next sections, we present the evaluation of several successful NLP techniques
for identifying the concepts and causal relations in the essays.

3 Concept Identification

The five techniques we compared have each been previously shown to produce
state-of-the-art results on various NLP tasks. Each had different representational
approaches to handling the challenges of ambiguity in text, interrelationships
between words, and relative probabilities of classification. We compared the ap-
proaches using micro-averaged F) scores, because they capture performance with
the relative frequencies of the codes in actual texts. All were tested with 5-fold
cross validation

— Window-based taggers [21, for example] classify an item using that item
and features about its neighboring items as inputs. Previously, we evaluated
a window-based method with an SVM classifier, yielding an F} score of 0.73
[10]. Here, we extended that approach, finding the best performance by using
logistic regression on positional stemmed unigrams, non-positional unigrams,
Brown cluster labels [3], and dependency parser relations.

— A Conditional Random Field (CRF) [12] learns a graphical model which
constitutes a linear chain of probabilities, expressing relationships between
random variables [12]. We used the CRF Suite [16] implementation and trained
the model with the L-BFGS gradient descent method.



— A Hidden Markov Model (HMM) is also a linear chain probabilistic model
[18,25], but it is a generative model. It learns to predict the probability of
observing a particular word based on the label from the training set and the
label of the previous word.

— A Structured Perceptron was used to perform multi-class classification
[5, for example]. Being an online model allows this approach to more easily
incorporate its own previous predictions as features to predict the next label
in the sentence.

— A Recurrent Neural Network learns to build its own representation as
it iterates through the words in a sentence [7]. We used the bi-directional
Gated Recurrent Unit (GRU) variant of RNN, with 100-dimensional GloVe
embeddings [17] as inputs. The best-performing network followed the inputs
with two bi-directional GRU layers of 256 units, then a softmax output layer,
and it was trained with the Adam optimizer [11].

The performance metrics for the five different concept identification methods
on the testset are shown in the top of Table 1. Averaging across topics, the RNN
performed best. In comparison with previous results, the average F} of 0.84
found here was significantly higher than the 0.73 previously reported.

Table 1. Testset accuracy for Concept and Causal Relation Identification

Coral Bleaching Skin Cancer
Recall Precision Fi Recall Precision F}
Window-based Tagger 0.802 0.885 0.842 0.779 0.853 0.814
CRF 0.797 0.787 0.835 0.759 0.855 0.804
HMM 0.799 0.702 0.747 0.731 0.628 0.675

Structured Perceptron 0.794 0.884 0.837 0.773 0.860 0.814
Bi-directional RNN 0.830 0.855 0.842 0.807 0.869 0.837

RNN Word Tagger 0.656 0.698 0.676 0.798 0.786 0.792
Stacked Model 0.674 0.736 0.704 0.719 0.816 0.765
Dependency Parser 0.766 0.693 0.728 0.760 0.823 0.790

4 Causal Relation Identification

Causal relation identification is a much more challenging task than concept iden-
tification because a concept tends to be described by a relatively small set of
contiguous words, whereas causal relations are inherently spread across a wider
range of words and variety of patterns. Previous work on detecting causal rela-
tions in text reflects the difficulty of the problem, either restricting the forms of
relations that were considered [2,9] or achieving rather low performance (e.g.,
Fy = 041 [19], F; = 0.39 [20]). Our previous work with an SVM classifier



achieved F; = 0.63 for the two topics [10], but it was limited to detecting only
the presence or absence of any causal relation within a sentence. Here, we eval-
uated three techniques:

— RNN Word Tagger: We trained a bi-directional RNN to predict, for each
word, the label of the the causal connection that it was involved in (if any).
The same RNN architecture described above performed best.

— As a Stacked Model [15, for example], we used predictions for all codes in a
sentence, and their combinations from the best concept identifier, the RNN|,
as inputs to a logistic regression classifier, because it is robust to overfitting
and can learn from arbitrary input features.

— Transition-based Dependency Parser: We developed a novel parsing
mechanism which learn to detect causal relations between concept codes
predicted by the RNN model. The parsing mechanism was adapted from
dependency parsers, such as [4].

The performance of the different causal relation identification techniques on
the test sets for both topics is shown in the bottom part of Table 1. The depen-
dency parser produced the top combined performance with an average F) score
of 0.759, compared to 0.734 for the RNN Word Tagger and 0.735 for the stacked
model. The parser’s advantages are reflected in the pattern of results. In the
coral bleaching topic, students mentioned 85 different relations, compared to 49
relations between the smaller set of concepts in the skin cancer topic. Accord-
ingly, the average number of examples of each causal relation was much higher
in the skin cancer topic (20.3 compared to 7.0). The parser learns when it can
combine two concept codes into a causal relation instead of treating each relation
as a separate label. This allows it to generalize better over all of the relations,
as reflected in the higher recall scores for the parser over the other models on
the coral bleaching topic. The higher precision for the parser on the skin cancer
topic than on coral bleaching can be attributed to the higher number of training
examples.

5 Conclusions

In this paper, we compared the performance of several highly competitive tech-
niques for identifying explanation structure, including a novel adaptation of a
parsing mechanism to the task of causal relation identification. The bi-directional
RNN showed the best performance on the concept identification task, achieving
an average F score of 0.84, significantly higher than that found in previous re-
search. Although the Word-Tagging RNN achieved slightly higher performance
than the Dependency Parser for causal relation identification on the skin can-
cer topic, overall the parser provided better performance, with an average F; of
0.76. Here too, we have achieved a significant increase in accuracy over previous
research. This level of performance indicates that these techniques can be confi-
dently used by an intelligent system to give feedback on the concepts and causal
structure in students’ scientific explanations.
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